請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51731
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳炳煇(Ping-hei Chen) | |
dc.contributor.author | Yu-Ying Chen | en |
dc.contributor.author | 陳昱穎 | zh_TW |
dc.date.accessioned | 2021-06-15T13:46:48Z | - |
dc.date.available | 2023-08-31 | |
dc.date.copyright | 2020-08-20 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-12 | |
dc.identifier.citation | [1] S. Nukiyama, 'The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure,' International Journal of Heat and Mass Transfer, vol. 9, no. 12, pp. 1419-1433, 1966. [2] M. R. M. Arenales, K. C. S. Sujith, L. S. Kuo, and P. H. Chen, 'Surface roughness variation effects on copper tubes in pool boiling of water,' International Journal of Heat and Mass Transfer, vol. 151, 2020, Art. no. 119399. [3] M. G. Kang, 'Effect of surface roughness on pool boiling heat transfer,' International Journal of Heat and Mass Transfer, vol. 43, no. 22, pp. 4073-4085, 2000. [4] J. Kim, S. Jun, R. Laksnarain, and S. M. You, 'Effect of surface roughness on pool boiling heat transfer at a heated surface having moderate wettability,' International Journal of Heat and Mass Transfer, vol. 101, pp. 992-1002, 2016. [5] J. S. Kim, A. Girard, S. C. Jun, J. Lee, and S. M. You, 'Effect of surface roughness on pool boiling heat transfer of water on hydrophobic surfaces,' International Journal of Heat and Mass Transfer, vol. 118, pp. 802-811, 2018. [6] J. Kim, S. Jun, J. Lee, J. Godinez, and S. M. You, 'Effect of Surface Roughness on Pool Boiling Heat Transfer of Water on a Superhydrophilic Aluminum Surface,' Journal of Heat Transfer-Transactions of the Asme, vol. 139, no. 10, 2017, Art. no. 101501. [7] Y. Haramura and Y. Katto, 'A new hydrodynamic model of critical heat-flux, applicable widely to both pool and forced-convection boiling on submerged bodies in saturated liquids,' International Journal of Heat and Mass Transfer, vol. 26, no. 3, pp. 389-399, 1983. [8] S. J. Kim, I. C. Bang, J. Buongiorno, and L. W. Hu, 'Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids,' Applied Physics Letters, vol. 89, no. 15, 2006, Art. no. 153107. [9] H. S. Ahn, G. Park, J. M. Kim, J. Kim, and M. H. Kim, 'The effect of water absorption on critical heat flux enhancement during pool boiling,' Experimental Thermal and Fluid Science, vol. 42, pp. 187-195, 2012. [10] C. C. Hsu and P. H. Chen, 'Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings,' International Journal of Heat and Mass Transfer, vol. 55, no. 13-14, pp. 3713-3719, 2012. [11] H. Jo, H. S. Ahn, S. Kane, and M. H. Kim, 'A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces,' International Journal of Heat and Mass Transfer, vol. 54, no. 25-26, pp. 5643-5652, 2011. [12] S. J. Kim, I. C. Bang, J. Buongiorno, and L. W. Hu, 'Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux,' International Journal of Heat and Mass Transfer, vol. 50, no. 19-20, pp. 4105-4116, 2007. [13] H. T. Phan, N. Caney, P. Marty, S. Colasson, and J. Gavillet, 'Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism,' International Journal of Heat and Mass Transfer, vol. 52, no. 23-24, pp. 5459-5471, 2009. [14] C. C. Hsu, W. C. Chiu, L. S. Kuo, and P. H. Chen, 'Reversed boiling curve phenomenon on surfaces with interlaced wettability,' Aip Advances, vol. 4, no. 10, 2014, Art. no. 107110. [15] A. R. Betz, J. Xu, H. H. Qiu, and D. Attinger, 'Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling?,' Applied Physics Letters, vol. 97, no. 14, 2010, Art. no. 141909. [16] H. Jo, D. I. Yu, H. Noh, H. S. Park, and M. H. Kim, 'Boiling on spatially controlled heterogeneous surfaces: Wettability patterns on microstructures,' Applied Physics Letters, vol. 106, no. 18, 2015, Art. no. 181602. [17] C. S. S. Kumar, Y. W. Chang, and P. H. Chen, 'Effect of heterogeneous wettable structures on pool boiling performance of cylindrical copper surfaces,' Applied Thermal Engineering, vol. 127, pp. 1184-1193, 2017. [18] A. R. Betz, J. Jenkins, C. J. Kim, and D. Attinger, 'Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces,' International Journal of Heat and Mass Transfer, vol. 57, no. 2, pp. 733-741, 2013. [19] C. C. Hsu, M. R. Lee, C. H. Wu, and P. H. Chen, 'Effect of interlaced wettability on horizontal copper cylinders in nucleate pool boiling,' Applied Thermal Engineering, vol. 112, pp. 1187-1194, 2017. [20] S. K. C. S., Y. W. Chang, M. R. M. Arenales, L.