Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51696
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃美嬌(Mei-Jiau Huang)
dc.contributor.authorChan-Hao Liuen
dc.contributor.author劉展豪zh_TW
dc.date.accessioned2021-06-15T13:45:04Z-
dc.date.available2021-02-15
dc.date.copyright2016-02-15
dc.date.issued2015
dc.date.submitted2015-12-01
dc.identifier.citation1 Y. Lan , A. J. Minnich, G. Chen, and Z. Ren (2010), “Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach,” Advanced Functional Materials, Volume 20, Issue 3, pp. 357-376.
2 L. D. Hicks and M. S. Dresselhaus (1992), “Effect of quantum-well structures on the thermoelectric figure of merit,” Physical Review B, Volume 47, Number 19, pp. 12727-12731.
3 L. D. Hicks and M. S. Dresselhaus (1993), “Thermoelectric figure of merit of a one-dimensional conductor,” Physical Review B, Volume 47, Number 24, pp. 16631-16634.
4 P. L. Kapitza (1941), “The Study of Heat Transfer in Helium II,” Collected Papers of P. L .Kapitza, Volume 2, pp. 581-624.
5 I. M. Khalatnikov (1952), “Introduction to the Theory of Superfluidity,” Z. E. T. Fiz. 22, Benjamin, Chapter.23, pp. 138-146.
6 E. T. Swartz and R. O. Pohl (1989), “Thermal Boundary Resistance,” Reviews of Modern Physics.Volume 61, Number 3, pp. 605-668.
7 R. J. Stevens, P. M. Norris, and L. V. Zhigilei (2004), “Molecular-Dynamics study of Thermal Boundary Resistance: Evidence of Strong Inelastic Scattering Transport Channels,” International Mechanical Engineering Congress and Exposition, pp. 37-46.
8 G. Chen, S. Q. Zhou, D. Y. Yao, C. J. Kim, X. Y. Zheng, Z. L. Liu, and K. L. Wang(1998), “Heat Coduction in Alloy-Based Superlattices,” 17th International Conference on Themoelectircs, pp. 202-205.
9 S. T. Huxtable, A. R. Abramson, C. L. Tien, A. Majumdar, C. LaBounty, X. Fan, G. Zeng, J. E. Bowers, A. Shakouri, and E. T. Croke(2002), “Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices,” Applied Physics Letters80, pp. 1737-1739.
10 D. Li, Y. Wu, R. Fan, P. Yang, and A. Majumdar(2003) “Thermal conductivity of Si/SiGe superlattices nanowires ,” Applied Physics Leters, volume 83, Number 15, pp. 3186-3188.
11 M. P. Allen and D. J. Tildesley (1987), “Computer simulation of liquids”, Oxford, pp. 240-253.
12 P. K. Schelling, S. R. Phillpo, and P. Keblinski (2002), “Comparison of atomic-level simulation methods for computing thermal conductivity”, Physical Review B, Volume 65, pp. 144306-1~144306-12.
13 T. S. English, J. C. Duda, D. A. Jordan, P. M. Norris and L. V. Zhigilei (2010). “The effect of interstitial layers one thermal boundary conductance between Lennard-Jones crystals.', 14th International Heat Transfer Conference, pp. 443-448.
14 A. Skye and P. K. Schelling (2008),”Thermal resistivity of Si–Ge alloys by molecular-dynamics simulation, ” Journal of Applied Physics 103, pp. 113524-1~113524-6.
15 N. Khosravian, M. K. Samani, G. C. Loh, G. C. K. Chen, D. Baillargeat, and B. K. Tay (2013). “Molecular dynamic simulation of diamond/silicon interfacial thermal conductance.', Journal of Applied Physics , Volume 113, pp. 024907-1~02479-4.
16 E. S. Landry and A. J. McGaughey (2009), “Effect of interfacial species mixing on phonon transport in semiconductor superlattices,” Physical Review B, Volume 79, pp. 075316-1~07316-8.
17 V. Samvedi and V. Tomar (2009), “Role of heat flow direction, monolayer film thickness, and periodicity in controlling thermal conductivity of Si-Ge superlattice system,” Journal of Applied Physics, Volume 105, pp. 013541-1~013541-9.
18 G. Balasubramanian and I. K. Puri (2011). “Heat conduction across a solid-solid interface: Understanding nanoscale interfacial effects on thermal resistance.', Applied Physics Letters, Volume 99, pp. 013116-1~0.1116-3.
19 M. J. Huang and T. M. Chang (2012), “Thermal transport within quantum-dot nanostructured semiconductors,” International Journal of Heat and Mass Transfer, Volume 55,pp. 2800-2806.
20 P. K. Schelling, S. R. Philpot, and P. Keblinski (2002), “Phonon Wave-Packet Dynamics at Semiconductor Interfaces by Molecular-Dynamics Simulation” Applied Physics Letters, Volume 80, Number 14, pp. 2484-2486.
21 N. A. Roberts and D. G. Walker (2010), “Phonon Wave-Packet Simulations of Ar/Kr Interfaces,” 12th IEEE Intersociety Conference, pp. 1-5.
22 S. Ju and X. Liang (2012), “Thermal rectification and phonon scattering in silicon nanofilm with cone cavity,” Journal of Applied Physics, Volume 112, pp. 054312-1~054312-5.
23 J. V. Goicochea, B. Michel, and C. Amon (2010), “Molecular dynamics simulations of oblique phonon scattering at semiconductor interfaces,” 3rd International Conference, pp. 111-116.
24 L. Sun and J. Y. Murthy (2008), “Molecular Dynamics Simulation of Phonon Scattering at Rough Semiconductor Interfaces,” 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. pp. 1078-1086.
25 L. Sun and J. Y. Murthy (2010), “Molecular Dynamics Simulation of Phonon Scattering at Silicon/Germanium Interfaces,” Journal of Heat Transfer, Volume 132, pp. 102403-1~102403-8.
26 A. T. Ang (2011), “An investigation of the Si-Ge thermal boundary resistance in use of MD and wave packet methods,” National Taiwan University. Master Thesis.
27 S. H. Ju and X. G. Liang (2013), “Investigation on interfacial thermal resistance and phonon scattering at twist boundary of silicon,” Journal of Applied Physics. Volume 113, pp. 053513-1~053513-7.
28 F. H. Stillinger and T. A. Weber (1985), “Computer simulation of local order in condensed phases of silicon”, Physical Review B, Volume 31, pp. 5262-5271.
29 R. J. Stevens, L. V. Zhigilei, and P. M. Norris (2007), “Effect of temperature and disorder on thermal boundary conductance at solid-solid interface: Nonequilibrium molecular dynamics simulations”, International Journal of Heat and Mass Transfer, Volume 50, pp. 3977-3989.
30 W. M. Yim and R. J. Paff (1974), “Thermal expansion of AlN, sapphire, and silicon.” Journal of Applied Physics, Volume 45, pp. 1456-1457.
31 C. C. Weng (2009), “An Investigation of the Heat-Transfer Related Properties of Semiconductors at Nanoscale via Molecular Dynamics Simulations,” National Taiwan University, Master Thesis.
32 S. Plimpton (1995), “Fast Parallel Algorithms for Short-Range Molecular Dynamics”, Journal of Computational Physics Volume 117, pp.1-19.
33 P. Jund and R. Jullien (1999), “Molecular-dynamics calculation of the thermal conductivity of vitreous silica”, Physical Review B Volume 59, pp.13707-13711.
34 P. K. Schelling, S. R. Phillpo, and P. Keblinski (2002), “Comparison of atomic-level simulation methods for computing thermal conductivity”, Physical Review B, Volume 65, 144306-1~144306-12.
35 S. G. Volz, J. B. Saulnier, G. Chen, and P. Beauchamp (2000). 'Computation of thermal conductivity of Si/Ge superlattices by molecular dynamics techniques.', Microelectronics Journal, Volume 31, pp. 815-819.
36 T. M. Chang (2010), “An Investigation of the Lattice Thermal Transport Phenomenon in Low-Dimensional Si/Ge via the Molecular Dynamics Simulation,” National Taiwan University, Dissertation.
37 R. J. Stevens, P. M. Norris, and L. V. Zhigilei (2004), “Molecular-Dynamics study of Thermal Boundary Resistance: Evidence of Strong Inelastic Scattering Transport Channels,” International Mechanical Engineering Congress and Exposition, IMECE2004-60334, pp.1-10.
38 P. K. Schelling, S. R. Philpot, and P. Keblinski (2002), “Phonon Wave-Packet Dynamics at Semiconductor Interfaces by Molecular-Dynamics Simulation” Applied Physics Letters, Volume 80, Number 14, pp.2484-2485.
39 L. J. Porter, J. F. Justo, and S. Yip (1997), “The importance of Gruneisen parameters in developing interatomic potentials”, Journal of Applied Physics, Volume 82, Issue 11, pp.5378-5381.
40 Z. Jian, Z. Kaiming , and X. Xide (1990) , “Modification of Stillinger-Weber potentials for Si and Ge”, Physical Review B, Volume 41, Number 18, pp.12915-12918
41 B. A. Auld (1990) , “Acoustic fields and waves in solids”, Standford University, pp.21-38.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51696-
dc.description.abstract近年來因高介面密度材料的低熱傳導係數能改善熱電元件的效率,所以受到廣泛的研究,然而介面如何影響聲子傳輸之詳細機制迄今未明。因此本研究乃企圖利用分子動力學模擬工具來研究矽/鍺合金介面的熱傳性質。
在此研究中,矽及鍺原子間作用力是採用兼具二體及三體勢能的Stillnger-Weber勢能函數,介面參數的設定包括介面厚度及介面內鍺原子佔有的比例。研究發現,介面厚度為10UC時,介面熱阻隨鍺原子比例先增後減,於鍺原子比例為0.5時達到最大;當介面厚度為2UC時,熱阻變化卻呈現W字型,在鍺原子比例為0.5的兩側出現兩個比完美介面熱阻值還低的局部最小值。
本研究進一步設計縱波與橫波穿透率實驗來了解相關機制。研究結果顯示,縱波不論經過厚或薄介面,除了最長的縱波波包(k=0.1(2 /a))外,隨著鍺原子比例增加,穿透率皆呈V字型分布,在鍺原子比例為0.5時為最低;此與前述觀察到之介面厚度10UC時之熱阻變化趨勢一致,顯示在此介面厚度下矽鍺原子質量不匹配所造成的散射是造成熱阻的主因。此外,我們也觀察到當聲子經過合金介面時會發生極化之轉變與非彈性散射,使得較多橫波聲子得以穿透介面,因此合金介面熱阻值才有機會比完美介面還要低。而當鍺原子佔有比例增加時,前述效果卻不敵質量不匹配散射所帶來的影響,故而在2UC介面的熱阻計算中才出現了介面熱阻呈現W字型的結果。
zh_TW
dc.description.abstractIn recent years, studies show materials embedded with high-density interfaces are potential candidates for thermoelectric devices due to their low thermal conductivities and acceptable power factors. Yet, the detailed mechanism of the phonon transmission through the interface is still unclear. This study aims at exploring the transport phenomena of phonons through the Si/Ge alloy interfaces in use of the molecular dynamics simulation. Also targeted are the involved thermal boundary resistance (TBR) and the effects of the interface thickness and composition on TBR.
In this study, the Stillinger-Weber (SW) potential was used to describe the interaction among Si and Ge atoms. Two interface thicknesses, 10UC and 2UC, were attempted. The simulation results show that as the Ge atomic concentration ( ) increases, the TBR associated with the 10UC-interface increases first, peaks at =0.5, and decreases thereafter. On the other hand, the variation trend of the TBR associated with the 2UC-interface appears to be W-shaped; two local minimums, even below the TBR of the perfectly smooth interface, are observed at =0.1 and 0.9.
For illumination, wave-packet numerical experiments were designed and performed. The investigation indicates that except the very long longitudinal wave, the variation trend of the transmissivity of the longitudinal waves against the Ge concentration is V-shaped, minimized at =0.5, consistent with the variation trend of the TRB associated with the 10UC-interface and implying the dominance of the mass difference scattering in determining the TBR. Furthermore, the polarization change and inelastic scattering were both observed as waves passed through the alloy interfaces, thereby allowing more phonons to transmit. When the mass difference scattering is weak (i.e. thin alloy interface and low mass difference), the above two mechanisms possibly lead to a TBR smaller than the TBR associated with the perfectly smooth interface. This explains the observed W-shaped variation trend of the TBR associated with the 2UC-interface against the Ge concentration.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:45:04Z (GMT). No. of bitstreams: 1
ntu-104-R02522117-1.pdf: 7370590 bytes, checksum: 457e68398c7c5ac09bd7c1b283dd3826 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員審定書 I
誌謝 II
中文摘要 III
ABSTRACT IV
目錄 VI
表目錄 VIII
圖目錄 IX
符號說明 XI
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 5
1-3 論文架構 6
第二章 分子動力學理論與數值方法 7
2-1 物理模型與數值技巧 7
2-1-1 勢能函數 7
2-1-2 初始條件 9
2-1-3 溫度控制 10
2-1-4 邊界條件 10
2-2 數值方法 11
2-2-1 時間積分法 11
2-2-2 原子間作用力計算 12
2-2-3 程式平行化 13
2-3 非平衡分子動力學 14
2-3-1 加/移熱方法 14
2-3-2 熱傳導係數求法 16
第三章 矽鍺合金介面熱阻研究 17
3-1 模擬模型 17
3-1-1 系統設置 17
3-1-2 穩態的判斷 18
3-1-3 熱阻的計算 19
3-2 結果與討論 20
第四章 矽鍺介面穿透率研究 21
4-1 理論模型介紹 21
4-1-1 聲頻不匹配模型(Acoustic Mismatch Model) 21
4-1-2 漫射不匹配模型(Diffuse Mismatch Model) 24
4-2 波包實驗方法 25
4-3 模擬模型 26
4-3-1 系統設置 26
4-3-2 平衡位置準備 27
4-4 穿透率計算 28
4-5 結果與討論 29
4-5-1 完美介面之縱波穿透率 29
4-5-2 合金介面之縱波穿透率 30
4-5-3 完美介面之橫波穿透率 31
4-5-4 合金介面之橫波穿透率 33
4-6 熱導比較 34
第五章 結論與未來展望 35
5-1 結論 35
5-2 未來展望 35
參考文獻 37
圖表 41
dc.language.isozh-TW
dc.title以分子動力學模擬研究矽鍺材料之介面熱阻及介面穿透率zh_TW
dc.titleAn investigation of the thermal boundary resistance of the Si-Ge alloy interfaces in use of molecular dynamics simulationsen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee高國傑(Guo-Jie Gao),陳軍華(Chun-hua Chen),張怡玲(I-Ling Chang)
dc.subject.keyword分子動力學模擬,矽鍺合金介面,介面熱阻,穿透率,zh_TW
dc.subject.keywordMolecular dynamics,Alloy interface,Thermal boundary resistance,Transmissivity,en
dc.relation.page81
dc.rights.note有償授權
dc.date.accepted2015-12-02
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
7.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved