請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51722完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江茂雄(Mao-Hsiung Chiang) | |
| dc.contributor.author | Chiao-Yang Chang | en |
| dc.contributor.author | 張喬陽 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:46:20Z | - |
| dc.date.available | 2023-11-27 | |
| dc.date.copyright | 2015-12-01 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-11-26 | |
| dc.identifier.citation | [1] J. Twidell and G. Gaudiosi, 'Offshore Wind Power', 1 ed., Multi-Science Publishing Co. Ltd., 2014.
[2] D. J. Cerda Salzmann, 'Development of the Access System for Offshore Wind Turbines,' Ph.D. dissertation, Delft University of Technology, 2007. [3] CTruk, 'Products and Systems-MPC22', 2015. [Online]. Available: http://www.ctruk.com/products-and-systems/MPC22. [4] S. W. Bedford, 'Access apparatus for transferring from vessels to fixed structures,' U.S. Patent 8 925 130 B2, Jan. 6, 2015. [5] Houlder, 'TAS steps up to turbine access challenge - Houlder', 2014. [Online]. Available: http://houlderltd.com/newsroom/tas-turbine-access-system-steps-access-challenge/. [6] Sine.ni.com, 'Control of a Hydraulic Motion Compensated Gangway to Improve Access to Offshore Wind Turbines - Solutions - National Instruments', 2015. [Online]. Available: http://sine.ni.com/cs/app/doc/p/id/cs-14813. [7] E. R. P. Dudson and F. V. Perdrix, 'TRANSFER APPARATUS FOR VESSELS,' U.S. Patent 2013/0198979 A1, Aug. 8, 2013. [8] S. Leske, 'DEVICE FOR THE SAFE TRANSFER OF PERSONNEL OR MATERIAL FROM AN OBJECT CONFIGURED AS A BOAT TO AN OBJECT MOVING RELATIVE THERETO, AND BOAT COMPRISING THE DEVICE,' U.S. Patent 2011/0038691 A1, Feb. 17, 2011. [9] Momac-robotics.de, 'Download MOTS - Momac Offshore Access System', 2015. [Online]. Available: http://www.momac-robotics.de/Download-MOTS.html. [10] S. Leske. 'Momac Offshore Transfer System'. [Online]. Available: http://www.momac-robotics.de/db/docs/MOTS-presentation-GB-V110310-Handout-version.pdf [11] Ampelmann, 'E-type - Ampelmann', 2015. [Online]. Available: http://www.ampelmann.nl/products/e-type/. [12] J. A. Keuning, 'Vessel with system for transferring persons or goods and such system,'European Patent 2 716 539 A1, Sep. 4, 2014. [13] K. Kutzbach, 'Mechanische Leitungsverzweigung,' Der Betreib, vol. 8, pp. 710-716, 1929. [14] J. J. Craig, 'Introduction To Robotics Mechanics And Control', 3 ed., Pearson/Prentice Hall, 2005. [15] M. W. Spong, S. Hutchinson, and M. Vidyasaga, 'Robot Modeling and Control', 1 ed., John Wiley & Sons Inc., 2006. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51722 | - |
| dc.description.abstract | 本研究旨在發展離岸風場運轉維護所需之船艏安全登塔梯系統,進行機構、液壓伺服系統及控制系統之設計及動態模型建立,並進行動態模擬與分析,有效降低登塔點垂向高度變化百分之五十及垂向加速度大小低於0.2G,以達到主動式運動補償,使維修人員更安全的進出離岸風機與維修船。
首先將以SOLIDWORKS所設計之機構3D圖檔,匯入至ADAMS機構動態模擬軟體,並進行各部件關節設定及運動特性建置;推導液壓驅動系統動態模式及進行控制系統設計,以MATLAB/SIMULINK來實現。最終整合ADAMS之機構動態及MATLAB/SIMULINK之液壓系統及控制系統動態,進行全系統整合動態模擬,將ADAMS機構動態模型匯出至MATLAB/SIMULINK環境,進行複雜機構及控制系統動態整合模擬及分析。 除了上述動態建模與模擬外,船艏安全登塔梯系統的運動學分析也是必要的。為了達到主動式運動補償,透過逆向運動學的幾何分析方法,考慮登塔點在各種船舶運動的情況下,致動器(液壓缸)與登塔點之間的運動關係,此部分也是由MATLAB/SIMULINK來實現。 本論文利用ADAMS及MATLAB/SIMULINK軟體整合動態分析,其中包含逆向運動學分析、單軸液壓系統開迴路模擬、加入PID控制器之閉迴路軌跡追蹤模擬,最後,在三組不同的船舶運動下,進行全系統之閉迴路模擬,實現船艏安全登塔梯進行主動式運動補償,有效降低登塔點的垂向高度及加速度變化。 | zh_TW |
| dc.description.abstract | This study aims to investigate a new offshore wind turbine access system (TAS), including design, dynamic modeling and simulation of TAS mechanism, hydraulic driving system and control system, for reducing fifty percent of the vertical height variation and the vertical acceleration below 0.2G of the end effector of TAS through the active motion compensation. The safety to access the offshore wind turbine can be improved.
First, through the mechanism design and importing the 3D models drafted by SOLIDWORKS software, the dynamic modeling and simulation can be implemented by software ADAMS (Automated Dynamic Analysis of Mechanical Systems), and the motion characteristics of each components and joints can be set. Besides, the hydraulic driving system and the closed-loop control system is designed and dynamically modeling and implemented via MATLAB/SIMULINK. Then, through developing the co-simulation of ADAMS and MATLAB/SIMULINK, the dynamic model of TAS is exported from ADAMS into the MATLAB/SIMULINK environment to process the dynamic co-simulation and analysis of complex mechanism and control of TAS. Besides the dynamic analysis, the kinematic analysis of TAS is also necessary for the active motion compensation control. Thus, the motion relationship between the actuators and end effector in all kinds of vessel motion is considered by the geometry method of inverse kinematics which is also implemented via MATLAB/SIMULINK. In this study, the co-simulation of the dynamic models of TAS through ADAMS and MATLAB/SIMULINK, including the inverse kinematics analysis, the open-loop control of hydraulic driving systems, and the closed-loop path tracking control by PID controllers. Finally, the closed-loop simulation of overall system is well performed to achieve active motion compensation and reduce the vertical height variation during three different ship motions. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:46:20Z (GMT). No. of bitstreams: 1 ntu-104-R02525038-1.pdf: 3919632 bytes, checksum: e87e61457838ae541a5a76de94c582de (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract III 目錄 V 圖目錄 VII 表目錄 XII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 1 1-2-1 入塢方式(I)、(II) 2 1-2-2 入塢方式 (III) 4 1-3 研究動機與目的 5 1-3-1 研究動機 5 1-3-2 研究目的 6 1-4 本文架構 6 第二章 系統架構 8 2-1 船艏安全登塔梯系統機構設計 8 2-1-1 船體運動自由度 8 2-1-2 船艏安全登塔梯系統機構外型 8 2-2 船艏安全登塔梯系統設計規格 11 2-3 機構自由度計算 13 第三章 運動學分析 17 3-1 計算補償角、液壓缸補償長度 18 3-2 計算液壓缸長度與補償角關係式 24 第四章 動力學分析 27 4-1 船艏安全登塔梯系統液壓伺服系統數學模型與設計理論 27 4-1-1 液壓伺服閥動態模型理論 28 4-1-2 液壓系統設計理論 32 4-1-3 全系統液壓系統迴路設計 36 4-2 船艏安全登塔梯系統機構動態建模 37 第五章 控制理論及控制策略 40 5-1 PID控制理論 40 5-2 船艏安全登塔梯系統控制策略 42 第六章 動態模擬分析 43 6-1 模擬環境設定 43 6-1-1 ADAMS與MATLAB/SIMULINK整合模擬 43 6-1-2 船舶運動設定 44 6-2 船艏安全登塔梯系統模擬結果 45 6-2-1 單軸液壓系統開迴路模擬 45 6-2-2 單軸液壓系統閉迴路模擬 54 6-2-3 船艏安全登塔梯系統閉迴路模擬 59 第七章 結論與未來展望 85 7-1 結論 85 7-2 未來展望 86 參考文獻 88 | |
| dc.language.iso | zh-TW | |
| dc.subject | 離岸風電進出系統 | zh_TW |
| dc.subject | 動態模擬 | zh_TW |
| dc.subject | 主動式運動補償控制 | zh_TW |
| dc.subject | 運動學分析 | zh_TW |
| dc.subject | 運動平台 | zh_TW |
| dc.subject | dynamic simulation | en |
| dc.subject | kinematics analysis | en |
| dc.subject | Stewart-Gough platform | en |
| dc.subject | motion compensation control | en |
| dc.subject | active motion compensation | en |
| dc.subject | offshore wind turbine access system | en |
| dc.title | 具主動式運動補償之船艏安全登塔梯系統設計與模擬分析 | zh_TW |
| dc.title | Design and Simulation Analysis of a Turbine Access System with Active Motion Compensation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 任志強,林靖國,趙修武,林浩庭 | |
| dc.subject.keyword | 離岸風電進出系統,主動式運動補償控制,運動平台,運動學分析,動態模擬, | zh_TW |
| dc.subject.keyword | offshore wind turbine access system,active motion compensation,motion compensation control,Stewart-Gough platform,kinematics analysis,dynamic simulation, | en |
| dc.relation.page | 89 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-11-26 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