-S. Kuo, Y. H. Chuang, and P.-H. Chen, 'Experimental Investigation on the Effect of Size and Pitch of Hydrophobic Square Patterns on the Pool Boiling Heat Transfer Performance of Cylindrical Copper Surface,' Inventions, vol. 3, no. 1, p. 15, 2018. [21] M. Zupancic, M. Steinbucher, P. Gregorcic, and I. Golobic, 'Enhanced pool-boiling heat transfer on laser-made hydrophobic/superhydrophilic polydimethylsiloxane-silica patterned surfaces,' Applied Thermal Engineering, vol. 91, pp. 288-297, 2015. [22] M. S. El-Genk and A. F. Ali, 'Enhanced nucleate boiling on copper micro-porous surfaces,' International Journal of Multiphase Flow, vol. 36, no. 10, pp. 780-792, 2010. [23] R. P. Rioux, E. C. Nolan, and C. H. Li, 'A systematic study of pool boiling heat transfer on structured porous surfaces: From nanoscale through microscale to macroscale,' AIP Advances, vol. 4, no. 11, 2014, Art. no. 117133. [24] D. Cooke and S. G. Kandlikar, 'Pool Boiling Heat Transfer and Bubble Dynamics Over Plain and Enhanced Microchannels,' Journal of Heat Transfer-Transactions of the ASME, vol. 133, no. 5, 2011, Art. no. 052902. [25] A. Joseph et al., 'An experimental investigation on pool boiling heat transfer enhancement using sol-gel derived nano-CuO porous coating,' Experimental Thermal and Fluid Science, vol. 103, pp. 37-50, 2019. [26] C. S. S. Kumar, Y. W. Chang, and P. H. Chen, 'Pool-Boiling Heat-Transfer Enhancement on Cylindrical Surfaces with Hybrid Wettable Patterns,' Jove-Journal of Visualized Experiments, no. 122, 2017, Art. no. e55387. [27] A. Surtaev et al., 'Structured capillary-porous coatings for enhancement of heat transfer at pool boiling,' Applied Thermal Engineering, vol. 133, pp. 532-542, 2018. [28] D. Schrafer, R. Tamme, and H. Muller-Steinhagen, 'The effect of novel plasma-coated compact tube bundles on pool boiling,' Heat Transfer Engineering, vol. 28, no. 1, pp. 19-24, 2007. [29] B. Nunes et al., 'Ageing effects on the wettability behavior of laser textured silicon,' Applied Surface Science, vol. 257, no. 7, pp. 2604-2609, 2011. [30] R. Wang and S. X. Bai, 'Wettability of laser micro-circle-dimpled SiC surfaces,' Applied Surface Science, vol. 346, pp. 107-110, 2015. [31] R. Wang and S. X. Bai, 'Effect of droplet size on wetting behavior on laser textured SiC surface,' Applied Surface Science, vol. 353, pp. 564-567, 2015. [32] S. X. Bai, R. Wang, and M. Li, 'Wettability control of laser textured SiC surfaces using additive elements,' Ceramics International, vol. 41, no. 4, pp. 5644-5647, 2015. [33] B. Wang, X. C. Wang, H. Y. Zheng, and Y. C. Lam, 'Surface Wettability Modification of Cyclic Olefin Polymer by Direct Femtosecond Laser Irradiation,' Nanomaterials, vol. 5, no. 3, pp. 1442-1453, 2015. [34] P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, and E. Audouard, 'Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment,' Applied Surface Science, vol. 257, no. 12, pp. 5213-5218, 2011. [35] B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, 'Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,' Applied Surface Science, vol. 256, no. 1, pp. 61-66, 2009. [36] D. M. Chun, C. V. Ngo, and K. M. Lee, 'Fast fabrication of superhydrophobic metallic surface using nanosecond laser texturing and low-temperature annealing,' CIRP Annals-Manufacturing Technology, vol. 65, no. 1, pp. 519-522, 2016. [37] H. C. Cheng, T. L. Chang, C. S. Lin, and P. H. Chen, 'Wettability of laser-textured copper surface after a water-bath process,' AIP Advances, vol. 9, no. 12, 2019. [38] A. B. D. Cassie and S. Baxter, 'Wettability of porous surfaces,' Transactions of the Faraday Society, vol. 40, pp. 0546-0550, 1944. [39] C. M. Kruse et al., 'Enhanced pool-boiling heat transfer and critical heat flux on femtosecond laser processed stainless steel surfaces,' International Journal of Heat and Mass Transfer, vol. 82, pp. 109-116, 2015. [40] C. Kruse et al., 'Influence of Copper Oxide on Femtosecond Laser Surface Processed Copper Pool Boiling Heat Transfer Surfaces,' Journal of Heat Transfer-Transactions of the ASME, vol. 141, no. 5, May 2019, Art. no. 051503. [41] M. Moze, M. Zupancic, M. Hacvar, I. Golobic, and P. Gregorcic, 'Surface chemistry and morphology transition induced by critical heat flux incipience on laser-textured copper surfaces,' Applied Surface Science, vol. 490, pp. 220-230, 2019. [42] T. Young, 'An essay on the cohesion of fluids,' Philosophical Transactions of the Royal Society of London, vol. 95, pp. 65-87, 1805. [43] R. N. Wenzel, 'Resistance of solid surfaces to wetting by water,' Industrial and Engineering Chemistry, vol. 28, pp. 988-994, 1936. [44] S. G. Bankoff, 'Ebullition from solid surfaces in the absence of a pre-existing gaseous phase,' Journal of Heat Transfer-Transactions of the ASME, vol. 79, pp. 735–740, 1957. [45] W. Fritz, 'Maximum volume of vapor bubbles,' Physikalische Zeitschrift, vol. 36, pp. 379-384, 1935. [46] S. Nolte et al., 'Ablation of metals by ultrashort laser pulses,' Journal of the Optical Society of America B-Optical Physics, vol. 14, no. 10, pp. 2716-2722, 1997. [47] M. Birnbaum, 'Semiconductor surface damage produced by ruby lasers,' Journal of Applied Physics, vol. 36, no. 11, pp. 3688- , 1965. [48] P. Gregorcic, M. Sedlacek, B. Podgornik, and J. Reif, 'Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations,' Applied Surface Science, vol. 387, pp. 698-706, 2016. [49] M. S. Trtica, B. M. Gakovic, B. B. Radak, D. Batani, T. Desai, and M. Bussoli, 'Periodic surface structures on crystalline silicon created by 532 nm picosecond Nd : YAG laser pulses,' Applied Surface Science, vol. 254, no. 5, pp. 1377-1381, 2007. [50] J. R. Taylor, 'An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements,' 2nd ed. Sausalito, California: University Science Books, 1997. [51] D. V. Ta et al., 'Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications,' Applied Surface Science, vol. 357, pp. 248-254, 2015. [52] W. M. Rohsenow, 'A method of correlating heat transfer data for surface boiling of liquids,' Cambridge, Mass.: MIT Division of Industrial Cooporation, 1951. [53] J.S. Mehta and S.G. Kandlikar, 'Pool boiling heat transfer enhancement over cylindrical tubes with water at atmospheric pressure, Part I: experimental results for circumferential rectangular open microchannels,' International Journal of Heat and Mass Transfer, vol. 64, pp. 1205–1215, 2013. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51731 | - |
dc.description.abstract | 本研究使用脈衝皮秒雷射於紅銅圓管上進行表面改質,構織出均質雷射表面及魚骨形雷射表面,與拋光純銅表面比較於池沸騰中之沸騰熱傳性能。在池沸騰實驗中,以去離子水當作工作流體且實驗主要進行於成核沸騰階段(本實驗最高熱通量約至426 kW/m2)。然而,熱通量、壁面過熱度和沸騰熱傳係數均為本實驗的重要參數。與均質雷射改質表面相較,拋光純銅表面具有較高的沸騰熱傳係數,均質雷射表面雖具有較高的表面粗糙度(拋光純銅的平均表面粗糙度為0.025μm,經由雷射改質後,表面粗糙度提升至0.191μm),其超親水的表面特性卻主導了表面的氣泡動力。為了增進銅圓管的沸騰熱傳係數,雷射表面改質採魚骨圖形,其圖形靈感來自於魚骨,目的是為了減少雷射改質面積及增加雷射於圖形邊界所產生的結構,利用邊界產生較多氣泡的現象,將氣泡限制於圖形上,促使氣泡容易相互聚合且離開加熱表面,並藉由較密集的魚骨圖形進一步提升氣泡離開頻率,到達最高熱通量時,沸騰熱傳係數可達至1.12倍的提升相較於拋光純銅表面。在本實驗中,使用雷射共聚焦顯微鏡量測圓管試塊的表面粗糙度及形貌,另外使用高速攝影機記錄在池沸騰過程中每一個試塊表面的氣泡分布及大小,並透過高速影像分析圓管上下表面溫度差的數據趨勢。 | zh_TW |
