請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51745完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林辰栖(Chen-Si Lin) | |
| dc.contributor.author | Hui-Yu Chen | en |
| dc.contributor.author | 陳薈宇 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:47:30Z | - |
| dc.date.available | 2020-11-23 | |
| dc.date.copyright | 2015-11-23 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-11-16 | |
| dc.identifier.citation | 1. Lee CJ. Retrospective Survey of Canine Neoplasm in the National Taiwan University Veterinary Hospital: 1999-2003. Master thesis. Taiper, Taiwan: National Taiwan university; 2005.
2. Merlo DF, Rossi L, Pellegrino C, Ceppi M, Cardellino U, Capurro C, Ratto A, Sambucco PL, Sestito V, Tanara G. Cancer incidence in pet dogs: findings of the Animal Tumor Registry of Genoa, Italy. J Vet Intern Med 22:976-984, 2008. 3. Moe L. Population-based incidence of mammary tumours in some dog breeds. J Reprod Fertil Suppl 57:439-443, 2000. 4. Hedlund CS. Surgery of the reproductive and genital systems. In: Fossum TW, ed. Small Animal Surgery. 3rd ed. Mosby Elsevier, Missouri, 702-754, 2007. 5. Campbell BM, Charych E, Lee AW, Moller T. Kynurenines in CNS disease: regulation by inflammatory cytokines. Front Neurosci 8, 2014. 6. Sahm F, Oezen I, Opitz CA, Radlwimmer B, von Deimling A, Ahrendt T, Adams S, Bode HB, Guillemin GJ, Wick W. The endogenous tryptophan metabolite and NAD+ precursor quinolinic acid confers resistance of gliomas to oxidative stress. Cancer Res 73:3225-3234, 2013. 7. Walczak K, Turski WA, Rajtar G. Kynurenic acid inhibits colon cancer proliferation in vitro: effects on signaling pathways. Amino acids 46:2393-2401, 2014. 8. Walczak K, Turski WA, Rzeski W. Kynurenic acid enhances expression of p21 Waf1/Cip1 in colon cancer HT-29 cells. Pharmacol Rep 64:745-750, 2012. 9. Courtney S, Scheel A. Modulation of the kynurenine pathway for the potential treatment of neurodegenerative diseases. In: Dominguez C, ed. Neurodegenerative Diseases. ed. Springer, New York, 149-176, 2010. 10. Chiang YL. KMO as a novel diagnostic and prognostic biomarker in canine mammary gland tumors. Master thesis. Taipei, Taiwan: National Taiwan university; 2011. 11. Chang MH. Functional characterization of kynurenine 3-monooxygenase in canine mammary gland tumors (cMGT) cells. Master thesis. Taipei, Taiwan: National Taiwan university; 2013. 12. Sorenmo KU, Worley DR, Goldschmidt MH. Tumors of the mammary gland. In: Withrow SJ, Vail DM, Page R, ed. Small animal clinical oncology. 5 ed. Saunders, Philadelphia, 538-556, 2013. 13. Schneider R. Comparison of age, sex, and incidence rates in human and canine breast cancer. Cancer 26:419-426, 1970. 14. Taylor GN, Shabestari L, Williams J, Mays CW, Angus W, McFarland S. Mammary neoplasia in a closed beagle colony. Cancer res 36:2740-2743, 1976. 15. Goldschmidt M, Shofer F, Smelstoys J. Neoplastic lesions of the mammary gland. In: Mohr U, Carlton WW, Dungworth DL, Benjamin SA, Capen CC, Hahn FF, ed. Pathobiology of Aging Dogs. Iowa state university press, Iowa, 168-178, 2001. 16. Sorenmo K, Kristiansen V, Cofone M, Shofer F, Breen AM, Langeland M, Mongil C, Grondahl A, Teige J, Goldschmidt M. Canine mammary gland tumours; a histological continuum from benign to malignant; clinical and histopathological evidence*. Vet Comp Oncol 7:162-172, 2009. 17. Schneider R, Dorn CR, Taylor D. Factors influencing canine mammary cancer development and postsurgical survival. J Natl Cancer Inst 43:1249-1261, 1969. 18. Al-Asadi RN, Al-Keledarm NAR, Al-Kadi KK. An evaluation of mastectomy for removal of mammary gland tumors in bitches. Bas J Vet Res 10:141-152, 2010. 19. Sorenmo KU, Shofer FS, Goldschmidt MH. Effect of spaying and timing of spaying on survival of dogs with mammary carcinoma. J Vet Intern Med 14:266-270, 2000. 20. Lana SE, Rutteman GR, Withrow SJ. Tumors of the Mammary Gland. In: McEwen SWaEG, ed. Small Animal Clinical Oncology 4th ed. Saunders, Philadelphia, 619-636, 2006. 21. Novosad CA. Principles of treatment for mammary gland tumors. Clin Tech Small Anim Pract 18:107-109, 2003. 22. Morris JS, Dobson JM, Bostock DE. Use of tamoxifen in the control of canine mammary neoplasia. Vet Rec 133:539-542, 1993. 23. Tavares WL, Lavalle GE, Figueiredo MS, Souza AG, Bertagnolli AC, Viana FA, Paes PR, Carneiro RA, Cavalcanti GA, Melo MM. Evaluation of adverse effects in tamoxifen exposed healthy female dogs. Acta Vet Scand 52:6, 2010. 24. Sleeckx N, De Rooster H, Veldhuis Kroeze E, Van Ginneken C, Van Brantegem L. Canine mammary tumours, an overview. Reprod Domest Anim 46:1112-1131, 2011. 25. Karayannopoulou M, Kaldrymidou E, Constantinidis T, Dessiris A. Adjuvant Post‐operative Chemotherapy in Bitches with Mammary Cancer. J Vet Med A 48:85-96, 2001. 26. Sartin E, Barnes S, Toivio-Kinnucan M, Wright J, Wolfe L. Heterogenic properties of clonal cell lines derived from canine mammary carcinomas and sensitivity to tamoxifen and doxorubicin. Anticancer Res 13:229-236, 1992. 27. Simon D, Schoenrock D, Baumgartner W, Nolte I. Postoperative adjuvant treatment of invasive malignant mammary gland tumors in dogs with doxorubicin and docetaxel. J Vet Intern Med 20:1184-1190, 2006. 28. Souza CHdM, Toledo-Piza E, Amorin R, Barboza A, Tobias KM. Inflammatory mammary carcinoma in 12 dogs: clinical features, cyclooxygenase-2 expression, and response to piroxicam treatment. Can Vet J 50:506, 2009. 29. Marconato L, Romanelli G, Stefanello D, Giacoboni C, Bonfanti U, Bettini G, Finotello R, Verganti S, Valenti P, Ciaramella L. Prognostic factors for dogs with mammary inflammatory carcinoma: 43 cases (2003–2008). J Am Vet Med Assoc 235:967-972, 2009. 30. Rutteman GR, Withrow SJ, MacEwen EG. Tumors of the mammary gland. In: Withrow SJ, MacEwen EG, ed. Small animal clinical oncology. 3rd ed. Saunders, Philadelphia, 455-477, 2001. 31. Owen LN. TNM classification of tumours in domestic animals. In: World Health Organization, Geneva, 1980. 32. Misdorp W, Else RW, Hellmen E. Histological classification of mammary tumors of the dog and the cat. In: Armed Forces Institute of Pathology. World Health Organization Collaborating Center for Comparative Oncology, Washington, 1999. 33. Hampe JF, Misdorp W. Tumours and dysplasias of the mammary gland. Bull World Health Organ 50:111, 1974. 34. Goldschmidt M, Pena L, Rasotto R, Zappulli V. Classification and grading of canine mammary tumors. Vet Pathol 48:117-131, 2011. 35. Karayannopoulou M, Kaldrymidou E, Constantinidis T, Dessiris A. Histological grading and prognosis in dogs with mammary carcinomas: application of a human grading method. J Comp Pathol 133:246-252, 2005. 36. Clemente M, Perez-Alenza M, Illera J, Pena L. Histological, immunohistological, and ultrastructural description of vasculogenic mimicry in canine mammary cancer. Vet Pathol 47:265-274, 2010. 37. Misdorp W. Tumors of the mammary gland. In: Meuten DJ, ed. Tumors in Domestic Animals. 4th ed. Iowa state press, Iowa, 575-606, 2002. 38. Barton S, Zabaglo L, A'hern R, Turner N, Ferguson T, O'Neill S, Hills M, Smith I, Dowsett M. Assessment of the contribution of the IHC4+ C score to decision making in clinical practice in early breast cancer. Br J Cancer 106:1760-1765, 2012. 39. Cuzick J, Dowsett M, Pineda S, Wale C, Salter J, Quinn E, Zabaglo L, Mallon E, Green AR, Ellis IO. Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the Genomic Health recurrence score in early breast cancer. J Clin Oncol 29:4273-4278, 2011. 40. Goldhirsch A, Wood W, Coates A, Gelber R, Thurlimann B, Senn H-J. Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol:mdr304, 2011. 41. Donnay I, Rauis J, Devleeschouwer N, Wouters-Ballman P, Leclercq G, Verstegen J. Comparison of estrogen and progesterone receptor expression in normal and tumor mammary tissues from dogs. Am J Vet Res 56:1188-1194, 1995. 42. Millanta F, Calandrella M, Bari G, Niccolini M, Vannozzi I, Poli A. Comparison of steroid receptor expression in normal, dysplastic, and neoplastic canine and feline mammary tissues. Res Vet Sci 79:225-232, 2005. 43. Rutteman G, Misdorp W, Blankenstein M, Van den Brom W. Oestrogen (ER) and progestin receptors (PR) in mammary tissue of the female dog: different receptor profile in non-malignant and malignant states. Br J Cancer 58:594, 1988. 44. Chang CC, Tsai MH, Liao JW, Chan JPW, Wong ML, Chang SC. Evaluation of hormone receptor expression for use in predicting survival of female dogs with malignant mammary gland tumors. J Am Med Assoc 235:391-396, 2009. 45. De Las Mulas JM, Millan Y, Dios R. A prospective analysis of immunohistochemically determined estrogen receptor α and progesterone receptor expression and host and tumor factors as predictors of disease-free period in mammary tumors of the dog. Vet Pathol 42:200-212, 2005. 46. Pena L, Gama A, Goldschmidt M, Abadie J, Benazzi C, Castagnaro M, Diez L, Gartner F, Hellmen E, Kiupel M. Canine Mammary Tumors A Review and Consensus of Standard Guidelines on Epithelial and Myoepithelial Phenotype Markers, HER2, and Hormone Receptor Assessment Using Immunohistochemistry. Vet Pathol:127-145, 2013. 47. Knott P, Curzon G. Free tryptophan in plasma and brain tryptophan metabolism. Nature 239:452-453 1972. 48. Tagliamonte A, Biggio G, Vargiu L, Gessa GL. Free tryptophan in serum controls brain tryptophan level and serotonin synthesis. Life Sci II 12:277-287, 1973. 49. McMenamy RH, Oncley J. The specific binding of L-tryptophan to serum albumin. J Biol Chem 233:1436-1447, 1958. 50. Murakami Y, Saito K. species and cell Types Difference in Tryptophan Metabolism. Int J Tryptophan Res 6(Suppl 1):47, 2013. 51. Stone T, Perkins M. Quinolinic acid: a potent endogenous excitant at amino acid receptors in CNS. Eur J Pharmacol 72:411-412, 1981. 52. Blanco-Ayala T, Serratos-Alvarez I, Orozco-Ibarra M, Reyes-Ocampo J, Millan-PachecoC PN, Pedraza-Chaverri J, Santamaria A, Perez-de la Cruz V: Effect of some kynurenines under succinate deshidrogenase activity and ATP production: in vitro experimental and computational tools. In: Neuroscience Meeting. vol. 60. Los Angeles; 2012. 53. Alano CC, Beutner G, Dirksen RT, Gross RA, Sheu SS. Mitochondrial permeability transition and calcium dynamics in striatal neurons upon intense NMDA receptor activation. J Neurochem 80:531-538, 2002. 54. Peng TI, Jou MJ, Sheu SS, Greenamyre JT. Visualization of NMDA receptor-induced mitochondrial calcium accumulation in striatal neurons. Exp Neurol 149:1-12, 1998. 55. Iwahashi H, Kawamori H, Fukushima K. Quinolinic acid, α-picolinic acid, fusaric acid, and 2, 6-pyridinedicarboxylic acid enhance the Fenton reaction in phosphate buffer. Chem Biol Interact 118:201-215, 1999. 56. Goda K, Kishimoto R, Shimizu S, Hamane Y, Ueda M. Quinolinic acid and active oxygens. Possible contribution of active Oxygens during cell death in the brain. Adv Exp Med Biol 398:247-254, 1996. 57. Schwarcz R, Kohler C. Differential vulnerability of central neurons of the rat to quinolinic acid. Neurosci Lett 38:85-90, 1983. 58. Stone TW. Endogenous neurotoxins from tryptophan. Toxicon 39:61-73, 2001. 59. Lugo-Huitron R, Ugalde Muniz P, Pineda B, Pedraza-Chaverri J, Rios C, Perez-de la Cruz V. Quinolinic acid: an endogenous neurotoxin with multiple targets. Oxid Med Cell Longev 2013, 2013. 60. Okuda S, Nishiyama N, Saito H, Katsuki H. 3‐Hydroxykynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity. J Neurochem 70:299-307, 1998. 61. Luthra M, Balasubramanian D. 3-Hydroxykynurenine and 3-hydroxyanthranilic acid may act as endogenous antioxidants in the eye lens. Exp Eye Res 55:641-643, 1992. 62. Wood AM, Truscott RJ. Ultraviolet filter compounds in human lenses: 3-hydroxykynurenine glucoside formation. Vision Res 34:1369-1374, 1994. 63. Fukui S, Schwarcz R, Rapoport SI, Takada Y, Smith QR. Blood–brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem 56:2007-2017, 1991. 64. Guidetti P, Schwarcz R. 3-Hydroxykynurenine and quinolinate: pathogenic synergism in early grade huntington’s disease? In: Allegri G, Costa CVL, Ragazzi E, Steinhart H, Varesio L, ed. Developments in Tryptophan and Serotonin Metabolism. Springer, New York, 137-145, 2003. 65. Schwarz MJ, Guillemin GJ, Teipel SJ, Buerger K, Hampel H. Increased 3-Hydroxykynurenine serum concentrations differentiate Alzheimer’s disease patients from controls. Eur Arch Psychiatry Clin Neurosci 263:345-352, 2013. 66. Chen Y, Guillemin GJ. Kynurenine pathway metabolites in humans: disease and healthy states. Int J Tryptophan Res 2:1, 2009. 67. Reyes Ocampo J, Lugo Huitron R, Gonzalez-Esquivel D, Ugalde-Muniz P, Jimenez-Anguiano A, Pineda B, Pedraza-Chaverri J, Rios C, Perez de la Cruz V. Kynurenines with neuroactive and redox properties: relevance to aging and brain diseases. Oxid Med Cell Longev 2014, 2014. 68. Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 13:465-477, 2012. 69. Rassoulpour A, Wu HQ, Ferrė S, Schwarcz R. Nanomolar concentrations of kynurenic acid reduce extracellular dopamine levels in the striatum. J Neurochem 93:762-765, 2005. 70. Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, Ling L. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem 281:22021-22028, 2006. 71. Moroni F, Cozzi A, Sili M, Mannaioni G. Kynurenic acid: a metabolite with multiple actions and multiple targets in brain and periphery. J Neural Transm 119:133-139, 2012. 72. Abbas AK, Lichtman AH, Pillai S. Immune Responses against Tumors and Transplants. In: Basic Immunology: Functions and Disorders of the Immune System. 3rd ed. Elsevier Health Sciences, Philadelphia, 189-204, 2011. 73. Chuang SC, Fanidi A, Ueland PM, Relton C, Midttun O, Vollset SE, Gunter MJ, Seckl MJ, Travis RC, Wareham N. Circulating biomarkers of tryptophan and the kynurenine pathway and lung cancer risk. Cancer Epidemiol Biomarkers Prev 23:461-468, 2014. 74. Puccetti P, Fallarino F, Italiano A, Soubeyran I, MacGrogan G, Debled M, Velasco V, Bodet D, Eimer S, Veldhoen M. Accumulation of an Endogenous Tryptophan-Derived Metabolite in Colorectal and Breast Cancers. PloS one 10, 2015. 75. Lyon DE, Walter JM, Starkweather AR, Schubert CM, McCain NL. Tryptophan degradation in women with breast cancer: a pilot study. BMC Res notes 4:156, 2011. 76. Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, Schumacher T, Jestaedt L, Schrenk D, Weller M. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478:197-203, 2011. 77. Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D, Mellor AL. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2, 3-dioxygenase. Immunity 22:633-642, 2005. 78. Platten M, Wick W, Van den Eynde BJ. Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. Cancer Res 72:5435-5440, 2012. 79. Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, Orabona C, Bianchi R, Belladonna ML, Volpi C. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor ζ-chain and induce a regulatory phenotype in naive T cells. J Immunol 176:6752-6761, 2006. 80. Denison MS, Nagy SR. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol 43:309-334, 2003. 81. Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E, Caccamo M, Oukka M, Weiner HL. Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature 453:65-71, 2008. 82. Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 185:3190-3198, 2010. 83. Schreiber V, Dantzer F, Ame J-C, De Murcia G. Poly (ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7:517-528, 2006. 84. North WG, Gao G, Jensen A, Memoli VA, Du J. NMDA receptors are expressed by small-cell lung cancer and are potential targets for effective treatment. Clin Pharmacol 2:31, 2010. 85. North WG, Fay MJ, Du J, Cleary M, Gallagher JD, McCann FV. Presence of functional NMDA receptors in a human neuroblastoma cell line. Mol Chem Neuropathol 30:77-94, 1997. 86. Abdul M, Hoosein N. N-methyl-D-aspartate receptor in human prostate cancer. J Membr Biol 205:125-128, 2005. 87. North WG, Gao G, Memoli VA, Pang RH, Lynch L. Breast cancer expresses functional NMDA receptors. Breast Cancer Res Treat 122:307-314, 2010. 88. Stepulak A, Sifringer M, Rzeski W, Endesfelder S, Gratopp A, Pohl EE, Bittigau P, Felderhoff-Mueser U, Kaindl AM, Buhrer C. NMDA antagonist inhibits the extracellular signal-regulated kinase pathway and suppresses cancer growth. Proc Natl Acad Sci U S A 102:15605-15610, 2005. 89. Walczak K, Dabrowski W, Langner E, Zgrajka W, Pilat J, Kocki T, Rzeski W, Turski WA. Kynurenic acid synthesis and kynurenine aminotransferases expression in colon derived normal and cancer cells. Scand J Gastroenterol 46:903-912, 2011. 90. Walczak K, Żurawska M, Kiś J, Starownik R, Zgrajka W, Bar K, Turski WA, Rzeski W. Kynurenic acid in human renal cell carcinoma: its antiproliferative and antimigrative action on Caki-2 cells. Amino acids 43:1663-1670, 2012. 91. Walczak K, Deneka-Hannemann S, Jarosz B, Zgrajka W, Stoma F, Trojanowski T, Turski WA, Rzeski W. Kynurenic acid inhibits proliferation and migration of human glioblastoma T98G cells. Pharmacol Rep 66:130-136, 2014. 92. Crozier KR, Moran GR. Heterologous expression and purification of kynurenine-3-monooxygenase from Pseudomonas fluorescens strain 17400. Protein Expr Purif 51:324-333, 2007. 93. Han Q, Calvo E, Marinotti O, Fang J, Rizzi M, James A, Li J. Analysis of the wild‐type and mutant genes encoding the enzyme kynurenine monooxygenase of the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 12:483-490, 2003. 94. Hirai M, Kiuchi M, Wang J, Ishii A, Matsuoka H. cDNA cloning, functional expression and characterization of kynurenine 3‐hydroxylase of Anopheles stephensi (Diptera: Culicidae). Insect Mol Biol 11:497-504, 2002. 95. Schott H-H, Ullrich V, Staudinger H. Enzymatic properties of L-kynurenine 3-hydroxylase (EC 1.14. 1.2) in Neurospora crassa. Hoppe Seylers Z Physiol Chem 351:99-101, 1970. 96. Ghosh D, Forrest HS. Enzymatic studies on the hydroxylation of kynurenine in Drosophila melanogaster. Genetics 55:423, 1967. 97. Stratakis E. Submitochondrial localization of kynurenine 3-hydroxylase from ovaries of Ephestia kuhniella. Insect Biochem 11:735-741, 1981. 98. Okamoto H, Hayaishi O. Flavin adenine dinucleotide requirement for kynurenine hydroxylase of rat liver mitochondria. Biochem Biophys Res Commun 29:394-399, 1967. 99. Nisimoto Y, Takeuchi F, Shibata Y. Isolation of L-kynurenine 3-hydroxylase from the mitochondrial outer membrane of rat liver. J Biochem 78:573-581, 1975. 100. Okamoto H, Yamamoto S, Nozaki M, Hayaishi O. On the submitochondrial localization of l-kynurenine-3-hydroxylase. Biochem Biophys Res Commun 26:309-314, 1967. 101. Okamoto H, Hayaishi O. Solubilization and partial purification of kynurenine hydroxylase from mitochondrial outer membrane and its electron donors. Arch Biochem Biophys 131:603-608, 1969. 102. Saito Y, Hayaishi O, Rothberg S. Studies on oxygenases Enzymatic formation of 3-hydroxy-l-kynurenine from l-kynurenine. J Biol Chem 229:921-934, 1957. 103. Hirai K, Kuroyanagi H, Tatebayashi Y, Hayashi Y, Hirabayashi-Takahashi K, Saito K, Haga S, Uemura T, Izumi S. Dual role of the carboxyl-terminal region of pig liver L-kynurenine 3-monooxygenase: mitochondrial-targeting signal and enzymatic activity. J Biochem 148:639-650, 2010. 104. Uemura T, Hirai K. L-kynurenine 3-monooxygenase from mitochondrial outer membrane of pig liver: purification, some properties, and monoclonal antibodies directed to the enzyme. J Biochem 123:253-262, 1998. 105. Uemura T, Hirai K. Purification of l-kynurenine 3-monooxygenase from mitochondrial outer membrane of pig liver. In: Huether G, Kochen W, Simat TJ, Steinhart H, ed. Tryptophan, Serotonin, and Melatonin. Springer, New York, 619-623, 1999. 106. Wilson K, Mole D, Binnie M, Homer N, Zheng X, Yard B, Iredale J, Auer M, Webster S. Bacterial expression of human kynurenine 3-monooxygenase: Solubility, activity, purification. Protein Expr Purif 95:96-103, 2014. 107. Alberati-Giani D, Cesura AM, Broger C, Warren WD, Rover S, Malherbe P. Cloning and functional expression of human kynurenine 3-monooxygenase. FEBS Lett 410:407-412, 1997. 108. Breton J, Avanzi N, Magagnin S, Covini N, Magistrelli G, Cozzi L, Isacchi A. Functional characterization and mechanism of action of recombinant human kynurenine 3‐hydroxylase. Eur J Biochem 267:1092-1099, 2000. 109. Eppink MH, Van Berkel WJ, Schreuder HA. Identification of a novel conserved sequence motif in flavoprotein hydroxylases with a putative dual function in FAD/NAD (P) H binding. Protein Sci 6:2454-2458, 1997. 110. Crozier-Reabe KR, Phillips RS, Moran GR. Kynurenine 3-monooxygenase from Pseudomonas fluorescens: Substrate-like inhibitors both stimulate flavin reduction and stabilize the flavin− peroxo intermediate yet result in the production of hydrogen peroxide. Biochemistry 47:12420-12433, 2008. 111. Wierenga RK, Terpstra P, Hol WG. Prediction of the occurrence of the ADP-binding βαβ-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol 187:101-107, 1986. 112. Schreuder HA, Prick PA, Wierenga RK, Vriend G, Wilson KS, Hol WG, Drenth J. Crystal structure of the p-hydroxybenzoate hydroxylase-substrate complex refined at 1.9 A resolution: analysis of the enzyme-substrate and enzyme-product complexes. J Mol Biol 208:679-696, 1989. 113. Murphy CI, Piwnica‐Worms H, Grunwald S, Romanow WG, Francis N, Fan HY. Overview of the baculovirus expression system. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman SG, Smith JA, Struhl K, ed. Current Protocols in Molecular Biology. John Wiley & Sons, Inc., New York, 16.19.11-16.19.10, 2004. 114. Haines FJ, Possee RD, King LA. Baculovirus Expression Vectors. In: Encyclopedia of Virology. 3rd ed. Elsevier, London, 451-454, 2006. 115. Airenne KJ, Hu Y-C, Kost TA, Smith RH, Kotin RM, Ono C, Matsuura Y, Wang S, Yla-Herttuala S. Baculovirus: an insect-derived vector for diverse gene transfer applications. Mol Ther 21:739-749, 2013. 116. Luckow VA, Lee S, Barry G, Olins P. Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol 67:4566-4579, 1993. 117. Ciccarone VC, Polayes DA, Luckow VA. Generation of recombinant baculovirus DNA in E. coli using a baculovirus shuttle vector. In: Reischt U, ed. Methods in Molecular Medicine. Humana Press Inc., New Jersey, 213-235, 1997. 118. Bac-to-Bac Baculoviorus Expression Systems Manual. Invitrogen, Life Technologies Inc, 2000. 119. Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nature Reviews Cancer 12:278-287, 2012. 120. Tan YH, Liu M, Nolting B, Go JG, Gervay-Hague J, Liu G-y. A nanoengineering approach for investigation and regulation of protein immobilization. ACS nano 2:2374-2384, 2008. 121. Guo K, Li J, Tang JP, Tan CPB, Hong CW, Al-Aidaroos AQO, Varghese L, Huang C, Zeng Q. Targeting intracellular oncoproteins with antibody therapy or vaccination. Sci Transl Med 3:1-10, 2011. 122. Ruiz-Arguelles A, Alarcon-Segovia D. Penetration of autoantibodies into living cells. IMAJ :121-126, 2001. 123. Guo K, Li J, Ping Tang J, Bobby Tan CP, Wang H, Wang H, Zeng Q. Monoclonal antibodies target intracellular PRL phosphatases to inhibit cancer metastases in mice. Cancer Biol Ther 7:750-757, 2008. 124. Golan TD, Gharavi AE, Elkon KB. Penetration of autoantibodies into living epithelial cells. J Invest Dermatol 100:316-322, 1993. 125. Hong CW, Zeng Q. Tapping the treasure of intracellular oncotargets with immunotherapy. FEBS letters 588:350-355, 2014. 126. Hong CW, Zeng Q. Awaiting a new era of cancer immunotherapy. Cancer Res 72:3715-3719, 2012. 127. Alarcon-Segovia D, Ruiz-Arguelles A, Fishbein E. Antibody to nuclear ribonucleoprotein penetrates live human mononuclear cells through Fc receptors. Nature 271:67-69, 1978. 128. Nickel W, Rabouille C. Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol 10:148-155, 2009. 129. Nickel W, Rabouille C. Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol 10:148-155, 2009. 130. Chang CY, Chiou PP, Chen WJ, Li YH, Yiu JC, Cheng YH, Chen SD, Lin CT, Lai YS. Assessment of the tumorigenesis and drug susceptibility of three new canine mammary tumor cell lines. Res Vet Sci 88:285-293, 2010. 131. Lee JL, Chang CJ, Chueh LL, Lin CT. Expression of secreted frizzled-related protein 2 in a primary canine mammary tumor cell line: a candidate tumor marker for mammary tumor cells. In Vitro Cell Dev Biol Anim 39:221-227, 2003. 132. Guex N, Peitsch MC. SWISS‐MODEL and the Swiss‐Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18:2714-2723, 1997. 133. O’Reilly DR, Miller LK, Luckow VA. Virus methods. In: Baculovirus Expression Vectors: A Laboratory Manual. Oxford University Press, Inc., New York, 124-138, 1994. 134. O’Shaughnessy L, Doyle S. Purification of proteins from baculovirus-infected insect cells. In: Walls D, Loughran ST, ed. Protein Chromatography. Humana Press, 295-309, 2011. 135. Madeo M, Carrisi C, Iacopetta D, Capobianco L, Cappello AR, Bucci C, Palmieri F, Mazzeo G, Montalto A, Dolce V. Abundant expression and purification of biologically active mitochondrial citrate carrier in baculovirus-infected insect cells. J Bioenerg Biomembr 41:289-297, 2009. 136. Harlow E, Lane D. Monoclonal antibodies. In: Antibodies: A laboratory manual Cold spring habor laboratory, New York, 139-244, 1988. 137. Eisenberg D. Three-dimensional structure of membrane and surface proteins. Annu Rev Biochem 53:595-623, 1984. 138. Amaral M, Levy C, Heyes DJ, Lafite P, Outeiro TF, Giorgini F, Leys D, Scrutton NS. Structural basis of kynurenine 3-monooxygenase inhibition. Nature 496:382-385, 2013. 139. Otting G, Liepinsh E, Wuthrich K. Protein hydration in aqueous solution. Science 254:974-980, 1991. 140. Smith SM. Strategies for the purification of membrane proteins. In: Walls D, Loughran ST, ed. Protein Chromatography. Humana Press, New Jersey, 485-496, 2011. 141. Goffart S, Martinsson P, Malka F, Rojo M, Spelbrink JN. The Mitochondria of Cultured Mammalian cells. In: Leister D, Herrmann JM, ed. Mitochondria. Humana Press, New Jersey, 17-32, 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51745 | - |
| dc.description.abstract | The kynurenine pathway is a major route for tryptophan metabolism where several metabolites have been linked to the pathogenesis of neurodegenerative disease, as well as tumor formation. Our previous studies showed that the expression level of kynurenine 3-monooxygenase (KMO), an outer mitochondrial membrane enzyme and central to the kynurenine pathway, was positively correlated with the canine mammary tumor (CMT) malignancy. So far the study of KMO involved in caner research has been ignored and lacked for species-specific molecular tool. In this study, we successful expressed the canine KMO (cKMO) protein by using baculovirus-insect cell (Sf9 cell) and characterized the sequence by software analysis. The purified recombinant proteins were used as the antigen for developing anti-KMO antibodies to select the most suitable antibody for CMT research. The comparison of KMO amino acid sequence among canine, human and mice shown that three conserved motifs folded in the interior of predicted protein structure, which might be acted as the binding site of cofactor FAD or NADPH. These structures belong to the family of NADPH-dependent flavin monooxygenase. Canine KMO gene was inserted into baculoviral genome by transposon located on the expression vector and the full-length cKMO can be detected on the mitochondria of Sf9 cells infected with these recombinant baculovirus. The best expression conditions have been optimized including 1) baculovirus passage (P3), 2) multiplicity of infection (MOI~1.5) and 3) infection time (72-96 hours). Canine KMO, a mitochondrial membrane protein, was purified using Ni-NTA affinity column under denaturing condition. A yield of 2 mg protein can be generated from 2×108 baculovirus infected Sf9 cells. Furthermore, three mice were immunized with this recombinant protein for antibody production. Hybridoma development will be conducted while the serum antibody titers of mice are elevated. In addition, the expression of KMO could be detected on the surface of CMT cell lines by using flow cytometry. We hope that the specific anti-cKMO antibodies can contribute to theranostic application of CMT in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:47:30Z (GMT). No. of bitstreams: 1 ntu-104-R02629006-1.pdf: 3634527 bytes, checksum: 94d49917fec933664f7581ab2c26981f (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 中文摘要 IV Abstract V Abbreviation VII Contents X Chapter 1. Introduction 1 Chapter 2. Background and literature review 3 2.1 Canine mammary tumor 3 2.1.1 Epidemiology 3 2.1.2 Treatment 4 2.1.3 Prognostic factors 7 2.1.3.1 Clinical prognostic factors 7 2.1.3.2 Histopathologic prognostic factors 7 2.1.3.3 Biomarkers on human breast cancer and canine mammary tumor 8 2.2 Kynurenine pathway 10 2.2.1 Function of kynurenine pathway metabolites in central nervous system 10 2.2.2 Effects of kynurenine pathway metabolites on tumor growth 13 2.2.3 Kynurenine 3-monooxygenase, KMO 17 2.2.3.1 Overview of KMO 17 2.2.3.2 The role of KMO in CMTs 19 2.3 Baculovirus-insect cell expression system 20 2.4 Targeting intracellular tumor antigen with antibody 22 2.5 Conclusion 24 Chapter 3. Materials and methods 26 3.1 Cell culture 26 3.1.1 Culturing insect cell line 26 3.1.2 Culturing CMT cell lines 26 3.2 Amino acid sequence analysis and prediction of cKMO 27 3.2.1 DNAstar megalign 27 3.2.2 DNAstar protean 27 3.2.3 SWISS-MODEL 27 3.3 Construction of the recombinant cKMO (Flow chart show in Fig. 2) 28 3.3.1 Restriction enzyme digestion 28 3.3.2 Ligation 29 3.3.3 DH5α E.coli Transformation 29 3.4 Production of recombinant cKMO-baculovirus (Flow chart show in Fig. 3) 31 3.4.1 DH10Bac E. coli Transformation 31 3.4.2 Transformants analysis by Polymerase chain reaction (PCR) 31 3.4.3 Transfection of Sf9 cells 32 3.4.4 Amplification of baculoviral stock 33 3.4.5 Determination of baculoviral stock titer 34 3.5 Recombinant canine KMO protein expression 35 3.5.1 Small-scale protein expression 35 3.5.1.1 RT-PCR for measuring mRNA expression 35 3.5.1.2 SDS-PAGE and western blotting analysis for measuring protein