Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51701
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林正芳
dc.contributor.authorChin-Sheng Kuoen
dc.contributor.author郭謹陞zh_TW
dc.date.accessioned2021-06-15T13:45:18Z-
dc.date.available2016-04-14
dc.date.copyright2016-02-15
dc.date.issued2015
dc.date.submitted2015-12-01
dc.identifier.citationAbramović, B., Kler, S., Šojić, D., Laušević, M., Radović, T., Vione, D., 2011. Photocatalytic degradation of metoprolol tartrate in suspensions of two TiO2-based photocatalysts with different surface area. Identification of intermediates and proposal of degradation pathways. Journal of Hazardous Materials 198, 123–132.
Ahmed, S., Rasul, M.G., Brown, R., Hashib, M.A., 2011. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. Journal of Environmental Management 92 (3), 311–330.
An, T., An, J., Yang, H., Li, G., Feng, H., Nie, X., 2011. Photocatalytic degradation kinetics and mechanism of antivirus drug-lamivudine in TiO2 dispersion. Journal of Hazardous Materials 197, 229–236.
Baker, D.R., Kasprzyk-Hordern, B., 2013. Spatial and temporal occurrence of pharmaceuticals and illicit drugs in the aqueous environment and during wastewater treatment: New developments. Science of the Total Environment 454–455, 442–456.
Bartelt-Hunt, S.L., Snow, D.D., Damon, T., Shockley, J., Hoagland, K., 2009. The occurrence of illicit and therapeutic pharmaceuticals in wastewater effluent and surface waters in Nebraska. Environmental Pollution 157 (3), 786–791.
Baselt, R.C., 2004. Disposition of toxic drugs and chemicals in man, seventh ed. Biomedical Publications, California, USA.
Berset, J.-D., Brenneisen, R., Mathieu, C., 2010. Analysis of llicit and illicit drugs in waste, surface and lake water samples using large volume direct injection high performance liquid chromatography – Electrospray tandem mass spectrometry (HPLC–MS/MS). Chemosphere 81 (7), 859–866.
Bijlsma, L., Sancho, J.V., Pitarch, E., Ibáñez, M., Hernández, F., 2009. Simultaneous ultra-high-pressure liquid chromatography–tandem mass spectrometry determination of amphetamine and amphetamine like stimulants, cocaine and its metabolites, and a cannabis metabolite in surface water and urban wastewater. Journal of Chromatography A 1216 (15), 3078–3089.
Bijlsma, L., Emke, E., Hernández, F., Voogt, P.D., 2012. Investigation of drugs of abuse and relevant metabolites in Dutch sewage water by liquid chromatography coupled to high resolution mass spectrometry. Chemosphere 89 (11), 1399–1406.
Blair, B.D., Crago, J.P., Hedman, C.J., Klaper, R.D., 2013. Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern. Chemosphere 93 (9), 2116–2123.
Boleda, M.R., Galceran, M.T., Ventura, F., 2009. Monitoring of opiates, cannabinoids and their metabolites in wastewater, surface water and finished water in Catalonia, Spain. Water Research 43 (4), 1126–1136.
Boles, T.H., Wells, M.J.M., 2010. Analysis of amphetamine and methamphetamine as emerging pollutants in wastewater and wastewater-impacted streams. Journal of Chromatography A 1217 (16), 2561–2568.
Caldwell, J., Dring, L.G., Williams, R.T., 1972. Metabolism of [14C ] methamphetamine in man, the guinea pig and the rat. Biochemical Journal 129 (1), 11–22.
Caliman, F.A., Gavrilescu, M., 2009. Pharmaceuticals, personal care products and endocrine disrupting agents in the environment—a review. Clean-Soil Air Water 37 (4–5), 277–303.
Cao, H., Lin, X., Zhan, H., Zhang, H., Lin, J., 2013. Photocatalytic degradation kinetics and mechanism of phenobarbital in TiO2 aqueous solution. Chemosphere 90 (4), 1514–1519.
Castiglioni, S., Zuccato, E., Crisci, E., Chiabrando, C., Fanelli, R., Bagnati, R., 2006. Identification and measurement of illicit drugs and their metabolites in urban wastewater by liquid chromatography–tandem mass spectrometry. Analytical Chemistry 78 (24), 8421–8429.
Chong, M.N., Jin, B., Chow, C.W.K., Saint, C., 2010. Recent developments in photocatalytic water treatment technology: a review. Water Research 44 (10), 2997–3027.
Cone, E.J., Zichterman, A., Heltsley, R., Black, D.L., Cawthon, B., Robert, T., Moser, F., Caplan, Y.H., 2010. Urine testing for norcodeine, norhydrocodone, and noroxycodone facilitates interpretation and reduces false negatives. Forensic Science International 198 (1–3), 58–61.
Daughton, C.G., Ternes, T.A., 1999. Pharmaceuticals and personal care products in the environment: agents of subtle change? Environmental Health Perspectives 107 (Suppl 6), 907–938.
DoHHS., 2006. Pain management without psychological dependence: a guide for
healthcare providers. Substance Abuse and Mental Health Services Administration in US Department of Health and Human Services 4 (1), 1–6.
Erickson, B.E., 2002. Analyzing the ignored environmental contaminants. Environmental Science and Technology 36 (7), 140–145.
Fowler, P.A., Bellingham, M., Sinclair, K.D., Evans, N.P., Pocar, P., Fischer, B., Schaedlich, K., Schmidt, J.-S., Amezaga, M.R., Bhattacharya, S., Rhind, S.M., O’Shaughnessy, P.J., 2012. Impact of endocrine-disrupting compounds (EDCs) on female reproductive health. Molecular and Cellular Endocrinology 355 (2), 231–239.
Fox, M.A., Dulay, M.T., 1993. Heterogeneous photocatalysis. Chemical Reviews 93 (1), 341–357.
Fukahori, S., Fujiwara, T., Ito, R., Funamizu, N., 2012. Photocatalytic decomposition of crotamiton over aqueous TiO2 suspensions: determination of intermediates and the reaction pathway. Chemosphere 89 (3), 213–220.
Gaya, U.I., Abdullah, A.H., 2008. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 9 (1), 1–12.
Gheorghe, A., van Nuijs, A., Pecceu, B., Bervoets, L., Jorens, P.G., Blust, R., Neels, H., Covaci, A., 2008. Analysis of cocaine and its principal metabolites in waste and surface water using solid-phase extraction and liquid chromatography-ion trap tandem mass spectrometry. Analytical and Bioanalytical Chemistry 391 (4), 1309–1319.
Hayakawa, K., Miyoshi, Y., Kurimoto, H., Matsushima, Y., Takayama, N., Tanaka, S., Miyazaki, M., 1993. Simultaneous determination of methamphetamine and its metabolites in the urine samples of abusers by high performance liquid chromatography with chemiluminescence detection. Biological and Pharmaceutical Bulletin 16 (9), 817–821.
Hess-Wilson, J.K., Knudsen, K.E., 2006. Endocrine disrupting compounds and prostate cancer. Cancer Letters 241 (1), 1–12.
Huerta-Fontela, M., Galcerán, M.T., Martin-Alonso, J., Ventura, F., 2008a. Occurrence of psychoactive stimulatory drugs in wastewaters in north-eastern Spain. Science of the Total Environment 397 (1–3), 31–40.
Huerta-Fontela, M., Galcerán, M.T., Ventura, F., 2008b. Stimulatory drugs of abuse in surface waters and their removal in a conventional drinking water treatment plant. Environmental Science and Technology 42 (18), 6809–6816.
Huerta-Fontela, M., Pineda, O., Ventura, F., Galcerán, M.T., 2012. New chlorinated amphetamine-type-stimulants disinfection-by-products formed during drinking water treatment. Water Research 46 (10), 3304–3314.
Ji, Y., Zhou, L., Ferronato, C., Yang, X., Salvador, A., Zeng, C., Chovelon, J.-M., 2013. Photocatalytic degradation of atenolol in aqueous titanium dioxide suspensions: kinetics, intermediates and degradation pathways. Journal of Photochemistry and Photobiology A: Chemistry 254, 35–44.
Kasprzyk-Hordern, B., Dinsdale, R.M., Guwy, A.J., 2009. The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs wastewater treatment and its impact on the quality of receiving waters. Water Research 43 (2), 363–380.
Kelly, T., Gray, T.R., Huestis, M.A., 2008. Development and validation of a liquid chromatography–atmospheric pressure chemical ionization-tandem mass spectrometry method for simultaneous analysis of 10 amphetamine-, methamphetamine- and 3,4-methylenedioxymethamphetamine-related (MDMA) analytes in human meconium. Journal of Chromatography B 867 (2), 194–204.
Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E.M., Zaugg, S.D., Barber, L.B., Buxton, H.T., 2002. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance. Environmental Science and Technology 36 (6), 1202–1211.
Konstantinou, I.K., Albanis, T.A., 2004. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Applied Catalysis B: Environmental 49 (1), 1–14.
Kosmulski, M., 2006. pH-dependent surface charging and points of zero charge: III. Update. Journal of Colloid and Interface Science 298 (2), 730–741.
Kuo, C.-S., Lin, C.-F., Hong, P.-K.A., 2015. Photocatalytic degradation of methamphetamine by UV/TiO2 — Kinetics, intermediates, and products, Water Research 74, 1–9.
Kuo, C.-S., Lin, C.-F., Hong, P.-K.A., 2016. Photocatalytic mineralization of codeine by UV-A/TiO2—Kinetics, intermediates, and pathways. Journal of Hazardous Materials 301, 137–144.
Lai, W.W.-P., Lin, H.H.-H., Lin, A.Y.-C., 2015. TiO2 photcatalytic degradation and transformation of oxazaphosphorine drugs in an aqueous environment. Journal of Hazardous Materials 287, 133–141.
Li, L., Everhart, T., Jacob Iii, P., Jones, R., Mendelson, J., 2010. Stereoselectivity in the human metabolism of methamphetamine. British Journal of Clinical Pharmacology 69 (2), 187–192.
Lin, A.Y.-C., Lee, W.-N., Wang, X.-H., 2014. Ketamine and the metabolite norketamine: persistence and phototransformation toxicity in hospital wastewater and surface water. Water Research 53, 351–360.
Lin, A.Y.-C., Wang, X.H., Lin, C.F., 2010. Impact of wastewaters and hospital effluents on the occurrence of controlled substances in surface waters. Chemosphere 81 (5), 562–570.
Lin, C.-F., Shiu, Y.-J., Kuo, C.-S., Lin, A.-C., Wu, C.-H., Hong, P.-K., 2013. Photocatalytic degradation of morphine, methamphetamine, and ketamine by illuminated TiO2 and ZnO. Reaction Kinetics, Mechanisms and Catalysis 110 (2), 559–574.
Lin, H.H.-H., Lin, A.Y.-C., 2014. Photocatalytic oxidation of 5-fluorouracil and cyclophosphamide via UV/TiO2 in an aqueous environment. Water Research 48, 559–568.
Logan, B., 2002. Methamphetamine-effects on human performance and behavior. Forensic Science Review 14 (1–2), 133–151.
Loganathan, B., Phillips, M., Mowery, H., Jones-Lepp, T.L., 2009. Contamination profiles and mass loadings of macrolide antibiotics and illicit drugs from a small urban wastewater treatment plant. Chemosphere 75 (1), 70–77.
Meadway, C., George, S., Braithwaite, R., 2002. A rapid GC–MS method for the determination of dihydrocodeine, codeine, norcodeine, morphine, normorphine
and 6-MAM in urine. Forensic Science International 127 (1–2), 136–141.
Meffe, R., Bustamante, I.D., 2014. Emerging organic contaminants in surface water and groundwater: a first overview of the situation in Italy. Science of the Total Environment 481, 280–295.
Meloun, M., Pluhařová, M., 2000. Thermodynamic dissociation constants of codeine, ethylmorphine and homatropine by regression analysis of potentiometric titration data. Analytica Chimica Acta 416 (1), 55–68.
Metcalfe, C., Tindale, K., Li, H., Rodayan, A., Yargeau, V., 2010. Illicit drugs in Canadian municipal wastewater and estimates of community drug use. Environmental Pollution 158 (10), 3179–3185.
Moctezuma, E., Leyva, E., Aguilar, C.A., Luna, R.A., Montalvo, C., 2012. Photocatalytic degradation of paracetamol: intermediates and total reaction mechanism. Journal of Hazardous Materials 243, 130–138.
Pal, R., Megharaj, M., Kirkbride, K.P., Heinrich, T., Naidu, R., 2011. Biotic and abiotic degradation of illicit drugs, their precursor, and by-products in soil. Chemosphere 85 (6), 1002–1009.
Pal, R., Megharaj, M., Kirkbride, K.P., Naidu, R., 2013. Illicit drugs and the environment — a review. Science of the Total Environment 463–464, 1079-1092.
Parra, S., Olivero, J., Pulgarin, C., 2002. Relationships between physicochemical properties and photoreactivity of four biorecalcitrant phenylurea herbicides in aqueous TiO2 susoension. Applied Catalysis B: Environmental 36 (1), 75–85.
Postigo, C., Alda, M.J.L., Barcelo, D., 2010. Drugs of abuse and their metabolites in the Ebro River basin: occurrence in sewage and surface water, sewage treatment plants removal efficiency, and collective drug usage estimation. Environment International 36 (1), 75–84.
Qamar, M., Muneer, M., Bahnemann, D., 2006. Heterogeneous photocatalysed degradation of two selected pesticide derivatives, triclopyr and daminozid in aqueous suspensions of titanium dioxide. Journal of Environmental Management 80 (2), 99–106.
Rodayan, A., Segura, P.A., Yargeau, V., 2014. Ozonation of wastewater: removal and transformation products of drugs of abuse. Science of the Total Environment 487, 763–770.
Rosal, R., Rodríguez, A., Perdigón-Melón, J.A., Petre, A., García-Calvo, E., Gómez, M.J., Agüera, A., Fernández-Alba, A.R., 2010. Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Research 44 (2), 578–588.
Rosi-Marshall, E.J., Snow, D., Bartelt-Hunt, S.L., Paspalof, A., Tank, J.L., 2015. A review of ecological effects and environmental fate of illicit drugs in aquatic ecosystems. Journal of Hazardous Materials 282, 18–25.
Saquib, M., Muneer, M., 2003. TiO2-mediated photocatalytic degradation of a triphenylmethane dye (gentian violet), in aqueous suspensions. Dyes and Pigments 56 (1), 37–49.
Scott, T.L., Janusz, A., Perkins, M.V., Megharaj, M., Naidu, R., Kirkbride, K.P., 2003. Effect of amphetamine precursors and by-products on soil enzymes of two urban soils. Bulletin of Environmental Contamination and Toxicology 70 (4), 824–831.
Secondes, M.F.N., Naddeo, V., Belgiorno, V., Jr., F.B., 2014. Removal of emerging contaminants by simultaneous application of membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation. Journal of Hazardous Materials 264, 342–349.
Stackelberg, P.E., Gibs, J., Furlong, E.T., Meyer, M.T., Zaugg, S.D., Lippincott, R.L., 2007. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds. Science of the Total Environment 377 (2–3), 255–272.
Strnadova, M., Leimbach, J., Rupprecht, H., 1995. Adsorption of codeine on hydrophilic silica and silica surface modified by hydrophobic groups in the presence of electrolytes. Colloid and Polymer Science 273 (7), 687–692.
Stuart, M., Lapworth, D., Crane, E., Hart, A., 2012. Review of risk from potential emerging contaminants in UK groundwater. Science of the Total Environment 416, 1–21.
Tang, W.Z., Huang, C.P., 1995. Photocatalyzed oxidation pathways of 2,4-dichlorophenol by CdS in basic and acidic aqueous solutions. Water Research 29 (2), 745–756.
Tunesi, S., Anderson, M., 1991. Influence of chemisorption on the photodecomposition of salicylic acid and related compounds using suspended TiO2 ceramic membranes. The Journal of Physical Chemistry 95 (8), 3399–3405.
UNODC (United Nations Office on Drugs and Crime), 2013. World Drug Report. Available: http://www.unodc.org/unodc/secured/wdr/wdr2013/World_Drug_Report_2013.pdf.
UNODC (United Nations Office on Drugs and Crime), 2014. World Drug Report. Available: http://www.unodc.org/documents/wdr2014/World_Drug_Report_2014_web.pdf.
van Nuijs, A.L.N., Tarcomnicu, I., Bervoets, L., Blust, R., Jorens, P.G., Neels, H., Covaci, A., 2009. Analysis of drugs of abuse in wastewater by hydrophilic interaction liquid chromatography–tandem mass spectrometry. Analytical and Bioanalytical Chemistry 395 (3), 819–828.
Wang, X.-H., Lin, A.Y.-C., 2012. Phototransformation of cephalosporin antibiotics in an aqueous environment results in higher toxicity. Environmental Science and Technology 46 (22), 12417–12426.
WHO(World Health Organization), 2015. WHO Model Lists of Essential Medicines. Available:
http://www.who.int/selection_medicines/committees/expert/20/EML_2015_FINAL_amended_JUN2015.pdf.
Wick, A., Fink, G., Joss, A., Siegrist, H., Ternes, T.A., 2009. Fate of beta blockers and psycho-active drugs in conventional wastewater treatment. Water Research 43 (4), 1060–1074.
Wu, X., Zhang, W., Bai, Y., Guo, T., Gu, J., 2013. Simultaneous analysis of codeine and its active metabolites in human plasma using liquid chromatography–tandem mass spectrometry: application to a pharmacokinetic study after oral administration of codeine. Journal of Pharmaceutical and Biomedical Analysis 78–79, 261– 268.
Yang, H., An, T., Li, G., Song, W., Cooper, W.J., Luo, H., Guo, X., 2010. Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2: a case of β-blockers. Journal of Hazardous Materials 179 (1–3), 834–839.
Yargeau, V., Taylor, B., Li, H., Rodayan, A., Metcalfe, C.D., 2014. Analysis of drugs of abuse in wastewater from two Canadian cities. Science of the Total Environment 487, 722–730.
Zhu, X.-D., Wang, Y.-J., Sun, R.-J., Zhou, D.-M., 2013. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2. Chemosphere 92 (8), 925–932.
Zuccato, E., Castiglioni, S., Bagnati, R., Chiabrando, C., Grassi, P., Fanelli, R., 2008. Illicit drugs, a novel group of environmental contaminants. Water Research 42 (4–5), 961–968.
Zuccato, E., Castiglioni, S., 2009. Illicit drugs in the environment. Philosophical Transactions of the Royal Society A 367 (1904), 3965–3978.
衛生福利部食品藥物管理署,藥物濫用案件暨檢驗統計資料103年報分析,2015。
衛生福利部食品藥物管理署,藥物濫用案件暨檢驗統計資料104年7月,2015。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51701-
dc.description.abstract管制藥物甲基安非他命(methamphetamine)與可待因(codeine)合法地使用在醫療用途與非法地經常濫用在其他用途上,在許多地區的廢污水處理廠進、出流水與環境水體中皆可偵測到此兩種藥物分布於其中,因此其對於環境的潛在衝擊逐漸備受重視。甲基安非他命與可待因無法藉由傳統的民生污水處理程序有效去除,故考慮高級處理研究利用紫外光照射二氧化鈦的光催化技術降解甲基安非他命與可待因,探討利用低瓦數的紫外光(9 W且最大波長在365 nm)照射二氧化鈦降解兩種管制藥物的反應動力學和機制,研究在不同操作參數(二氧化鈦添加量、管制藥物初始濃度與pH值)的處理效率和影響,處理過程中利用高效能液相層析串聯式質譜儀(HPLC-MS/MS)監測和分析兩種管制藥物與其中間產物,並利用總有機碳分析儀(TOC)與離子層析儀(IC)測定其礦化程度。
在溶液pH值為7、添加0.1 g/L的二氧化鈦情況下進行光催化反應,分別為100 μg/L的甲基安非他命與可待因皆可在3分鐘內達完全去除,兩管制藥物的降解反應動力學呈一階反應。在溶液pH值為5、添加0.1 g/L的二氧化鈦情況下進行光催化反應,10 mg/L的甲基安非他命經180分鐘反應後近乎完全礦化,其有機氮成分轉化為NH4+ (76%)和NO3- (21%);10 mg/L的可待因經90分鐘反應後亦近乎完全礦化,其有機氮成分轉化為NH4+ (74%)和NO3- (22%)。
甲基安非他命的中間產物包括經標準品確認過的對位氫氧基甲基安非他命(p-OHMAT),與其他八種經實驗性鑑定的物質;可待因的中間產物包括經標準品確認過的嗎啡,與其他五種經實驗性鑑定的物質。藉由中間產物的鑑定分析,可提出甲基安非他命的兩種主要降解途徑,其一為甲基安非他命的邊鏈裂解,另一為甲基安非他命產生氫氧化反應;而可待因的兩種主要降解途徑則包括同位取代反應導致其芳香環裂解,以及可待因發生重複的氫氧化反應導致含氫氧基的中間產物生成。此兩種管制藥物的主要降解途徑皆來自於光催化照射二氧化鈦產生氫氧自由基的非選擇性攻擊,導致有機物持續的斷鍵裂解,最終達到完全礦化。紫外光照射二氧化鈦的光催化程序為防止此兩種管制藥物與處理不完全的中間產物流入環境水體的可應用處理技術。
zh_TW
dc.description.abstractMethamphetamine (MAT) and codeine which belong controlled drugs are legally used in prescription and often illegally abused for other purpose. They are found in domestic wastewater treatment plants (WWTPs) influents and effluents as well as surface waters in many regions, elevating concerns about their potential impact. These two drugs are not effectively removed by conventional processes of WWTPs. To contemplate advanced treatment, this study investigates the photocatalytic degradation of MAT and codeine by UV-illuminated TiO2. The degradation kinetics and mechanism of these two different drugs by TiO2 under low-wattage UV illumination (9 W with maximum output at 365 nm) were studied. Experimental parameters were varied including the TiO2 loading, initial substance concentration, and pH. During treatment, these two controlled drugs and their intermediates were identified and tracked by HPLC-MS/MS, along with TOC and IC measurements to determine the mineralization extent.
In contact with 0.1 g/L of TiO2 under illumination at pH 7, an entire spike amount of 100 μg/L of MAT was completely removed in 3 min and the same initial concentration of codeine was also eliminated in 3 min. The degradation of MAT and codeine followed an apparent first-order kinetics. Near complete mineralization of MAT and codeine from 10 mg/L were achieved in 180 min and in 90 min, respectively, with 0.1 g/L of TiO2 at pH 5, by which the organic nitrogen was converted to NH4+ and NO3-. 76% and 21% of organic nitrogen in MAT was converted to NH4+ and NO3-, respectively. 74% of codeine nitrogen constituent was converted to NH4+ and 22% to NO3-.
MAT intermediates include authenticated p-hydroxymethamphetamine (p-OHMAT) and eight tentatively identified compounds. Codeine intermediates include authenticated morphine and five tentatively identified compounds. Based on identified intermediates, two degradation pathways of MAT were deduced that involved cleavage of the side chain as well as hydroxylation of the MAT compound. Also, two degradation pathways of codeine were proposed including one involving ipso-substitution followed by cleavage of the aromatic ring and another involving repeated hydroxylation of the codeine molecule followed by fragmentation of the hydroxylated intermediates. These all degradation pathways occurred via non-selective attacks by hydroxyl radicals generated by irradiated TiO2 that led to continual fragmentation and eventual mineralization. The photocatalytic UV/TiO2 process shows promise in arresting the release of these two controlled drugs and their intermediate derivatives into the water environment.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:45:18Z (GMT). No. of bitstreams: 1
ntu-104-D00541006-1.pdf: 2406963 bytes, checksum: f8e6b4c793f65f18231bd98028cfcf2a (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的 3
1.3 研究內容與項目 3
第二章 文獻回顧 6
2.1 新興污染物 6
2.2 管制藥物 7
2.2.1 甲基安非他命(methamphetamine) 9
2.2.2 可待因(codeine) 10
2.3 目標管制藥物於廢污水廠之處理效率與環境流布 12
2.4 目標管制藥物之環境衝擊 16
2.5 目標管制藥物處理 17
2.6 光催化處理技術 18
2.6.1 光催化反應動力模式 19
2.6.2 影響光催化反應之重要操作參數 19
2.7 光催化降解新興污染物之中間產物與礦化研究 21
第三章 實驗方法與材料 23
3.1 實驗內容與項目 23
3.1.1 實驗內容與架構 23
3.1.2 實驗項目 25
3.2 實驗材料與設備 25
3.2.1 實驗藥品 25
3.2.2 實驗器材 26
3.3 分析儀器 27
3.3.1 高效能液相層析串聯式質譜儀(HPLC-MS/MS) 27
3.3.2 總有機碳分析儀(TOC) 27
3.3.3 離子層析儀(IC) 28
3.4 實驗步驟與方法 29
3.4.1 背景實驗 29
3.4.2 光催化實驗 29
3.4.3 目標管制藥物分析 32
3.4.4 中間產物偵測與鑑定 33
第四章 結果與討論 35
4.1 背景實驗 35
4.1.1 直接光解 35
4.1.2 吸附 37
4.2 光催化反應實驗 39
4.2.1 光催化劑添加劑量之影響 39
4.2.2 污染物初始濃度之影響 41
4.2.3 溶液pH值之影響 43
4.3 光催化礦化目標管制藥物 46
4.4 中間產物偵測與鑑定 48
4.5 降解反應機制與途徑 56
4.6 不同種類的目標管制藥物經光催化反應之差異 60
第五章 結論與建議 61
5.1 結論 61
5.2 建議 62
參考文獻 64
dc.language.isozh-TW
dc.title光催化降解管制藥物—甲基安非他命與可待因之研究zh_TW
dc.titlePhotocatalytic Degradation of Controlled Drugs: Methamphetamine and Codeineen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree博士
dc.contributor.oralexamcommittee駱尚廉,康佩群,劉志成,吳忠信,陳婉如
dc.subject.keyword光催化作用,非法藥物,中間產物,降解機制,反應動力學,礦化反應,zh_TW
dc.subject.keywordPhotocatalysis,Illicit drugs,Intermediates,Degradation mechanism,Kinetics,Mineralization,en
dc.relation.page73
dc.rights.note有償授權
dc.date.accepted2015-12-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
2.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved