Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51749
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張嘉升
dc.contributor.authorPeng-Jen Chenen
dc.contributor.author陳鵬仁zh_TW
dc.date.accessioned2021-06-15T13:47:42Z-
dc.date.available2016-12-01
dc.date.copyright2015-12-01
dc.date.issued2015
dc.date.submitted2015-11-11
dc.identifier.citation[1] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108 1175 (1957).
[2] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[3] W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).
[4] P. Giannozze et al., J. Phys. Condens. Matter 21, 395502 (2009).
[5] L. Hedin, Phys. Rev. 139, A796 (1965).
[6] M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390 (1986).
[7] J. Deslippe et al., Comput. Phys. Commun. 183, 1269 (2012).
[8] S. Baroni, S. de Gironcoli, and A. Dal Corso, Rev. Mod. Phys. 73, 515 (2001).
[9] A. A. Mosto , J. R. Yates, Y. -S. Lee, I. Souza, D. Vanderbilt, and N. Marzari,
Comput. Phys. Commun. 178, 685 (2008).
[10] Y. Ogo et al., Appl. Phys. Lett. 93, 032113 (2008).
[11] H. Hosono, Y. Ogo, H. Yanagi, and T. Kamiya, Electrochem. Solid-State Lett. 14,
H13 (2011).
[12] W. S. Baker et al., J. Electrochem. Soc. 153, A1702 (2006).
[13] R. Y. Korotkov, R. Gupta, P. Ricou, R. Smith, and G. Silverman, Thin Solid Films
516, 4720 (2008).
[14] P. Ifeacho, T. Huelser, H. Wiggers, C. Schulz, and P. Roth, Proceedings of the
Combustion Institute 31, 1805 (2007).
[15] Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, and T. Miyasaka, Science 276,
1395 (1997).
[16] M. K. Forthaus et al., Phys. Rev. Lett. 105, 157001 (2010).
[17] F.-C. Hsu et al., PNAS 105, 14262 (2008).
[18] Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, and Y. Takano, Appl. Phys.
Lett. 93, 152505 (2008).
[19] S. Margadonna et al., Phys. Rev. B 80, 064506 (2009).
[20] A. Subedi, L. Zhang, D. J. Singh, and M. H. Du, Phys. Rev. B 78, 134514 (2008).
[21] W. Wang, J. Sun, S. Li, and H. Lu, Physica C 472, 29 (2012).
[22] I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett. 101,
057003 (2008).
[23] T. Hanaguri et al., Science 328, 474 (2010).
[24] F. Wang and D.-H. Lee, Science 332, 200 (2011).
[25] R. H. Liu et al., Nature 459, 64 (2009).
[26] P. M. Shirage et al., Phys. Rev. Lett. 103, 257003 (2009).
[27] R. Khasanov et al., New J. Phys. 12, 073024 (2010).
[28] R. Khasanov, M. Bendele, A. Bussmann-Holder, and H. Keller, Phys. Rev. B 82,
212505 (2010).
[29] W. S. Chu et al., Sci. Rep. 3, 1750 (2013).
[30] J. Geurts, S. Rau, W. Richter, and F. J. Schmitte, Thin Solid Films 121, 217
(1984).
[31] K. M. Krishna, M. Sharon, M. K. Mishra, and V. R. Marathe, Electrochim. Acta
41, 1999 (1996).
[32] N. E. Christensen, A. Svane, and E. L. Peltzer y Blanc a, Phys. Rev. B 72, 014109
(2005).
[33] X. Wang et al., Phys. Status Solidi B 241, 3168 (2004).
[34] M. van Schilfgaarde, T. Kotani, and S. V. Faleev, Phys. Rev. B 74, 245125 (2006).
[35] M. Shishkin, M. Marsman, and G. Kresse, Phys. Rev. B 75, 235102 (2007).
[36] M. Shishkin, M. Marsman, and G. Kresse, Phys. Rev. Lett. 99, 246403 (2007).
[37] A. Kokalj, J. Mol. Graphics Modelling 17, 176 (1999); A. Kokalj, Comput. Mater.
Sci. 28, 155 (2003).
[38] J. A. McLeod, A. V. Lukoyanov, E. Z. Kurmaev, L. D. Finkelstein, and A. Moewes,
JETP Letters 94, 142 (2011).
[39] K. Govaerts, R. Saniz, B. Partoens, and D. Lamoen, Phys. Rev. B 87, 235210
(2013).
[40] A. Walsh and G. M. Watson, J. Phys. Chem. B 109, 18868 (2005).
[41] R. G. Godby, M. Schl uter, and L. J. Sham, Phys. Rev. B 37, 10159 (1988).
[42] S Leb egue, B. Arnaud, M. Alouani, and P. E. Bloechl, Phys. Rev. B 67, 155208
(2003).
[43] S. Galami c-Mulaomerovi c and C. H. Patterson, Phys. Rev. B 71, 195103 (2005).
[44] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[45] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature
410, 63 (2001).
[46] Y. Wang, T. Plackowski, and A. Junod, Physica C 355, 179 (2001).
[47] F. Bouquet, R. A. Fisher, N. E. Phillips, D. G. Hinks, and J. D. Jorgensen, Phys.
Rev. Lett. 87, 047001 (2001).
[48] P. Szab o, P. Samuely, J. Ka cmar c k, T. Klein, J. Marcus, D. Fruchart, S. Miraglia,
C. Marcenat, and A. G. M. Jansen, Phys. Rev. Lett. 87, 137005 (2001).
[49] H. D. Yang, J. -Y. Lin, H. H. Li, F. H. Hsu, C. J. Liu, S. -C. Li, R. -C Yu, and C.
-Q. Jin, Phys. Rev. Lett. 87, 167003 (2001).
[50] S. Tsuda, T. Yokoya, T. Kiss, Y. Takano, K. Togano, H. Kito, H. Ihara, and S.
Shin, Phys. Rev. Lett. 87, 177006 (2001).
[51] F. Giubileo, D. Roditchev, W. Sacks, R. Lamy, D. X. Thanh, J. Klein, S. Miraglia,
D. Fruchart, J. Marcus, and Ph. Monod, Phys. Rev. Lett. 87, 177008 (2001).
[52] F. Laube, G. Goll, J. Hagel, H. V. L ohneysen, D. Ernst, and T. Wolf, Europhys.
Lett. 56, 296 (2001).
[53] F. Bouquet, Y. Wang, I. Sheikin, T. Plackowski, and A. Junod, Phys. Rev. Lett.
89, 257001 (2002).
[54] F. Bouquet, Y. Wang, R. A. Fisher, D. G. Hinks, J. D. Jorgensen, A. Junod, and
N. E. Phillips, Europhys. Lett. 56, 856 (2001).
[55] A. Y. Liu, I. I. Mazin, and J. Kortus, Phys. Rev. Lett. 87, 087005 (2001).
[56] H. J. Choi, D. Roundy, H. Sun, M. L. Cohen, and S. G. Louie, Nature 418, 758
(2002).
[57] H. J. Choi, M. L. Cohen, and S. G. Louie, Physica C 385, 66 (2003).
[58] H. J. Choi, S. G. Louie, and M. L. Cohen, Phys. Rev. B 80, 064503 (2009).
[59] H. Rosner, A. Kitaigorodsky, and W. E. Pickett Phys. Rev. Lett. 88, 127001 (2002).
[60] J. K. Dewhurst, S. Sharma, C. Ambrosch-Draxl, and B. Johansson, Phys. Rev. B
68, 020504(R) (2003).
[61] J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Phys. Rev. B 75, 153401 (2007).
[62] G. Savini, A. C. Ferrari, and F. Giustino, Phys. Rev. Lett. 105, 037002 (2010).