expression 37 3.5.1.3 Subcellular location of recombinant cKMO in Sf9 cells 39 3.5.2 Large-scale protein expression 40 3.6 Recombinant canine KMO protein purification 40 3.6.1 Ni-NTA column preparation 40 3.6.2 Cell lysate preparation 41 3.6.3 Denaturing purification 41 3.6.4 Protein concentration and urea removal 43 3.7 Anti-canine KMO antibodies production 44 3.8 Flow cytometry analysis of KMO expression in CMT cell lines 44 Chapter 4. Results 46 4.1 Canine KMO characterization 46 4.2 Recombinant baculovirus generation 47 4.3 Recombinant canine KMO protein expression 48 4.4 Recombinant canine KMO protein purification 49 4.5 Anti-canine KMO antibodies production 50 4.6 Flow cytometry analysis of KMO expression in CMT cell lines 51 Chapter 5. Discussion 52 Tables 60 Table 1. Modified clinical staging system of canine mammary tumors 60 Table 2. Histologic classification of canine mammary tumors 61 Table 3. Criteria of histologic grading of canine mammary tumor 63 Table 4. Tumor grade according to histologic score in canine mammary tumor 63 Table 5. Three conserved motifs present in NAD(P)H dependent flavin monooxygenase and the relative position of sequence in cKMO 64 Table 6. Sequence of oligonucleotide primers and predicted PCR product size of cKMO and GAPDH 65 Table 7. The P3 baculoviral stocks titer determined using endpoint dilution assay 66 Table 8. An overview of comparison among expression systems 67 Figures 68 Fig. 1. Schematic overview of the kynurenine pathway of the tryptophan metabolism and the target receptor 68 Fig. 2. An illustration showing the procedure in constructing recombinant vector KMO/pFastBac HT A. 69 Fig. 3. A diagram of the generation of recombinant baculovirus using Bac-to-BacR Baculovirus Expression System 70 Fig. 4. Immune program for anti-cKMO antibodies product 71 Fig. 5. A multiple amino acid sequence alignment from canine, human, mice and swine KMO (continued) 73 Fig. 6. A predicted secondary structure characterization of canine KMO protein 74 Fig. 7. A predicted 3D protein structure of canine KMO protein 75 Fig. 8. Restriction enzyme digestion of canine KMO/pcDNA3.1 and pFastBac HT A with BamHI and XbaI 76 Fig. 9. Three transformants of KMO/pFastBac HT A/DH5α is checked by restriction enzyme digestion with BamHI and XbaI. 77 Fig. 10. KMO/bacmid transformants from white colonies were checked by PCR 79 Fig. 11. Optimization of expression condition of cKMO in Sf9 cells 80 Fig. 12. The morphological changes of Sf9 cell after 72 hours post-infection with recombinant P3 cKMO-baculovirus. 81 Fig. 13. The mRNA and protein expression of recombinant cKMO in Sf9 cells 82 Fig. 14. Subcellular location of recombinant cKMO in Sf9 cells 83 Fig. 15. Purification of recombinant cKMO protein under denaturing condition 84 Fig. 16. The amino acid sequence of canine KMO from purified protein. 86 Fig. 17. Serum antibody titers of cKMO immunized mice have been elevated 87 Fig. 18. The expression of KMO in CMT cells (MPG) observed by IFA with serum antibodies from recombinant cKMO immunized mouse 88 Fig. 19. Flow cytometry analysis of KMO expression in CMT cell lines 89 References 91 | |
| dc.language.iso | en | |
| dc.subject | 犬尿胺酸代謝途徑 | zh_TW |
| dc.subject | 桿狀病毒表現系統 | zh_TW |
| dc.subject | 犬尿胺酸 3-單氧化? | zh_TW |
| dc.subject | 犬乳房腫瘤 | zh_TW |
| dc.subject | 粒線體膜蛋白 | zh_TW |
| dc.subject | mitochondrial membrane protein | en |
| dc.subject | canine mammary tumor | en |
| dc.subject | baculovirus expression system | en |
| dc.subject | kynurenine pathway | en |
| dc.subject | kynurenine 3-monooxygenase | en |
| dc.title | 以桿狀病毒表現犬尿胺酸3-單氧化酶並探討其在犬乳房腫瘤診斷之應用 | zh_TW |
| dc.title | Expression of Canine Kynurenine 3-monooxygenase by Baculovirus for the Diagnostic Application in Canine Mammary Tumor | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖泰慶(Tai-Ching Liao),廖光文(Kuang-Wen Liao),王愈善(Yu-Shan Wang),詹昆衛(Kun-Wei Chan) | |
| dc.subject.keyword | 犬尿胺酸 3-單氧化?,犬尿胺酸代謝途徑,桿狀病毒表現系統,粒線體膜蛋白,犬乳房腫瘤, | zh_TW |
| dc.subject.keyword | kynurenine 3-monooxygenase,kynurenine pathway,baculovirus expression system,mitochondrial membrane protein,canine mammary tumor, | en |
| dc.relation.page | 103 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-11-17 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
