請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51677完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳昭岑 | |
| dc.contributor.author | Chien-Han Chen | en |
| dc.contributor.author | 陳建漢 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:44:09Z | - |
| dc.date.available | 2025-12-14 | |
| dc.date.copyright | 2016-02-02 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-12-14 | |
| dc.identifier.citation | (1) McEwen, B. S.; Coirini, H.; Westlind-Danielsson, A.; Frankfurt, M.; Gould, E.; Schumacher, M.; Woolley, C. J. Steroid Biochem. Mol. Biol. 1991, 39, 223.
(2)Robel, P.; Baulieu, E.-E. Trends Endocrinol. Metab. 1994, 5, 1. (3) Gwynne, J. T.; Strauss, J. F. Endocr. Rev. 1982, 3, 299. (4) Borkowski, A. J.; Levin, S.; Delcroix, C.; Mahler, A.; Verhas, V. J. Clin. In-vest. 1967, 46, 797. (5) John, M. E.; John, M. C.; Ashley, P.; MacDonald, R. J.; Simpson, E. R.; Wa-terman, M. R. Proc. Natl. Acad. Sci. 1984, 81, 5628. (6) Guarneri, P.; Guarneri, R.; Cascio, C.; Pavasant, P.; Piccoli, F.; Papado-poulos, V. J. Neurochem. 1994, 63, 86. (7) PINCUS, G.; HOAGLAND, H. Psychosom. Med. 1945, 7, 342. (8) Tsutsui, K.; Ukena, K.; Usui, M.; Sakamoto, H.; Takase, M. Neurosci. Res. 2000, 36, 261. (9) Mellon, S. H. Pharmacol. Ther. 2007, 116, 107. (10)Fontaine-Lenoir, V.; Chambraud, B.; Fellous, A.; David, S.; Duchossoy, Y.; Baulieu, E.-E.; Robel, P. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 4711. (11)Hsu, H.-J.; Liang, M.-R.; Chen, C.-T.; Chung, B.-c. Nature 2006, 439, 480. (12)Strahle, U.; Jesuthasan, S. Development 1993, 119, 909. (13)Solnica-Krezel, L.; Driever, W. Development 1994, 120, 2443. (14)Sullivan, K. F. Annu. Rev. Cell Biol. 1988, 4, 687. (15)Dumontet, C.; Jordan, M. A. Nat. Rev. Drug Discov. 2010, 9, 790. (16)Maccioni, R. B.; Cambiazo, V. Role of microtubule-associated proteins in the control of microtubule assembly, 1995; Vol. 75. (17)Roberson, E. D.; Mucke, L. Science 2006, 314, 781. (18)Das, J. Chem. Rev. 2011, 111, 4405. (19)Confalone, P. N.; Kulesha, I. D.; Uskokovic, M. R. J. Org. Chem. 1981, 46, 1030. (20)De Luca, L.; Giacomelli, G.; Masala, S.; Porcheddu, A. J. Org. Chem. 2003, 68, 4999. (21)Salisbury, C. M.; Cravatt, B. F. Proc. Natl. Acad. Sci. 2007, 104, 1171. (22)Enholm, E.; Low, T. J. Org. Chem. 2006, 71, 2272. (23)Kale, R. R.; Clancy, C. M.; Vermillion, R. M.; Johnson, E. A.; Iyer, S. S. Bioorg. Med. Chem. Lett. 2007, 17, 2459. (24)Galjart, N. Nat. Rev. Mol. Cell Biol. 2005, 6, 487. (25)Nakano, A.; Kato, H.; Watanabe, T.; Min, K.-D.; Yamazaki, S.; Asano, Y.; Seguchi, O.; Higo, S.; Shintani, Y.; Asanuma, H.; Asakura, M.; Minamino, T.; Kaibu-chi, K.; Mochizuki, N.; Kitakaze, M.; Takashima, S. Nat. Cell Biol. 2010, 12, 583. (26)Kholmanskikh, S. S.; Koeller, H. B.; Wynshaw-Boris, A.; Gomez, T.; Letourneau, P. C.; Ross, M. E. Nat. Neurosci. 2006, 9, 50. (27)Sun, X.; Li, D.; Yang, Y.; Ren, Y.; Li, J.; Wang, Z.; Dong, B.; Liu, M.; Zhou, J. J. Pathol. 2012, 226, 666. (28)Sen, D.; Gilbert, W. Nature 1988, 334, 364. (29)Lipps, H. J.; Rhodes, D. Trends Cell Biol. 2009, 19, 414. (30)Maizels, N.; Gray, L. T. PLoS Genet. 2013, 9, e1003468. (31)Cahoon, L. A.; Seifert, H. S. Science 2009, 325, 764. (32)Hai, Y.; Cao, W.; Liu, G.; Hong, S.-P.; Elela, S. A.; Klinck, R.; Chu, J.; Xie, J. Nucleic Acids Res. 2008, 36, 3320. (33)Drygin, D.; Siddiqui-Jain, A.; O'Brien, S.; Schwaebe, M.; Lin, A.; Bliesath, J.; Ho, C. B.; Proffitt, C.; Trent, K.; Whitten, J. P.; Lim, J. K. C.; Von Hoff, D.; Anderes, K.; Rice, W. G. Cancer Res. 2009, 69, 7653. (34)Balasubramanian, S.; Hurley, L. H.; Neidle, S. Nat. Rev. Drug Discov. 2011, 10, 261. (35)Han, H.; Langley, D. R.; Rangan, A.; Hurley, L. H. J. Am. Chem. Soc. 2001, 123, 8902. (36)Wang, P.; Ren, L.; He, H.; Liang, F.; Zhou, X.; Tan, Z. ChemBioChem 2006, 7, 1155. (37)Rodriguez, R.; Müller, S.; Yeoman, J. A.; Trentesaux, C.; Riou, J.-F.; Bal-asubramanian, S. J. Am. Chem. Soc. 2008, 130, 15758. (38)Collie, G. W.; Promontorio, R.; Hampel, S. M.; Micco, M.; Neidle, S.; Par-kinson, G. N. J. Am. Chem. Soc. 2012, 134, 2723. (39)Nikan, M.; Di Antonio, M.; Abecassis, K.; McLuckie, K.; Balasubramanian, S. Angew. Chem. Int. Ed. 2013, 52, 1428. (40)Micco, M.; Collie, G. W.; Dale, A. G.; Ohnmacht, S. A.; Pazitna, I.; Gunaratnam, M.; Reszka, A. P.; Neidle, S. J. Med. Chem. 2013, 56, 2959. (41)Xu, Y. Chem. Soc. Rev. 2011, 40, 2719. (42)Ohnmacht, S. A.; Neidle, S. Bioorg. Med. Chem. Lett. 2014, 24, 2602. (43)Bertrand, H.; Bombard, S.; Monchaud, D.; Teulade-Fichou, M.-P. J. Biol. Inorg. Chem. 2007, 12, 1003. (44)Bertrand, H.; Bombard, S.; Monchaud, D.; Talbot, E.; Guedin, A.; Mergny, J.-L.; Grunert, R.; Bednarski, P. J.; Teulade-Fichou, M.-P. Org. Biomol. Chem. 2009, 7, 2864. (45)Di Antonio, M.; Doria, F.; Richter, S. N.; Bertipaglia, C.; Mella, M.; Sissi, C.; Palumbo, M.; Freccero, M. J. Am. Chem. Soc. 2009, 131, 13132. (46)Nadai, M.; Doria, F.; Di Antonio, M.; Sattin, G.; Germani, L.; Percivalle, C.; Palumbo, M.; Richter, S. N.; Freccero, M. Biochimie 2011, 93, 1328. (47)Doria, F.; Nadai, M.; Folini, M.; Di Antonio, M.; Germani, L.; Percivalle, C.; Sissi, C.; Zaffaroni, N.; Alcaro, S.; Artese, A.; Richter, S. N.; Freccero, M. Org. Bio-mol. Chem. 2012, 10, 2798. (48)Doria, F.; Nadai, M.; Folini, M.; Scalabrin, M.; Germani, L.; Sattin, G.; Mel-la, M.; Palumbo, M.; Zaffaroni, N.; Fabris, D.; Freccero, M.; Richter, S. N. Chem. Eur. J. 2013, 19, 78. (49)McLuckey, S. A.; Habibi-Goudarzi, S. J. Am. Chem. Soc. 1993, 115, 12085. (50)Yuan, L.; Tian, T.; Chen, Y.; Yan, S.; Xing, X.; Zhang, Z.; Zhai, Q.; Xu, L.; Wang, S.; Weng, X.; Yuan, B.; Feng, Y.; Zhou, X. Sci. Rep. 2013, 3, 1811. (51)Verga, D.; Hamon, F.; Poyer, F.; Bombard, S.; Teulade-Fichou, M.-P. An-gew. Chem. Int. Ed. 2014, 53, 994. (52)Cadet, J.; Sage, E.; Douki, T. Mutat. Res. 2005, 571, 3. (53)Rickling, S.; Ghisdavu, L.; Pierard, F.; Gerbaux, P.; Surin, M.; Murat, P.; Defrancq, E.; Moucheron, C.; Kirsch-De Mesmaeker, A. Chem. Eur. J. 2010, 16, 3951. (54)Wachter, E.; Howerton, B. S.; Hall, E. C.; Parkin, S.; Glazer, E. C. Chem. Commun. 2014, 50, 311. (55)Nadai, M.; Doria, F.; Germani, L.; Richter, S. N.; Freccero, M. Chem. Eur. J. 2014, 21, 2330. (56)Di Antonio, M.; McLuckie, K. I. E.; Balasubramanian, S. J. Am. Chem. Soc. 2014, 136, 5860. (57)Phesse, T. J.; Myant, K. B.; Cole, A. M.; Ridgway, R. A.; Pearson, H.; Mun-can, V.; van den Brink, G. R.; Vousden, K. H.; Sears, R.; Vassilev, L. T.; Clarke, A. R.; Sansom, O. J. Cell Death Differ. 2014, 21, 956. (58)Chang, C.-C.; Chien, C.-W.; Lin, Y.-H.; Kang, C.-C.; Chang, T.-C. Nucleic Ac-ids Res. 2007, 35, 2846. (59)Chang, C.-C.; Kuo, I. C.; Lin, J.-J.; Lu, Y.-C.; Chen, C.-T.; Back, H.-T.; Lou, P.-J.; Chang, T.-C. Chem. Biodivers. 2004, 1, 1377. (60)Yang, D.-Y.; Sheu, S.-Y. J. Phys. Chem. A 2007, 111, 9224. (61)Kerwin, S. M. Curr. Pharm. Des. 2000, 6, 441. (62)Risitano, A.; Fox, K. R. Bioorg. Med. Chem. Lett. 2005, 15, 2047. (63)Rezler, E. M.; Seenisamy, J.; Bashyam, S.; Kim, M.-Y.; White, E.; Wilson, W. D.; Hurley, L. H. J. Am. Chem. Soc. 2005, 127, 9439. (64)Wang, Y.; Patel, D. J. Structure (London, England : 1993) 1993, 1, 263. (65)Parkinson, G. N.; Lee, M. P. H.; Neidle, S. Nature 2002, 417, 876. (66)Luu, K. N.; Phan, A. T.; Kuryavyi, V.; Lacroix, L.; Patel, D. J. J. Am. Chem. Soc. 2006, 128, 9963. (67)Li, J.; Correia, J. J.; Wang, L.; Trent, J. O.; Chaires, J. B. Nucleic Acids Res. 2005, 33, 4649. (68)Dai, J.; Carver, M.; Punchihewa, C.; Jones, R. A.; Yang, D. Nucleic Acids Res. 2007, 35, 4927. (69)Ambrus, A.; Chen, D.; Dai, J.; Jones, R. A.; Yang, D. Biochemistry 2005, 44, 2048. (70)Ambrus, A.; Chen, D.; Dai, J.; Bialis, T.; Jones, R. A.; Yang, D. Nucleic Acids Res. 2006, 34, 2723. (71)Wang, Z.-F.; Chang, T.-C. Nucleic Acids Res. 2012, 40, 8711. (72)Chang, C.-C.; Wu, J.-Y.; Chien, C.-W.; Wu, W.-S.; Liu, H.; Kang, C.-C.; Yu, L.-J.; Chang, T.-C. Anal. Chem. 2003, 75, 6177. (73)Tsai, Y.-L.; Chang, C.-C.; Kang, C.-C.; Chang, T.-C. J. Lumin. 2007, 127, 41. (74)Kang, C.-C.; Huang, W.-C.; Kouh, C.-W.; Wang, Z.-F.; Cho, C.-C.; Chang, C.-C.; Wang, C.-L.; Chang, T.-C.; Seemann, J.; Huang, L. J.-s. Integrative Biology 2013, 5, 1217. (75)Chung, M.-H.; Kiyosawa, H.; Ohtsuka, E.; Nishimura, S.; Kasai, H. Biochem. Biophys. Res. Commun. 1992, 188, 1. (76)Noll, D. M.; Mason, T. M.; Miller, P. S. Chem. Rev. 2006, 106, 277. (77)Castleberry, C. M.; Rodicio, L. P.; Limbach, P. A. In Curr. Protoc. Nucleic Acid Chem.; John Wiley & Sons, Inc.: 2001. (78)Quinlivan, E. P.; Gregory III, J. F. Anal. Biochem. 2008, 373, 383. (79)Haapala, E.; Hakala, K.; Jokipelto, E.; Vilpo, J.; Hovinen, J. Chem. Res. Tox-icol. 2001, 14, 988. (80)Florea-Wang, D.; Haapala, E.; Mattinen, J.; Hakala, K.; Vilpo, J.; Hovinen, J. Chem. Res. Toxicol. 2003, 16, 403. (81)Burrows, C. J.; Muller, J. G. Chem. Rev. 1998, 98, 1109. (82)Savela, K.; Hesso, A.; Hemminki, K. Chem.-Biol. Interact. 1986, 60, 235. (83)Wang, Z.-F.; Li, M.-H.; Hsu, S.-T. D.; Chang, T.-C. Nucleic Acids Res. 2014, 42, 4723. (84)Mukherjee, S.; Guainazzi, A.; Schärer, O. D. Nucleic Acids Res. 2014, 42, 7429. (85)Rao, L.; Bierbach, U. J. Am. Chem. Soc. 2007, 129, 15764. (86)Dai, J.; Carver, M.; Hurley, L. H.; Yang, D. J. Am. Chem. Soc. 2011, 133, 17673. (87)Collie, G. W.; Parkinson, G. N. Chem. Soc. Rev. 2011, 40, 5867. (88)Biffi, G.; Tannahill, D.; McCafferty, J.; Balasubramanian, S. Nat Chem 2013, 5, 182. (89)Biffi, G.; Di Antonio, M.; Tannahill, D.; Balasubramanian, S. Nat Chem 2014, 6, 75. (90)Yang, D.; Okamoto, K. Future Med. Chem. 2010, 2, 619. (91)Maji, B.; Bhattacharya, S. Chem. Commun. 2014, 50, 6422. (92)Chen, C.-H.; Hu, T.-H.; Huang, T.-C.; Chen, Y.-L.; Chen, Y.-R.; Cheng, C.-C.; Chen, C.-T. Chem. Eur. J. 2015, 21, 17379. (93)Müller, S.; Rodriguez, R. Expert Rev. Clin. Pharmacol. 2014, 7, 663. (94)Phan, A. T. FEBS J. 2010, 277, 1107. (95)Pezzoni, G.; Grandi, M.; Biasoli, G.; Capolongo, L.; Ballinari, D.; Giuliani, F. C.; Barbieri, B.; Pastori, A.; Pesenti, E.; Mongelli, N. Br. J. Cancer 1991, 64, 1047. (96)Wang, Y. D.; Dziegielewski, J.; Wurtz, N. R.; Dziegielewska, B.; Dervan, P. B.; Beerman, T. A. Nucleic Acids Res. 2003, 31, 1208. (97)Sage, E.; Haseltine, W. A. J. Biol. Chem. 1984, 259, 11098. (98)Haque, M. M.; Sun, H.; Liu, S.; Wang, Y.; Peng, X. Angew. Chem. Int. Ed. 2014, 53, 7001. (99)Neidle, S. Curr. Opin. Struct. Biol. 2009, 19, 239. (100)Wendtner, C. M.; Eichhorst, B. F.; Hallek, M. J. Semin. Hematol. 2004, 41, 224. (101)Svilar, D.; Goellner, E. M.; Almeida, K. H.; Sobol, R. W. Antioxid. Redox Signal. 2010, 14, 2491. (102)Hanawalt, P. C. Oncogene 2002, 21, 8949. (103)Fu, D.; Calvo, J. A.; Samson, L. D. Nat. Rev. Cancer 2012, 12, 104. (104)Rajski, S. R.; Williams, R. M. Chem. Rev. 1998, 98, 2723. (105)Wilson, W. R.; Hay, M. P. Nat. Rev. Cancer 2011, 11, 393. (106)Patterson, A. V.; Ferry, D. M.; Edmunds, S. J.; Gu, Y.; Singleton, R. S.; Patel, K.; Pullen, S. M.; Hicks, K. O.; Syddall, S. P.; Atwell, G. J.; Yang, S.; Denny, W. A.; Wilson, W. R. Clin. Cancer. Res. 2007, 13, 3922. (107)Konopleva, M.; Thall, P. F.; Yi, C. A.; Borthakur, G.; Coveler, A.; Bue-so-Ramos, C.; Benito, J.; Konoplev, S.; Gu, Y.; Ravandi, F.; Jabbour, E.; Faderl, S.; Thomas, D.; Cortes, J.; Kadia, T.; Kornblau, S.; Daver, N.; Pemmaraju, N.; Nguyen, H. Q.; Feliu, J.; Lu, H.; Wei, C.; Wilson, W. R.; Melink, T. J.; Gutheil, J. C.; Andreeff, M.; Estey, E. H.; Kantarjian, H. Haematologica 2015, 100, 927. (108)Trachootham, D.; Alexandre, J.; Huang, P. Nat. Rev. Drug Discov. 2009, 8, 579. (109)Kuang, Y.; Balakrishnan, K.; Gandhi, V.; Peng, X. J. Am. Chem. Soc. 2011, 133, 19278. (110)Chen, W.; Han, Y.; Peng, X. Chem. Eur. J. 2014, 20, 7410. (111)Sanderson, B. J. S.; Shield, A. J. Mutat. Res. 1996, 355, 41. (112)Maze, R.; Carney, J. P.; Kelley, M. R.; Glassner, B. J.; Williams, D. A.; Sam-son, L. Proc. Natl. Acad. Sci. 1996, 93, 206. (113)Punt, C. J.; Humblet, Y.; Roca, E.; Dirix, L. Y.; Wainstein, R.; Polli, A.; Cor-radino, I. Br. J. Cancer 1996, 73, 803. (114)Millard, J. T.; Raucher, S.; Hopkins, P. B. J. Am. Chem. Soc. 1990, 112, 2459. (115)Hentschel, S.; Alzeer, J.; Angelov, T.; Schärer, O. D.; Luedtke, N. W. An-gew. Chem. Int. Ed. 2012, 51, 3466. (116)Guainazzi, A.; Campbell, A. J.; Angelov, T.; Simmerling, C.; Schärer, O. D. Chem. Eur. J. 2010, 16, 12100. (117)Angelov, T.; Guainazzi, A.; Schärer, O. D. Org. Lett. 2009, 11, 661. (118)Redko, B.; Albeck, A.; Gellerman, G. New J. Chem. 2012, 36, 2188. (119)Perrotta, R. R.; Winter, A. H.; Falvey, D. E. Org. Lett. 2011, 13, 212. (120)Yu, Z.; Han, M.; Cowan, J. A. Angew. Chem. Int. Ed. 2015, 54, 1901. (121)Hazra, B. G.; Joshi, P. L.; Bahule, B. B.; Argade, N. P.; Pore, V. S.; Chordia, M. D. Tetrahedron 1994, 50, 2523. (122)Kato, H.; Böttcher, C.; Hirsch, A. Eur. J. Org. Chem. 2007, 2659. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51677 | - |
| dc.description.abstract | 本論文的研究工作分為兩個部分:
第一部分的內容是根據親合型探針 (affinity-based probes, AfBP) 的設計概念,透過在孕烯醇酮於 C7 位置利用醚基衍伸出具有光活化基團 benzophenone 與標籤分子 biotin,用以研究在斑馬魚胚胎細胞發育中孕烯醇酮的結合蛋白。我們同時合成了不同連接長度與位向的孕烯醇酮光親合型探針,探討不同連接長度與位向對於其促進微管蛋白聚合活性的影響。由實驗結果得知,P5-NBPN (圖1) 保有與孕烯醇酮類似的生物活性,所以接著利用 P5-NBPN 在斑馬魚胚胎細胞液進行光標定實驗,並成功地共價性標定到孕烯醇酮結合蛋白。經由 LC-MS/MS 鑑定後,得知此孕烯醇酮結合蛋白為 cytoplasmic linker protein 170 (CLIP-170)。由缺失型突變體 (depletion mutant) 的實驗果得知孕烯醇酮與 CLIP-170的結合區間在胺基酸 920-970;競爭實驗也證明了 P5-NBPN 具有良好的標定選擇性與特異性。 第二部分的內容是探討一系列以 BMVC 骨架為辨識端,導入不同連結端長度的氮芥子氣衍伸物 (BMVC-CnM; n = 2, 3, 6) 或增加氮芥子氣攻擊端作用距離 (BMVC-SW),對於不同DNA結構 (鳥嘌呤四股、雙股與單股) 烷化能力的影響 (圖2)。為了研究連接長度或作用距離對於三種鳥嘌呤四股結構 (混和型、逆平行與平行) 反應表現的影響,利用電噴灑離子化質譜 (electrospray ionization mass spectroscopy, ESI-MS)、液相層析-質譜分析 (liquid chromatography-mass spectrometry, LC-MS) 與化學/酵素足跡法 (footprinting) 進行共價產物的分析,以準確的決定作用產物的分布與共價位置的結合環境。由結果得知,連結端長度調控選擇性、特異性與反應性;而對細胞較具有傷害的鏈內交聯 (intrastrand cross-link) 的能力則是由反應端之間的作用距離決定。透過研究反應能力與分子結構的關係,希望能提供設計有效率的 DNA 交聯劑的準則,進而應用在選擇性癌細胞毒殺藥物。 | zh_TW |
| dc.description.abstract | The work presented here consists of two parts:
Section I describes that pregnenolone (P5) was equipped with benzophenone photoreactive group and biotin tag at C7 position in ether linkage to explore P5-binding proteins in the stage of embryonic development of the zebrafish. Various spacer lengths and orientations of P5-photoaffinity probes had been employed to investigate the influences on the activity of in vitro tubulin polymerization. With the preservation of the biological functions as P5, P5-NBPN was used to label P5-binding proteins from zebrafish embryo lysates and the P5 binding protein (Figure 1), cytoplasmic linker protein 170 (CLIP-170), had ultimately been found by LC-MS/MS identification. The photolabeling experiments of CLIP-170 and/or its various depletion mutants showed that the binding region of P5 on CLIP-170 located in the region between aa 920-970 with remarkable labeling selectivity and specificity. Section II describes that a series of G-quadruplex (G-4)-directing alkylating agents, BMVC-CnM (n = 2, 3, and 6) and BMVC-SW, integrating BMVC with aniline mustard in spacers of various lengths or with longer bridge length to react with different G-4 structures (hybrid-2 type, antiparallel and parallel) (Figure 2). The intact alkylated adducts were elaborately characterized by electrospray ionization mass spectroscopy (ESI-MS), LC-MS, and chemical/enzymatic footprinting to determine precise alkylation sites and plausible binding profiles. These results indicated that alkylation selectivity, specificity, and reactivity are modulated by adjusting linker lengths, whereas intrastrand cross-link efficiency which showed higher cytotoxicity is determined by the distance between two reactive warheads. Our preliminary findings regarding the different distance effects on G-4-specific alkylation provide a structural foundation for the development of G-4-selective bifunctional alkylating agents. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:44:09Z (GMT). No. of bitstreams: 1 ntu-104-F97223132-1.pdf: 14195019 bytes, checksum: 12d61a6f1d3ca19cabbc0ac4ab111562 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | TABLE OF CONTENTS
ABSTRACT i TABLE OF CONTENTS v LIST OF FIGURES ix LIST OF TABLES xxiii CHAPTER 1 Development of Pregnenolone (P5)-Conjugated Pho-toaffinity Probes for Identification of P5-Binding Proteins 1 1-1 Introduction 1 1-1-1 Steroid hormones and steroidogenic pathway 1 1-1-2 Functions of P5 and its derivatives 3 1-1-2-1 Roles in neurodevelopment 4 1-1-2-2 Roles in zebrafish embryogenesis 6 1-1-2-3 Roles in microtubule polymerization 11 1-1-2-4 Unclear mechanism underlying P5 action 16 1-1-3 Application of affinity-based protein profiling (AfBP) on the study of ster-oid-binding protein 17 1-1-3-1 Characteristics and mechanisms of photoaffinity probe 17 1-1-3-2 Steroid-photoaffinity probes 20 1-1-3-3 Molecular designs of P5-photoaffinity probes 22 1-2 Synthetic strategies and processes 25 1-3 Results and disscusion 34 1-3-1 Synthetic P5-photoaffinity probes functions as P5 34 1-3-2 Identification of Clip1 as the P5-binding candidate 36 1-3-3 Characterization of photoaffinity labeling efficiency 37 1-3-4 Exploration of P5-binding region in CLIP-170 39 1-4 Conclusion 40 CHAPTER 2 Delineation of G-Quadruplex Alkylation Sites Medi-ated by 3,6-Bis(1-methyl-4-vinylpyridinium io-dide)carbazole-Aniline Mustard Conjugates 41 2-1 Introduction 41 2-1-1 Platinum complexes 42 2-1-2 Naphthalene diimides and oxirane 43 2-1-3 Photo-induced cross-linking agents 45 2-1-4 Bifunctional G-4 alkylating agents 47 2-1-5 Molecular designs of BMVC-C3M 48 2-2 Results and disscusion 50 2-2-1 Probing structural changes and stability of G-4s in the pesence of BMVC-C3M based on circular dichroism and melting points measurements 51 2-2-2 Photophysical behavior and the intracellular localization 54 2-2-3 Alkylating reactivity, selectivity and specificity toward different types of DNA 57 2-2-4 ESI-MS analysis of alkylated adducts 62 2-2-5 Identification of nucleotides involved in the alkylation by LC-MS 68 2-2-6 Identification of Nucleotides Involved in the Alkylation by LC-MS 74 2-2-7 Delineation of the specific alkylation sites in combination with footprinting and LC-MS data 79 2-3 Conclusion 87 CHAPTER 3 Linker Effects on G-Quadruplex Alkyation Profiles Mediated by 3,6-Bis(1-methyl-4-vinylpyridinium io-dide)carbazole-Aniline Mustard Conjugates 88 3-1 Introduction 88 3-2 Results and disscusion 93 3-3 Conclusion 113 CHAPTER 4. Exploration of a New Tunable Alkylation Warhead- N1,N3-Bis(2-chloroethyl)-N1,N3-dimethylbenzene-1,3-diamine for Efficient Intrastranded Crosslinks toward G-Quadruplex DNA 114 4-1 Introduction 114 4-1-1 Hypoxia-activated prodrugs 115 4-1-2 H2O2-activated prodrugs 117 4-1-3 DNA-affinic-molecules conjugated nitrogen mustard 120 4-1-4 Effects of bridge lengths on ICL efficiency 123 4-2 Molecular designs of N1,N3-bis(2-chloroethyl) -N1,N3-dimethyl benzene-1,3-diamine-BMVC conjugate 127 4-2-1 Development of all-in-one new bifunctional warhead 127 4-2-2 Conjugation of all-in-one new bifunctional warhead on G-4-binder 128 4-3 Synthetic strategies and processes 132 4-4 Results and discussion 141 4-5 Conclusion 154 EXPERIMENTAL SECTION 155 Materials and Apparatus 155 Synthetic Procedures and Physical Data 157 Experimental Procedures 179 Reference 186 APPENDIX 192 | |
| dc.language.iso | en | |
| dc.subject | 分子辨識 | zh_TW |
| dc.subject | 烷基化 | zh_TW |
| dc.subject | 鳥嘌呤四股 | zh_TW |
| dc.subject | 核糖核酸結構 | zh_TW |
| dc.subject | alkylation | en |
| dc.subject | molecular recognition | en |
| dc.subject | DNA structure | en |
| dc.subject | G-quadruplex | en |
| dc.title | 發展分子探針運用於鑑定孕烯醇酮結合蛋白質以及位置選擇烷基化鳥嘌呤四股去氧核醣核酸 | zh_TW |
| dc.title | Development of Credible Molecular Probes to Identify Pregnenolone-Binding Proteins and Site-Selectively Alkylate G-Quadruplex DNA | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 林敬哲,張大釗,陳進庭,陳逸然 | |
| dc.subject.keyword | 烷基化,鳥嘌呤四股,核糖核酸結構,分子辨識, | zh_TW |
| dc.subject.keyword | alkylation,G-quadruplex,DNA structure,molecular recognition, | en |
| dc.relation.page | 216 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-12-14 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 13.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