[63] M. Gao, Z. -Y. Lu, and T. Xiang, Phys. Rev. B 91, 045132 (2015).
[64] T. Bazhirov, Y. Sakai, S. Saito, and M. L. Cohen, Phys. Rev. B 89, 045136 (2014).
[65] T. Oguchi, J. Phys. Soc. Jpn. 71, 1495 (2002).
[66] A. Bharathi, S. Jemima Balaselvi, M. Premila, T. N. Sairam, G. L. N. Reddy, C.
S. Sundar, and Y. Hariharan, Solid State Commun. 124, 423 (2002).
[67] D. Souptela, Z. Hossainb, G. Behra, W. L osera, and C. Geibel, Solid State Com-
mun. 125, 17 (2003).
[68] A. M. Fogg, P. R. Chalker, J. B. Claridge, G. R. Darling, and M. J. Rosseinsky,
Phys. Rev. B 67, 245106 (2003).
[69] A. M. Fogg, J. B. Claridge, G. R. Darling, and M. J. Rosseinsky, Chem. Commun.
12, 1348 (2003).
[70] A. M. Fogg, J. Meldrum, G. R. Darling, J. B. Claridge, and M. J. Rosseinsky, J.
Am. Chem. Soc. 128, 10043 (2006).
[71] J. M. An and W. E. Pickett, Phys. Rev. Lett. 86, 4366 (2001).
[72] P. B. Allen and R. C. Dynes, Phys. Rev. B 12, 905 (1975).
[73] Z.-A. Ren, J. Kato, T. Muranaka, J. Akimitsu, M. Kriener, and Y. Maeno, J. Phys.
Soc. Jpn. 76, 103710 (2007).
[74] We tentatively use the term -bands' to be analogous with those in MgB2. The
non-covalent nature of these states will become manifest later.
[75] Y. Kong, O. V. Dolgov, O. Jepsen, and O. K. Andersen, Phys. Rev. B 64, 020501(R)
(2001).
[76] F. Qu, F. Yang, J. Shen, Y. Ding, J. Chen, Z. Ji, G. Liu, J. Fan, X. Jing, C. Yang,
and L. Lu, Sci. Rep. 2, 339 (2012).
[77] F. Yang, F. Qu, J. Shen, Y. Ding, J. Chen, Z. Ji, G. Liu, J. Fan, C. Yang, L. Fu,
and L. Lu, Phys. Rev. B 86, 134504 (2012).
[78] E. Wang et al., Nature Phys. 9, 621 (2013).
[79] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651(R) (1993).
[80] L. Fu and C. L. Kane, Phys. Rev. B 74, 195312 (2006).
[81] R. Yu, X.-L. Qi, A. Bernevig, Z. Fang, and X. Dai, Phys. Rev. B 84, 075119 (2011).
[82] T. Fukui and Y. Hatsugai, J. Phys. Soc. Jpn. 76, 053702 (2007).
[83] M. L uscher, Commun. Math. Phys. 85, 39 (1982).
[84] A. Phillips, Ann. Phys. (N.Y.) 161, 399 (1985).
[85] A. Phillips and D. Stone, Commun. Math. Phys. 103, 599 (1986).
[86] A. Phillips and D. Stone, Commun. Math. Phys. 131, 255 (1990).
[87] M. L uscher, Nucl. Phys. B, 549, 295 (1999).
[88] T. Fujiwara, H. Suzuki, and K. Wu, Prog. Theor. Phys. 105, 789 (2001).
[89] C.-C. Liu, W. Feng, and Y. Yao, Phys. Rev. Lett. 107, 076802 (2011).
[90] T.-R. Chang, T. Das, P.-J Chen, M. Neupane, S.-Y. Xu, M. Z. Hasan, H. Lin, H.-T.
Jeng, and A. Bansil, Phys. Rev. B 91, 155151 (2015).
[91] H. Lin, L. A. Wray, Y. Xia, S. Xu, S. Jia, R. J. Cava, A. Bansil, and M. Z. Hasn,
Nautre Mater. 9, 546 (2010).
[92] D. Xiao, Y. Yao, W. Feng, J. Wen, W. Zhu, X.-Q. Chen, G. M. Stocks, and Z.
Zhang, Phys. Rev. Lett. 105, 096404 (2010).
[93] W. Al-Sawai, Hsin Lin, R. S. Markiewicz, L. A. Wray, Y. Xia, S. -Y. Xu, M. Z.
Hasan, and A. Bansil, Phys. Rev. B 82, 125208 (2010).
[94] W. Feng, D. Xiao, Y. Zhang, and Y. Yao, Phys. Rev. B 82, 235121 (2010).
[95] F. F. Tafti, T. Fujii, A. Juneau-Fecteau, S. Ren e de Cotret, N. Doiron-Leyraud, A.
Asamitsu, and L. Taillefer, Phys. Rev. B 87, 184504 (2013).
[96] G. Goll, M. Marz, A. Hamann, T. Tomanic, K. Grube, T. Yoshino, T. Takabatake,
Phys. B : Condens. Matter. 403, 1065 (2008).
[97] C. Liu, Y. Lee, T. Kondo, E. D. Mun, M. Caudle, B. N. Harmon, S. L. Bud'ko, P.
C. Can eld, and A. Kaminski, Phys. Rev. B 83, 205133 (2011).
[98] M. N. Ali, Q. D. Gibson, T. Klimczuk, and R. J. Cava, Phys. Rev. B 89, 020505(R)
(2014).
[99] J. A. Wilson, F. J. Di Salvo, and S. Mahajan, Phys. Rev. Lett. 32, 882 (1974).
[100] D. E. Moncton, J. D. Axe, and F. J. Di Salvo, Phys. Rev. Lett. 34, 734 (1975).
[101] D. E. Moncton, J. D. Axe, and F. J. Di Salvo, Phys. Rev. B 16, 801 (1977).
[102] E. Morosan et al., Nature Phys. 2, 544 (2006).
[103] B. Sipos, A. F. Kusmartseva, A. Akrap, H. Berger, L. Ferr o, and E. Tuti s, Nature
Mater. 7, 960 (2008).
[104] A. F. Kusmartseva, B. Sipos, H. Berger, L. Ferr o, and E. Tuti s, Phys. Rev. Lett.
103, 236401 (2009).
[105] P. Xu et al. Phys. Rev. B 81, 172503 (2010).
[106] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V.
Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
[107] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,
I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
[108] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heniz, Phys. Rev. Lett. 105,
136805 (2010).
[109] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nano.
6, 147 (2011).
[110] S. Ghattak, A. N. Pal, and A. Ghosh, ACS Nano 5, 7707 (2011).
[111] B. Radisavljevic, M. B. Whitwick, and A. Kis, ACS Nano 5, 9934 (2011).
[112] Y. Yoon, K. Ganapathi, and S. Salahuddin, Nano Let. 11, 3768 (2011).
[113] M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant,
and A. Castellanos-Gomez, Nano Lett. 14, 3347 (2014).
[114] G. Qin, Q.-B. Yan, Z. Qin, S.-Y. Yue, H.-J. Cui, Q.-R. Zheng, and G. Su, Sci.
Rep. 4, 6946 (2014).
[115] Z. Zhu and D. Tom anek, Phys. Rev. Lett. 112, 176802 (2014).
[116] J. Guan, Z. Zhu, and D. Tom anek, Phys. Rev. Lett. 113, 046804 (2014).
[117] J. Guan, Z. Zhu, and D. Tom anek, Phys. Rev. Lett. 113, 226801 (2014).
[118] J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).
[119] J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 121, 1187 (2004).
[120] H. C. Casey Jr., D. D. Sell, K. W. Wecht, J. Appl. Phys. 46, 250 (1975).
[121] R. O. Bell, Rev. Phys. Appl. (Paris) 12, 391 (1977).
[122] G. Augustine, N. M. Jokerst, and A. Rohatgi, Appl. Phys. Lett. 61, 1429 (1992).
[123] S. Grimme, J. Comp. Chem. 27, 1787 (2006).
[124] S. Pailh es, H. Euchner, V. M. Giordano, R. Debord, A. Assy, S. Gom es, A. Bosak,
D. Machon, S. Paschen, and M. de Boissieu, Phys. Rev. Lett. 113, 025506 (2014).
[125] R. Fei et al., Nano Lett. 14, 6393 (2014).
[126] M. Karuzawa, M. Ishizuka, and S. Endo, J. Phys.: Condens. Matter 14, 10759
(2002).
[127] C. Kittel, Introduction to Solid State Physics 8th edn (Wiley, Hoboken, NJ, USA,
2004).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51749-
dc.description.abstractFirst-principles calculations are performed to investigate the superconductivity and topological properties of materials. For superconductors of BCS-type, the electron-phonon (e-ph) interactions play the essential role. The studies of superconductors of this kind rely on the appropriate description of the e-ph interactions. In this thesis, the e-ph interactions are calculated using the density functional perturbation theory that treats the interaction in a subtle way without the need of using the supercells. The correctness and the reliability of this method provides a powerful means to study and predict superconductors of BCS-type. With this method, we successfully reproduce the superconducting phase diagram of a semimetallic superconductor SnO. And then we also predict a new superconductor, C2SiB, that shows a high Tc ~ 60 K. The origin of the strong e-ph coupling is also discussed.
In addition to the superconductivity, the topological property of a material is also investigated owing to its growing importance in the field of condensed matter physics. Here we adopt a method based on Wannier functions to calculate the Z2 invariant, a quantity that defines the topological state of a material. Unlike the parity analysis that works only for systems with inversion symmetry, this method can be applied be all kinds of system as long as the Z2 invariant is defined. We apply this method to some superconductors and reveal the nontrivial topology of some superconductors. This work paves the way to further investigate the interplay between superconductivity and the nontrivial topology.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:47:42Z (GMT). No. of bitstreams: 1
ntu-104-D01222027-1.pdf: 36470958 bytes, checksum: 96aaef79978275745ca4248cad9cba4d (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsAcknowledgements i
Abstract iii
1. Introduction 1
2. Theoretical Background 5
3. Superconducting Phase Diagram of the Layered Oxide SnO : GW and Electron-Phonon Studies 19
4. A predicted BCS-superconductor with High Tc ~ 60 K : C2SiB 29
5. Superconductors with nontrivial topology 39
6. Prediction of the High Applicability of Two Dimensional Phosphorus in Kagome Structure 63
Bibliography 75
dc.language.isoen
dc.subject拓樸性質zh_TW
dc.subject第一原理zh_TW
dc.subject密度泛函理論zh_TW
dc.subject電聲交互作用zh_TW
dc.subject超導zh_TW
dc.subjectdensity functional theoryen
dc.subjecttopological propertiesen
dc.subjectsuperconductivityen
dc.subjectelectron-phonon interactionsen
dc.subjectFirst-principles calculationsen
dc.title超導體的電聲交互作用及拓樸性質之研究zh_TW
dc.titleElectron-phonon and Topological Properties of Selected Superconductorsen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree博士
dc.contributor.coadvisor鄭弘泰
dc.contributor.oralexamcommittee李定國,郭光宇,仲崇厚,莊天明
dc.subject.keyword第一原理,密度泛函理論,電聲交互作用,超導,拓樸性質,zh_TW
dc.subject.keywordFirst-principles calculations,density functional theory,electron-phonon interactions,superconductivity,topological properties,en
dc.relation.page81
dc.rights.note有償授權
dc.date.accepted2015-11-12
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
35.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved