Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51746
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭柏齡
dc.contributor.authorChing-Che Charngen
dc.contributor.author強敬哲zh_TW
dc.date.accessioned2021-06-15T13:47:33Z-
dc.date.available2015-12-01
dc.date.copyright2015-12-01
dc.date.issued2015
dc.date.submitted2015-11-16
dc.identifier.citation[1] Caroline Bonnans, et al,. 'Remodelling the extracellular matrix in development and disease,' Nature review, vol. 15, pp. 786-801, 2014.
[2] Michele A. Wozniak, et al., 'Mechanotransduction in development: agrowing role for contractility' Nature review, vol. 10, pp. 34-43, 2009.
[3] Butcher, D. T., Alliston, T. and Weaver, V. M. 'A tense situation: forcing tumour progression.' Nat. Rev. Cancer, vol. 9, pp. 108-122, 2009.
[4] Thomas R. Cox, Janine T. Erler, ' Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer' Disease Models & Mechanisms, vol. 4, pp. 165-178, 2011.
[5] Cohen, D. J., Nelson, W. J. & Maharbiz, M. M. 'Galvanotactic control of collective cell migration in epithelial monolayers' Nature Materials, vol. 13, pp. 409-417. 2014.
[6] Martin P. Stewart, et al,. 'Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding' Nature. 469, pp. 226–230. 2011
[7] Eleanor Knight, et al,. 'Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro' Journal of Anatomy, 2014.
[8] Joe Swift, et al,. 'Nuclear Lamin-A Scales with Tissue Stiffness and Enhances Matrix-Directed Differentiation' Science, vol. 341, 1240104, 2013.
[9] Christopher C. DuFort, et al,. 'Balancing forces: architectural control of mechanotransduction' Nature Reviews Molecular Cell Biology, vol. 12, pp. 308-319, 2011
[10] Adam J. Engler, et al,. ' Matrix Elasticity Directs Stem Cell Lineage Specification' Cell, vol. 126, pp. 677-689. 2006
[11] Britta Trappmann, et al,.' Extracellular-matrix tethering regulates stem-cell fate' Nature. Materials, vol. 11, pp. 642-649, 2012
[12] Ovijit Chaudhuri, et al,. 'Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium' Nature Materials, vol. 13, pp. 970-978, 2014
[13] Nils C Gauthier, et al,. 'Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading.' PNAS, vol. 108(35), pp.14467-72, 2011
[14] Masha Prager-Khoutorsky, et al,. 'Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing' Nature Cell Biology, vol. 13, pp. 1457-1465, 2011
[15] Francesc Miralles, et al,. 'Actin Dynamics Control SRF Activity by Regulation of Its Coactivator MAL' Cell, vol.1113, pp. 349-342, 2003
[16] Christian Baarlink, et al. 'Nuclear ctin Network Assembly by Formins Regulates the SRF Coativator MAL' Science, vol. 340, pp. 864-867, 2013
[17] Eric N. Olson, et al,. 'Linking actin dynamics and gene transcription to drive cellular motile functions' Nature Reviews, vol. 11, pp. 353-365, 2010
[18] Adam J. Engler, et al,. 'Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments' The Journal of Cell Biology, pp. 877-887. 2004
[19] H. Yu, J. K. Mouw, and V. M. Weaver, 'Forcing form and function: biomechanical regulation of tumor evolution,' Trends in cell biology, vol. 21, pp. 47-56, 2011.
[20] Amanda Haage, et al,.'Cellular contractility and extracellular matrix stiffness regulate matrix metalloproteinase activity in pancreatic cancer cells' The FASEB Journal, vol. 28 no. 8 3589-3599, 2014
[21] Brendon M. Baker, et al,. 'Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues' Journal of Cell Science, 125, 1-10, 2012
[22] Remi Parenteau-Bareil, et al,. 'Collagen-Based Biomaterials for Tissue Engineering Applications' Materials, vol. 3, pp. 1863-1887, 2010
[23] A. P. Sarvazyan, et al,. 'Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics', Ultrasound Med Biol, vol. 24, pp. 1419-1435, 1998
[24] M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, et al., 'Quantitative assessment of arterial wall biomechanical properties using shear wave imaging,' Ultrasound in medicine & biology, vol. 36, pp. 1662-1676, 2010.
[25] M. Bernal, I. Nenadic, M. W. Urban, and J. F. Greenleaf, 'Material property estimation for tubes and arteries using ultrasound radiation force and analysis of propagating modes,' The Journal of the Acoustical Society of America, vol. 129, pp. 1344-1354, 2011.
[26] M. Bernal, J.-L. Gennisson, P. Flaud, and M. Tanter, 'Correlation between classical rheometry and Supersonic Shear Wave Imaging in blood clots,' Ultrasound in medicine & biology, vol. 39, pp. 2123-2136, 2013.
[27] Zhizhan Gu, et al,. 'Soft matrix is a natural stimulator for cellular invasiveness' Molecular Biology of the Cell, vol. 25, pp. 457-469, 2014
[28] Fei Liu, et al,.“Lung Parenchymal Tissue Stiffness in Fibrosis and Cellular Responses to Substrate Stiffness”Biophysical journal, vol. 96, pp. 395a, 2009
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51746-
dc.description.abstract微環境的硬度由細胞與基質共同塑造,在發育和腫瘤發育等過程中,細胞感受外在硬度而有著不同的行為表現,包含影響幹細胞分化以及癌細胞主動改造基質硬度及並轉移等。硬度在二維環境中已被大量證明其重要性,然而在三維環境中,目前較缺乏適合動態量測的平台與工具,超音波剪切波彈性影像具有一定程度的空間解析度與時間解析度,並具有非接觸式與非入侵式量測的優點。我們在此篇研究中,發展了由聚二甲基矽氧烷(PDMS)作為外在固定的模具去合成三維的膠原蛋白水膠(Collagen)以及基質膠(Matrigel)平台,混入細胞,進行三維細胞培養,並量測細胞在水膠中的活動。我們使用20 MHz的超音波探頭聚焦送入聲場輻射力,並用40 MHz的探頭同步監測剪切波傳遞。我們首先以流變儀測量基質膠、洋菜膠、膠原蛋白水膠,驗證我們系統量測的準確性,接著測試我們的量測參數,證實厚度、溫度、附著底的不同,在一定範圍內都不影響量測。此外我們也以洋菜膠進行空間異質性的測試,結果證實我們的系統具有空間解析度。另外我們隨著時間量測H9C2肌肉母細胞以及CL1-5肺腺癌細胞對於水膠造成的硬度變化和厚度變化,發現H9C2在半天內會讓水膠硬度上升4~5倍,而此硬度變化會被BDM抑制,證明硬度變化和細胞收縮有關。另外CL1-5在兩種膠原蛋白濃度中會有不同反應,在 1 mg/mL(毫克/毫升)的濃度中,經過五天後環境硬度會上升到原本的10倍左右,而在2 mg/mL的環境中則沒有硬度變化,顯示細胞在兩種膠體濃度會有不同的細胞行為。zh_TW
dc.description.abstractMicroenvironment stiffness was formed by cell and ECM. In the cell development and the tumor progression, cell would sense the local stiffness and then adapt their behavior such as cell differentiation or cancer cell remodeling substrate stiffness even metastasis. Stiffness has been proved its importance in 2D condition. However, we lack suitable approach and platform to dynamically measure the stiffness in 3D condition. Supersonic-based shear wave elasticity imaging has great spatial resolution, temporal resolution, and measure in non-invasive way. In our present work, we developed a device fabricated by PDM to bind 3D collagen gel and matrigel to do 3D cell culture and measure cell activity. We generate the ultrasound radiation force by 20 MHz push transducer and monitor the shear wave propagation by 40 MHz image transducer. At first, we use rheometer as a gold standard technique to validate our system. Secondly, we test our measuring parameter, and found that gel thickness, binding-base, temperature would not significantly affect our measurement. In addition, we could discern spatial patterned heterogeneous agarose gel. Moreover, we found that H9C2 myoblast would stiffen the gel in a half day and it would rebound by BDM blocking which proved that the stiffness change was correlated with cell contraction. On the other hand, CL1-5 would have different behavior in two different concentration of collagen gel. In 1 mg/mL gel, collagen gel would be stiffer but not in 2 mg/mL gel that it may involve ECM remodeling.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:47:33Z (GMT). No. of bitstreams: 1
ntu-104-R02945019-1.pdf: 4095522 bytes, checksum: 2f461b1db566fd8114d1806007b26a1f (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents摘要 iii
Abstract iv
List of Figures vii
Chapter I. Introduction 1
1.1 ECM stiffness 1
1.2 Stiffness influenced cell differentiation 3
1.3 Stiffness and tumor progression 4
1.4 3D collagen gel platform 5
1.5 Prevailing tools and the limitation 6
1.6 Ultrasound-based shear wave elasticity imaging (SWEI) 7
1.7 Our specific goal and present work 9
Chapter II. Methods and materials 11
2.1 Cell culture 11
2.2 Gel device fabrication 11
2.3 Shear wave elasticity imaging (SWEI) 14
2.4 OCT tissue freezing, cryosectioning, immunostaining and confocal microscopy 22
2.5 Western blotting 22
2.6 Rheometer 24
2.7 Drug treatment 24
Chapter III. Results 26
3.1 Example of our 3D sample 26
3.2 Validation of our system 27
3.3 Test the measure parameter (location of focus, collagen concentration, gel thickness, binding base, measurement temperature) 29
A. Location of focus would affect shear wave speed 29
B. Concentration of collagen would affect gel stiffness but not the thickness… 32
C. Different binding-base would not affect gel stiffness 33
D. Temperature affected the shear wave speed insignificantly 34
3.4 Spatial distribution of different agarose concentration could be discerned. 35
3.5 H9C2 myoblast would temporarily stiffen the collagen gel by contraction 37
3.6 Different modification behavior of CL1-5 seeded in different collagen concentrations 42
Chapter IV. Conclusions 45
Chapter V. Discussion and Future works 46
Reference 51
dc.language.isoen
dc.subject膠原蛋白zh_TW
dc.subject三維細胞培養zh_TW
dc.subject剪切波彈性影像zh_TW
dc.subject細胞外基質再修飾zh_TW
dc.subject硬度zh_TW
dc.subject3D cell cultureen
dc.subjectstiffnessen
dc.subjectshear wave elasticity imagingen
dc.subjectcollagenen
dc.subjectECM remodelingen
dc.title剪切波影像量測三維細胞環境彈性zh_TW
dc.titleShear-wave elasticity measurement of three-dimensional cell-matrixen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee李百祺,趙本秀
dc.subject.keyword三維細胞培養,剪切波彈性影像,細胞外基質再修飾,硬度,膠原蛋白,zh_TW
dc.subject.keyword3D cell culture,shear wave elasticity imaging,ECM remodeling,collagen,stiffness,en
dc.relation.page52
dc.rights.note有償授權
dc.date.accepted2015-11-16
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved