請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51773
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 詹迺立 | |
dc.contributor.author | Wen-Yang Kuo | en |
dc.contributor.author | 郭文揚 | zh_TW |
dc.date.accessioned | 2021-06-15T13:49:02Z | - |
dc.date.available | 2021-02-24 | |
dc.date.copyright | 2016-02-24 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-10-27 | |
dc.identifier.citation | 1. M. Barbi, J. Mozziconacci, H. Wong, J. M. Victor, DNA topology in chromosomes: a quantitative survey and its physiological implications. J Math Biol 68, 145-179 (2014).
2. L. Postow, N. J. Crisona, B. J. Peter, C. D. Hardy, N. R. Cozzarelli, Topological challenges to DNA replication: conformations at the fork. Proc Natl Acad Sci U S A 98, 8219-8226 (2001). 3. J. Vinograd, J. Lebowitz, Physical and topological properties of circular DNA. J Gen Physiol 49, 103-125 (1966). 4. H. Y. Wu, S. H. Shyy, J. C. Wang, L. F. Liu, Transcription generates positively and negatively supercoiled domains in the template. Cell 53, 433-440 (1988). 5. K. D. Corbett, J. M. Berger, Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases. Annu Rev Biophys Biomol Struct 33, 95-118 (2004). 6. S. M. Vos, E. M. Tretter, B. H. Schmidt, J. M. Berger, All tangled up: how cells direct, manage and exploit topoisomerase function. Nat Rev Mol Cell Biol 12, 827-841 (2011). 7. J. C. Wang, Cellular roles of DNA topoisomerases: a molecular perspective. Nature reviews. Molecular cell biology 3, 430-440 (2002). 8. J. C. Wang, Interaction between DNA and an Escherichia coli protein omega. J Mol Biol 55, 523-533 (1971). 9. N. M. Baker, R. Rajan, A. Mondragon, Structural studies of type I topoisomerases. Nucleic Acids Res 37, 693-701 (2009). 10. A. Kikuchi, K. Asai, Reverse gyrase--a topoisomerase which introduces positive superhelical turns into DNA. Nature 309, 677-681 (1984). 11. D. A. Koster, V. Croquette, C. Dekker, S. Shuman, N. H. Dekker, Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB. Nature 434, 671-674 (2005). 12. S. H. Chen, N. L. Chan, T. S. Hsieh, New mechanistic and functional insights into DNA topoisomerases. Annu Rev Biochem 82, 139-170 (2013). 13. A. Bergerat, D. Gadelle, P. Forterre, Purification of a DNA topoisomerase II from the hyperthermophilic archaeon Sulfolobus shibatae. A thermostable enzyme with both bacterial and eucaryal features. J Biol Chem 269, 27663-27669 (1994). 14. A. Bergerat et al., An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature 386, 414-417 (1997). 15. J. L. Nitiss, DNA topoisomerase II and its growing repertoire of biological functions. Nat Rev Cancer 9, 327-337 (2009). 16. L. Aravind, D. D. Leipe, E. V. Koonin, Toprim--a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Res 26, 4205-4213 (1998). 17. M. D. Nichols, K. DeAngelis, J. L. Keck, J. M. Berger, Structure and function of an archaeal topoisomerase VI subunit with homology to the meiotic recombination factor Spo11. EMBO J 18, 6177-6188 (1999). 18. C. Sissi, M. Palumbo, Effects of magnesium and related divalent metal ions in topoisomerase structure and function. Nucleic Acids Res 37, 702-711 (2009). 19. R. Dutta, M. Inouye, GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci 25, 24-28 (2000). 20. C. Buhler, D. Gadelle, P. Forterre, J. C. Wang, A. Bergerat, Reconstitution of DNA topoisomerase VI of the thermophilic archaeon Sulfolobus shibatae from subunits separately overexpressed in Escherichia coli. Nucleic Acids Res 26, 5157-5162 (1998). 21. J. C. Wang, DNA topoisomerases. Annu Rev Biochem 65, 635-692 (1996). 22. J. E. Haber, A super new twist on the initiation of meiotic recombination. Cell 89, 163-166 (1997). 23. S. Keeney, C. N. Giroux, N. Kleckner, Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88, 375-384 (1997). 24. K. D. Corbett, J. M. Berger, Structure of the topoisomerase VI-B subunit: implications for type II topoisomerase mechanism and evolution. EMBO J 22, 151-163 (2003). 25. K. D. Corbett, J. M. Berger, Structural dissection of ATP turnover in the prototypical GHL ATPase TopoVI. Structure 13, 873-882 (2005). 26. F. Hartung, H. Puchta, Molecular characterization of homologues of both subunits A (SPO11) and B of the archaebacterial topoisomerase 6 in plants. Gene 271, 81-86 (2001). 27. K. Sugimoto-Shirasu, N. J. Stacey, J. Corsar, K. Roberts, M. C. McCann, DNA topoisomerase VI is essential for endoreduplication in Arabidopsis. Curr Biol 12, 1782-1786 (2002). 28. Y. Yin et al., A crucial role for the putative Arabidopsis topoisomerase VI in plant growth and development. Proc Natl Acad Sci U S A 99, 10191-10196 (2002). 29. K. D. Corbett, J. M. Berger, Emerging roles for plant topoisomerase VI. Chem Biol 10, 107-111 (2003). 30. A. J. Schoeffler, J. M. Berger, DNA topoisomerases: harnessing and constraining energy to govern chromosome topology. Q Rev Biophys 41, 41-101 (2008). 31. K. D. Corbett, P. Benedetti, J. M. Berger, Holoenzyme assembly and ATP-mediated conformational dynamics of topoisomerase VI. Nat Struct Mol Biol 14, 611-619 (2007). 32. J. Roca, J. M. Berger, S. C. Harrison, J. C. Wang, DNA transport by a type II topoisomerase: direct evidence for a two-gate mechanism. Proc Natl Acad Sci U S A 93, 4057-4062 (1996). 33. J. Roca, J. C. Wang, The capture of a DNA double helix by an ATP-dependent protein clamp: a key step in DNA transport by type II DNA topoisomerases. Cell 71, 833-840 (1992). 34. C. L. Baird, T. T. Harkins, S. K. Morris, J. E. Lindsley, Topoisomerase II drives DNA transport by hydrolyzing one ATP. Proc Natl Acad Sci U S A 96, 13685-13690 (1999). 35. M. Graille et al., Crystal structure of an intact type II DNA topoisomerase: insights into DNA transfer mechanisms. Structure 16, 360-370 (2008). 36. J. M. Berger, S. J. Gamblin, S. C. Harrison, J. C. Wang, Structure and mechanism of DNA topoisomerase II. Nature 379, 225-232 (1996). 37. D. Gadelle, J. Filee, C. Buhler, P. Forterre, Phylogenomics of type II DNA topoisomerases. Bioessays 25, 232-242 (2003). 38. C. Buhler, J. H. Lebbink, C. Bocs, R. Ladenstein, P. Forterre, DNA topoisomerase VI generates ATP-dependent double-strand breaks with two-nucleotide overhangs. J Biol Chem 276, 37215-37222 (2001). 39. J. L. Nitiss, Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 9, 338-350 (2009). 40. C. C. Wu et al., Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide. Science 333, 459-462 (2011). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51773 | - |
dc.description.abstract | DNA拓樸異構酶為一類生物體中不可或缺的酵素,負責解決DNA在進行複製、轉錄、重組、修復等過程中所形成的拓樸結構問題,像是複製過程中產生的DNA雙股連鎖,或是在轉錄的過程中因轉錄複合體推動而形成的正、負超螺旋等,這些較複雜的DNA結構若未被移除,會導致染色體的不穩定,以及細胞功能的異常。拓樸異構酶即是利用活性中心的酪胺酸,對DNA之磷酸基團進行親核性攻擊,藉由催化可逆的轉酯反應形成磷酸酪胺基鍵(phosphotyrosyl bond),造成DNA短暫的斷裂,並使得另一股DNA或是另一DNA雙股分子得以通過此缺口,因此可改變DNA的拓樸結構,之後透過第二次的轉酯作用,使DNA重新黏合。基於結構以及機制的不同,拓樸異構酶可被分為第一型與第二型兩大類,其差別在於前者只切開單股,後者則可同時切開DNA雙股,而藉由酵素的序列與催化特性,第二型酵素可再進一步分為IIA與IIB兩亞型。拓樸異構酶VI是IIB亞型的唯一成員,主要存在於古細菌及部分植物中,其於生理狀態下為異質四聚體,部分序列與IIA酵素以及參與DNA調節的蛋白具有相似性。先前的研究指出,拓樸異構酶VI的作用機制與IIA酵素類似,兩者皆需要結合與水解ATP來催化DNA雙股的斷裂及解旋,但是主要功能區域在序列以及立體結構的排列卻有顯著差異。例如,拓樸異構酶VI會產生的DNA斷口兩端相隔兩個鹼基對,但其他IIA酵素引起的斷裂則是相隔四個鹼基對。此外,參與轉酯化反應的酪胺酸於拓樸異構酶VI中出現在α螺旋上,而IIA蛋白則位在β-hairpin環上。因此,我們認為拓樸異構酶VI結合與切割DNA的機制上勢必與IIA酵素有明顯的差異,但目前為止還沒有任何關於此酵素與DNA形成之複合體的結構資訊,所以我們希望透過X射線繞射結晶學的方式,更進一步研究其結構與機制。我們成功表達並純化功能完整之嗜熱菌拓樸異構酶VI蛋白,並透過活性測試確認其對ATP及二價離子的依賴性,並得知反應的最適溫度約在70至80度之間。我們亦針對其序列偏好性設計出可能與其專一性結合的DNA受質,之後將使用此雙股DNA進行養晶條件測試。 | zh_TW |
dc.description.abstract | DNA topoisomerases are essential enzymes that are ubiquitously present in all organisms for resolving the entangled or interlinked DNA structures resulted from replication, transcription, recombination, DNA repair, and chromatin remodeling. Failure in the removal of these higher-order topological DNA structures is known to cause genome instability and dysregulation of cellular functions. To alter DNA topology, DNA topoisomerases utilize a tyrosine residue located in the active site to catalyze a reversible transesterification reaction. During this process, the active site tyrosine attack the DNA phosphoribosyl backbone to form a phosphotyrosyl linkage and a concomitant breakage of the phosphodiester bond, which creates a transient DNA break to permit the passage of another DNA strand or DNA duplex through the opening. The DNA break can then be resealed through the second transesterification reaction with the regeneration of the active site tyrosine. Based on structural and mechanistic distinctions, these enzymes are classified into type I and II, which are distinguished by their ability to cleave one or both strands of DNA duplex. These two groups can be further divided into A and B subfamilies. Among them, topoisomerase VI (Topo VI) is the sole member of type IIB topoisomerase, found mainly in archaea and plants. Topo VI functions as an A2B2 heterotetramer, whose subunits share sequence homology with type IIA enzymes and other proteins involved in DNA processing.
Previous studies showed that, similar to the type IIA enzymes, Topo VI also possesses an ATP-dependent duplex passage activity, but the domains of Topo VI subunit are organized differently along the polypeptide sequence and are placed in spatially distinct positions. In addition, unlike the type IIA enzymes, Topo VI produces a 2-base- rather than a 4-base-staggered DNA break. Moreover, the active site tyrosine of Topo VI is located within a helix rather than a loop region as seen in type IA and IIA enzymes. Therefore, we suspect that Topo VI may employ a distinct mechanism with respect to DNA binding and cleavage. So far, there is no direct structural information available to elucidate the interaction between Topo VI and DNA. Therefore, we attempt to characterize the structure of Topo VI in complex with a DNA duplex by X-ray crystallography. To this end, we have successfully purified and reconstituted a chimeric Topo VI holoenzyme from a thermophilic archaea. Functional analyses indicated that the Topo VI we prepared possesses an ATP- and temperature-dependent relaxation activity, with optimal activity being observed at 70~80˚C. We have initiated crystallization screens on the Topo VI-DNA binary complex. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:49:02Z (GMT). No. of bitstreams: 1 ntu-104-R02442008-1.pdf: 4447986 bytes, checksum: 382e478e08a88ca63e50d3ca34092f98 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 目錄
謝誌 I 摘要 II Abstract IV 目錄 VI 圖目錄 VIII 表目錄 IX 縮寫表 X 一、前言 1 1.1拓樸異構酶的主要功能 1 1.2拓樸異構酶的分類與功能 2 1.3拓樸異構酶VI (topoisomerase VI, Topo VI) 4 1.4第二型拓樸異構酶 (Type II topoisomerase)的比較 5 1.5研究目的 7 二、材料與方法 8 2.1 表現質體之建構 (Construction of expression plasmids) 8 2.1.1 pETDuet-NEQ542-144 8 2.1.2 pRYG supercoiled DNA 8 2.2 蛋白表現與純化 (Overexpression and purification of topoisomerase Ⅵ) 9 2.2.1 pETDuet-NEQ542-144 (Topoisomerase Ⅵ)蛋白表現量測試 9 2.2.2 pETDuet-NEQ542-144 (Topoisomerase Ⅵ)蛋白大量培養 9 2.2.3 pETDuet-NEQ542-144蛋白純化 10 2.3 蛋白活性分析 12 2.3.1 DNA relaxation assay 12 2.3.2 電泳遷移率改變實驗(Electrophoretic mobility shift assay, EMSA) 12 2.4 蛋白分析及定量 13 2.4.1 蛋白膠體電泳分析 13 2.4.2 蛋白定量 13 2.4.3 蛋白之均質性測定 14 2.5 蛋白晶體培養 14 2.5.1 預結晶試驗 (pre-crystallization test) 14 2.5.2 蛋白結晶條件篩選 14 三、結果 16 3.1 Topo VI 蛋白表現測試 16 3.2 Topo VI純化 16 3.3 Topo VI 蛋白活性測試 17 3.4 受質DNA之設計 18 3.5 Topo VI 酵素與受質結合試驗 19 3.6 Topo VI 養晶測試 19 3.7 DNA結合與切割核心(DNA binding and cleavage core) 20 四、討論 22 圖 25 表 37 參考文獻 41 附錄 44 | |
dc.language.iso | zh-TW | |
dc.title | 嗜熱菌拓樸異構酶VI結合去氧核醣核酸之複合體結構解析 | zh_TW |
dc.title | Toward Structural Analysis of Topoisomerase VI from the Thermophilic Archaea Nanoarcharum equitans in Complex with DNA | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 徐駿森,曾秀如 | |
dc.subject.keyword | 拓樸異構?VI,拓樸結構,第二型拓樸異構?,X射線繞射結晶學,嗜熱菌, | zh_TW |
dc.subject.keyword | topoisomerase VI,DNA topology problem,type II topoisomerase,X-ray crystallography,thermophile, | en |
dc.relation.page | 44 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-10-27 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
顯示於系所單位: | 生物化學暨分子生物學科研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 4.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。