請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51749完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張嘉升 | |
| dc.contributor.author | Peng-Jen Chen | en |
| dc.contributor.author | 陳鵬仁 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:47:42Z | - |
| dc.date.available | 2016-12-01 | |
| dc.date.copyright | 2015-12-01 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-11-11 | |
| dc.identifier.citation | [1] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108 1175 (1957).
[2] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). [3] W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965). [4] P. Giannozze et al., J. Phys. Condens. Matter 21, 395502 (2009). [5] L. Hedin, Phys. Rev. 139, A796 (1965). [6] M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390 (1986). [7] J. Deslippe et al., Comput. Phys. Commun. 183, 1269 (2012). [8] S. Baroni, S. de Gironcoli, and A. Dal Corso, Rev. Mod. Phys. 73, 515 (2001). [9] A. A. Mosto , J. R. Yates, Y. -S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Comput. Phys. Commun. 178, 685 (2008). [10] Y. Ogo et al., Appl. Phys. Lett. 93, 032113 (2008). [11] H. Hosono, Y. Ogo, H. Yanagi, and T. Kamiya, Electrochem. Solid-State Lett. 14, H13 (2011). [12] W. S. Baker et al., J. Electrochem. Soc. 153, A1702 (2006). [13] R. Y. Korotkov, R. Gupta, P. Ricou, R. Smith, and G. Silverman, Thin Solid Films 516, 4720 (2008). [14] P. Ifeacho, T. Huelser, H. Wiggers, C. Schulz, and P. Roth, Proceedings of the Combustion Institute 31, 1805 (2007). [15] Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, and T. Miyasaka, Science 276, 1395 (1997). [16] M. K. Forthaus et al., Phys. Rev. Lett. 105, 157001 (2010). [17] F.-C. Hsu et al., PNAS 105, 14262 (2008). [18] Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, and Y. Takano, Appl. Phys. Lett. 93, 152505 (2008). [19] S. Margadonna et al., Phys. Rev. B 80, 064506 (2009). [20] A. Subedi, L. Zhang, D. J. Singh, and M. H. Du, Phys. Rev. B 78, 134514 (2008). [21] W. Wang, J. Sun, S. Li, and H. Lu, Physica C 472, 29 (2012). [22] I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett. 101, 057003 (2008). [23] T. Hanaguri et al., Science 328, 474 (2010). [24] F. Wang and D.-H. Lee, Science 332, 200 (2011). [25] R. H. Liu et al., Nature 459, 64 (2009). [26] P. M. Shirage et al., Phys. Rev. Lett. 103, 257003 (2009). [27] R. Khasanov et al., New J. Phys. 12, 073024 (2010). [28] R. Khasanov, M. Bendele, A. Bussmann-Holder, and H. Keller, Phys. Rev. B 82, 212505 (2010). [29] W. S. Chu et al., Sci. Rep. 3, 1750 (2013). [30] J. Geurts, S. Rau, W. Richter, and F. J. Schmitte, Thin Solid Films 121, 217 (1984). [31] K. M. Krishna, M. Sharon, M. K. Mishra, and V. R. Marathe, Electrochim. Acta 41, 1999 (1996). [32] N. E. Christensen, A. Svane, and E. L. Peltzer y Blanc a, Phys. Rev. B 72, 014109 (2005). [33] X. Wang et al., Phys. Status Solidi B 241, 3168 (2004). [34] M. van Schilfgaarde, T. Kotani, and S. V. Faleev, Phys. Rev. B 74, 245125 (2006). [35] M. Shishkin, M. Marsman, and G. Kresse, Phys. Rev. B 75, 235102 (2007). [36] M. Shishkin, M. Marsman, and G. Kresse, Phys. Rev. Lett. 99, 246403 (2007). [37] A. Kokalj, J. Mol. Graphics Modelling 17, 176 (1999); A. Kokalj, Comput. Mater. Sci. 28, 155 (2003). [38] J. A. McLeod, A. V. Lukoyanov, E. Z. Kurmaev, L. D. Finkelstein, and A. Moewes, JETP Letters 94, 142 (2011). [39] K. Govaerts, R. Saniz, B. Partoens, and D. Lamoen, Phys. Rev. B 87, 235210 (2013). [40] A. Walsh and G. M. Watson, J. Phys. Chem. B 109, 18868 (2005). [41] R. G. Godby, M. Schl uter, and L. J. Sham, Phys. Rev. B 37, 10159 (1988). [42] S Leb egue, B. Arnaud, M. Alouani, and P. E. Bloechl, Phys. Rev. B 67, 155208 (2003). [43] S. Galami c-Mulaomerovi c and C. H. Patterson, Phys. Rev. B 71, 195103 (2005). [44] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). [45] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 63 (2001). [46] Y. Wang, T. Plackowski, and A. Junod, Physica C 355, 179 (2001). [47] F. Bouquet, R. A. Fisher, N. E. Phillips, D. G. Hinks, and J. D. Jorgensen, Phys. Rev. Lett. 87, 047001 (2001). [48] P. Szab o, P. Samuely, J. Ka cmar c k, T. Klein, J. Marcus, D. Fruchart, S. Miraglia, C. Marcenat, and A. G. M. Jansen, Phys. Rev. Lett. 87, 137005 (2001). [49] H. D. Yang, J. -Y. Lin, H. H. Li, F. H. Hsu, C. J. Liu, S. -C. Li, R. -C Yu, and C. -Q. Jin, Phys. Rev. Lett. 87, 167003 (2001). [50] S. Tsuda, T. Yokoya, T. Kiss, Y. Takano, K. Togano, H. Kito, H. Ihara, and S. Shin, Phys. Rev. Lett. 87, 177006 (2001). [51] F. Giubileo, D. Roditchev, W. Sacks, R. Lamy, D. X. Thanh, J. Klein, S. Miraglia, D. Fruchart, J. Marcus, and Ph. Monod, Phys. Rev. Lett. 87, 177008 (2001). [52] F. Laube, G. Goll, J. Hagel, H. V. L ohneysen, D. Ernst, and T. Wolf, Europhys. Lett. 56, 296 (2001). [53] F. Bouquet, Y. Wang, I. Sheikin, T. Plackowski, and A. Junod, Phys. Rev. Lett. 89, 257001 (2002). [54] F. Bouquet, Y. Wang, R. A. Fisher, D. G. Hinks, J. D. Jorgensen, A. Junod, and N. E. Phillips, Europhys. Lett. 56, 856 (2001). [55] A. Y. Liu, I. I. Mazin, and J. Kortus, Phys. Rev. Lett. 87, 087005 (2001). [56] H. J. Choi, D. Roundy, H. Sun, M. L. Cohen, and S. G. Louie, Nature 418, 758 (2002). [57] H. J. Choi, M. L. Cohen, and S. G. Louie, Physica C 385, 66 (2003). [58] H. J. Choi, S. G. Louie, and M. L. Cohen, Phys. Rev. B 80, 064503 (2009). [59] H. Rosner, A. Kitaigorodsky, and W. E. Pickett Phys. Rev. Lett. 88, 127001 (2002). [60] J. K. Dewhurst, S. Sharma, C. Ambrosch-Draxl, and B. Johansson, Phys. Rev. B 68, 020504(R) (2003). [61] J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Phys. Rev. B 75, 153401 (2007). [62] G. Savini, A. C. Ferrari, and F. Giustino, Phys. Rev. Lett. 105, 037002 (2010). [63] M. Gao, Z. -Y. Lu, and T. Xiang, Phys. Rev. B 91, 045132 (2015). [64] T. Bazhirov, Y. Sakai, S. Saito, and M. L. Cohen, Phys. Rev. B 89, 045136 (2014). [65] T. Oguchi, J. Phys. Soc. Jpn. 71, 1495 (2002). [66] A. Bharathi, S. Jemima Balaselvi, M. Premila, T. N. Sairam, G. L. N. Reddy, C. S. Sundar, and Y. Hariharan, Solid State Commun. 124, 423 (2002). [67] D. Souptela, Z. Hossainb, G. Behra, W. L osera, and C. Geibel, Solid State Com- mun. 125, 17 (2003). [68] A. M. Fogg, P. R. Chalker, J. B. Claridge, G. R. Darling, and M. J. Rosseinsky, Phys. Rev. B 67, 245106 (2003). [69] A. M. Fogg, J. B. Claridge, G. R. Darling, and M. J. Rosseinsky, Chem. Commun. 12, 1348 (2003). [70] A. M. Fogg, J. Meldrum, G. R. Darling, J. B. Claridge, and M. J. Rosseinsky, J. Am. Chem. Soc. 128, 10043 (2006). [71] J. M. An and W. E. Pickett, Phys. Rev. Lett. 86, 4366 (2001). [72] P. B. Allen and R. C. Dynes, Phys. Rev. B 12, 905 (1975). [73] Z.-A. Ren, J. Kato, T. Muranaka, J. Akimitsu, M. Kriener, and Y. Maeno, J. Phys. Soc. Jpn. 76, 103710 (2007). [74] We tentatively use the term -bands' to be analogous with those in MgB2. The non-covalent nature of these states will become manifest later. [75] Y. Kong, O. V. Dolgov, O. Jepsen, and O. K. Andersen, Phys. Rev. B 64, 020501(R) (2001). [76] F. Qu, F. Yang, J. Shen, Y. Ding, J. Chen, Z. Ji, G. Liu, J. Fan, X. Jing, C. Yang, and L. Lu, Sci. Rep. 2, 339 (2012). [77] F. Yang, F. Qu, J. Shen, Y. Ding, J. Chen, Z. Ji, G. Liu, J. Fan, C. Yang, L. Fu, and L. Lu, Phys. Rev. B 86, 134504 (2012). [78] E. Wang et al., Nature Phys. 9, 621 (2013). [79] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651(R) (1993). [80] L. Fu and C. L. Kane, Phys. Rev. B 74, 195312 (2006). [81] R. Yu, X.-L. Qi, A. Bernevig, Z. Fang, and X. Dai, Phys. Rev. B 84, 075119 (2011). [82] T. Fukui and Y. Hatsugai, J. Phys. Soc. Jpn. 76, 053702 (2007). [83] M. L uscher, Commun. Math. Phys. 85, 39 (1982). [84] A. Phillips, Ann. Phys. (N.Y.) 161, 399 (1985). [85] A. Phillips and D. Stone, Commun. Math. Phys. 103, 599 (1986). [86] A. Phillips and D. Stone, Commun. Math. Phys. 131, 255 (1990). [87] M. L uscher, Nucl. Phys. B, 549, 295 (1999). [88] T. Fujiwara, H. Suzuki, and K. Wu, Prog. Theor. Phys. 105, 789 (2001). [89] C.-C. Liu, W. Feng, and Y. Yao, Phys. Rev. Lett. 107, 076802 (2011). [90] T.-R. Chang, T. Das, P.-J Chen, M. Neupane, S.-Y. Xu, M. Z. Hasan, H. Lin, H.-T. Jeng, and A. Bansil, Phys. Rev. B 91, 155151 (2015). [91] H. Lin, L. A. Wray, Y. Xia, S. Xu, S. Jia, R. J. Cava, A. Bansil, and M. Z. Hasn, Nautre Mater. 9, 546 (2010). [92] D. Xiao, Y. Yao, W. Feng, J. Wen, W. Zhu, X.-Q. Chen, G. M. Stocks, and Z. Zhang, Phys. Rev. Lett. 105, 096404 (2010). [93] W. Al-Sawai, Hsin Lin, R. S. Markiewicz, L. A. Wray, Y. Xia, S. -Y. Xu, M. Z. Hasan, and A. Bansil, Phys. Rev. B 82, 125208 (2010). [94] W. Feng, D. Xiao, Y. Zhang, and Y. Yao, Phys. Rev. B 82, 235121 (2010). [95] F. F. Tafti, T. Fujii, A. Juneau-Fecteau, S. Ren e de Cotret, N. Doiron-Leyraud, A. Asamitsu, and L. Taillefer, Phys. Rev. B 87, 184504 (2013). [96] G. Goll, M. Marz, A. Hamann, T. Tomanic, K. Grube, T. Yoshino, T. Takabatake, Phys. B : Condens. Matter. 403, 1065 (2008). [97] C. Liu, Y. Lee, T. Kondo, E. D. Mun, M. Caudle, B. N. Harmon, S. L. Bud'ko, P. C. Can eld, and A. Kaminski, Phys. Rev. B 83, 205133 (2011). [98] M. N. Ali, Q. D. Gibson, T. Klimczuk, and R. J. Cava, Phys. Rev. B 89, 020505(R) (2014). [99] J. A. Wilson, F. J. Di Salvo, and S. Mahajan, Phys. Rev. Lett. 32, 882 (1974). [100] D. E. Moncton, J. D. Axe, and F. J. Di Salvo, Phys. Rev. Lett. 34, 734 (1975). [101] D. E. Moncton, J. D. Axe, and F. J. Di Salvo, Phys. Rev. B 16, 801 (1977). [102] E. Morosan et al., Nature Phys. 2, 544 (2006). [103] B. Sipos, A. F. Kusmartseva, A. Akrap, H. Berger, L. Ferr o, and E. Tuti s, Nature Mater. 7, 960 (2008). [104] A. F. Kusmartseva, B. Sipos, H. Berger, L. Ferr o, and E. Tuti s, Phys. Rev. Lett. 103, 236401 (2009). [105] P. Xu et al. Phys. Rev. B 81, 172503 (2010). [106] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005). [107] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004). [108] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heniz, Phys. Rev. Lett. 105, 136805 (2010). [109] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nano. 6, 147 (2011). [110] S. Ghattak, A. N. Pal, and A. Ghosh, ACS Nano 5, 7707 (2011). [111] B. Radisavljevic, M. B. Whitwick, and A. Kis, ACS Nano 5, 9934 (2011). [112] Y. Yoon, K. Ganapathi, and S. Salahuddin, Nano Let. 11, 3768 (2011). [113] M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, Nano Lett. 14, 3347 (2014). [114] G. Qin, Q.-B. Yan, Z. Qin, S.-Y. Yue, H.-J. Cui, Q.-R. Zheng, and G. Su, Sci. Rep. 4, 6946 (2014). [115] Z. Zhu and D. Tom anek, Phys. Rev. Lett. 112, 176802 (2014). [116] J. Guan, Z. Zhu, and D. Tom anek, Phys. Rev. Lett. 113, 046804 (2014). [117] J. Guan, Z. Zhu, and D. Tom anek, Phys. Rev. Lett. 113, 226801 (2014). [118] J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003). [119] J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 121, 1187 (2004). [120] H. C. Casey Jr., D. D. Sell, K. W. Wecht, J. Appl. Phys. 46, 250 (1975). [121] R. O. Bell, Rev. Phys. Appl. (Paris) 12, 391 (1977). [122] G. Augustine, N. M. Jokerst, and A. Rohatgi, Appl. Phys. Lett. 61, 1429 (1992). [123] S. Grimme, J. Comp. Chem. 27, 1787 (2006). [124] S. Pailh es, H. Euchner, V. M. Giordano, R. Debord, A. Assy, S. Gom es, A. Bosak, D. Machon, S. Paschen, and M. de Boissieu, Phys. Rev. Lett. 113, 025506 (2014). [125] R. Fei et al., Nano Lett. 14, 6393 (2014). [126] M. Karuzawa, M. Ishizuka, and S. Endo, J. Phys.: Condens. Matter 14, 10759 (2002). [127] C. Kittel, Introduction to Solid State Physics 8th edn (Wiley, Hoboken, NJ, USA, 2004). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51749 | - |
| dc.description.abstract | First-principles calculations are performed to investigate the superconductivity and topological properties of materials. For superconductors of BCS-type, the electron-phonon (e-ph) interactions play the essential role. The studies of superconductors of this kind rely on the appropriate description of the e-ph interactions. In this thesis, the e-ph interactions are calculated using the density functional perturbation theory that treats the interaction in a subtle way without the need of using the supercells. The correctness and the reliability of this method provides a powerful means to study and predict superconductors of BCS-type. With this method, we successfully reproduce the superconducting phase diagram of a semimetallic superconductor SnO. And then we also predict a new superconductor, C2SiB, that shows a high Tc ~ 60 K. The origin of the strong e-ph coupling is also discussed.
In addition to the superconductivity, the topological property of a material is also investigated owing to its growing importance in the field of condensed matter physics. Here we adopt a method based on Wannier functions to calculate the Z2 invariant, a quantity that defines the topological state of a material. Unlike the parity analysis that works only for systems with inversion symmetry, this method can be applied be all kinds of system as long as the Z2 invariant is defined. We apply this method to some superconductors and reveal the nontrivial topology of some superconductors. This work paves the way to further investigate the interplay between superconductivity and the nontrivial topology. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:47:42Z (GMT). No. of bitstreams: 1 ntu-104-D01222027-1.pdf: 36470958 bytes, checksum: 96aaef79978275745ca4248cad9cba4d (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | Acknowledgements i
Abstract iii 1. Introduction 1 2. Theoretical Background 5 3. Superconducting Phase Diagram of the Layered Oxide SnO : GW and Electron-Phonon Studies 19 4. A predicted BCS-superconductor with High Tc ~ 60 K : C2SiB 29 5. Superconductors with nontrivial topology 39 6. Prediction of the High Applicability of Two Dimensional Phosphorus in Kagome Structure 63 Bibliography 75 | |
| dc.language.iso | en | |
| dc.subject | 拓樸性質 | zh_TW |
| dc.subject | 第一原理 | zh_TW |
| dc.subject | 密度泛函理論 | zh_TW |
| dc.subject | 電聲交互作用 | zh_TW |
| dc.subject | 超導 | zh_TW |
| dc.subject | density functional theory | en |
| dc.subject | topological properties | en |
| dc.subject | superconductivity | en |
| dc.subject | electron-phonon interactions | en |
| dc.subject | First-principles calculations | en |
| dc.title | 超導體的電聲交互作用及拓樸性質之研究 | zh_TW |
| dc.title | Electron-phonon and Topological Properties of Selected Superconductors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 鄭弘泰 | |
| dc.contributor.oralexamcommittee | 李定國,郭光宇,仲崇厚,莊天明 | |
| dc.subject.keyword | 第一原理,密度泛函理論,電聲交互作用,超導,拓樸性質, | zh_TW |
| dc.subject.keyword | First-principles calculations,density functional theory,electron-phonon interactions,superconductivity,topological properties, | en |
| dc.relation.page | 81 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-11-12 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 35.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