dc.description.abstract | In this study, the effect of laser-textured surfaces on pool boiling heat transfer had been investigated. With the ultra-fast picosecond laser surface modification method, patterns with periodic micro-structure could be easily fabricated on surfaces of horizontal copper tubes. These pool boiling experiments were carried out on the nucleate boiling regime (heat flux up to 426 kW/m2) by using deionized water as a working fluid. Furthermore, the heat flux, wall superheat and boiling heat transfer coefficient were mainly investigated. Compared to the homogeneous laser-textured surface, the polished copper surface had larger heat transfer coefficient. Although the laser-textured surface had higher surface roughness, the superhydrophilic characteristic still dominated the bubble dynamics on the surface. In order to improve boiling heat transfer coefficient, the fishbone patterns were selected to apply on surfaces because more laser-textured edges and less laser-textured area could be achieved. Compared to the polished copper surface, the boiling heat transfer coefficient of the laser-textured dense fishbone surface was enhanced up to a factor of 1.12 higher at the highest evaluated heat flux. In addition, the results and discussion were supported by shape analysis of laser confocal microscope. Simultaneously, analysis of the temperature difference along different cylindrical samples was conducted using bubble dynamics. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:46:48Z (GMT). No. of bitstreams: 1 U0001-0908202013100100.pdf: 6259809 bytes, checksum: 1ea6d48f0089bca9cd7606e51a0e3e7f (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 摘要 iii Abstract iv Nomenclature v Table of Contents viii List of Figures xi List of Tables xv Chapter 1 Introduction 1 1.1 Preface 1 1.2 Background 2 1.3 Literature review 3 1.3.1 Effect of surface roughness on pool boiling 3 1.3.2 Effect of surface wettability on pool boiling 6 1.3.3 Surface wettability of laser-textured modification 10 1.3.4 Effect of laser-textured surface on pool boiling 15 1.4 Research purposes 20 1.5 Thesis structure 21 Chapter 2 Theory 22 2.1 Surface energy 22 2.2 Static contact angle 22 2.3 Young’s equation 24 2.4 Wenzel’s model 24 2.5 Cassie-Baxter model 25 2.6 Required energy relationship between the contact angle and vapor bubble generation 26 2.7 Theoretical model of heterogeneous wettable surface 27 2.8 Pulsed laser 30 Chapter 3 Experimental Approach 32 3.1 Experimental setups 32 3.2 Experimental procedures 34 3.3 Surface modification 34 3.3.1 Preparation of copper tube 34 3.3.2 Preparation of laser-textured surfaces 35 3.3.3 The geometry of laser-textured surfaces on copper tube with fishbone patterns 37 3.4 Instruments of measuring surface characteristics 38 3.4.1 Surface roughness and morphology 38 3.4.2 Surface wettability 39 3.5 Data reduction 40 3.6 Uncertainty analysis 41 Chapter 4 Results and Discussion 42 4.1 Surface morphology of laser-textured surfaces 42 4.2 Surface wettability of laser-textured surfaces 44 4.3 Heat flux and heat transfer coefficient data 45 4.4 Bubble departure diameter 49 4.5 Bubble departure frequency 50 4.6 Bubble dynamics 52 4.7 Circumferential temperature distribution 55 Chapter 5 Conclusions and Future Prospects 58 5.1 Conclusions 58 5.2 Future prospects 60 5.3 List of Publication 61 Reference 62 Appendix 69 | |
dc.language.iso | en | |
dc.title | 皮秒雷射構織仿魚骨圖形於紅銅圓管表面對池沸騰熱傳之影響 | zh_TW |
dc.title | Effect of Biomimetic Fishbone Patterns on Copper Tubes Textured with Picosecond Laser on Pool Boiling Heat Transfer | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張天立(Tien-Li Chang),徐金城(Jin-Cherng Shyu) | |
dc.subject.keyword | 超短脈衝皮秒雷射,超親水,魚骨形雷射表面,表面粗糙度,沸騰熱傳係數,熱通量,壁面過熱度, | zh_TW |
dc.subject.keyword | Ultra-fast picosecond laser,Superhydrophilic,Heat flux,Wall superheat,Boiling heat transfer coefficient,Surface roughness,Laser-textured fishbone surface, | en |
dc.relation.page | 76 | |
dc.identifier.doi | 10.6342/NTU202002706 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-12 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0908202013100100.pdf 目前未授權公開取用 | 6.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。