請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51667完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊恩誠 | |
| dc.contributor.author | Yu-Wen Chang | en |
| dc.contributor.author | 張又文 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:43:41Z | - |
| dc.date.available | 2017-12-23 | |
| dc.date.copyright | 2015-12-23 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-12-18 | |
| dc.identifier.citation | Abraçado LG, Esquivel DMS, Alves OC, Wajnberg E. 2005. Magnetic material in head, thorax, and abdomen of Solenopsis substituta ants: a ferromagnetic resonance study. J Magn Reson 175: 309-316.
Allan SA, Slessor KN, Winston ML, King GGS. 1987. The influence of age and task specialization on the production and perception of honey bee pheromones. J Insect Physiol 33: 917-922. Alves OC, Wajnberg E, de Oliveira JF, Esquivel DMS. 2004. Magnetic material arrangement in oriented termites: a magnetic resonance study. J Magn Reson 168: 246-251. Behrends A, Scheiner R. 2009. Evidence for associative learning in newly emerged honey bees (Apis mellifera). Anim Cogn 12: 249-255. Biesmeijer JC, de Vries H. 2001. Exploration and exploitation of food sources by social insect colonies: a revision of the scout-recruit concept. Behav Ecol Sociobiol 49: 89-99. Bitterman ME, Menzel R, Fietz A, Schäfer S. 1983. Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol 97: 107-119. Blakemore R. 1975. Magnetotactic bacteria. Science 190: 377-379. Brandt R, Rohlfing T, Rybak J, Krofczik S, Maye A, Westerhoff M, Hege HC, Menzel R. 2005. Three-dimensional average-shape atlas of the honeybee brain and its applications. J Comp Neurol 492: 1-19. Brower L. 1996. Monarch butterfly orientation: missing pieces of a magnificent puzzle. J Exp Biol 199: 93-103. Chudzinska M, Baralkiewicz D. 2011. Application of ICP-MS method of determination of 15 elements in honey with chemometric approach for the verification of their authenticity. Food Chem Toxicol 49: 2741-2749. Jong D. 1982. Orientation of comb building by honey bees. J Comp Physiol 147: 495-501. Dreller C. 1998. Division of labor between scouts and recruits: genetic influence and mechanisms. Behav Ecol Sociobiol 43: 191-196. Dyer FC, Gould JL. 1981. Honey bee orientation: a backup system for cloudy days. Science 214: 1041-1042. Elekonich MM, Schulz DJ, Bloch G, Robinson GE. 2001. Juvenile hormone levels in honey bee (Apis mellifera L.) foragers: foraging experience and diurnal variation. J Insect Physiol 47: 1119-1125. Engels S, Schneider NL, Lefeldt N, Hein CM, Zapka M, Michalik A, Elbers D, Kittel A, Hore PJ, Mouritsen H. 2014. Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird. Nature 509: 353-356. Esch HE, Zhang S, Srinivasan MV, Tautz J. 2001. Honeybee dances communicate distances measured by optic flow. Nature 411: 581-583. Esquivel DMS, Wajnberg E, Cernicchiaro GR, Acosta-Avalos D, Garcia BE. 2002. Magnetic material arrangement in Apis mellifera abdomens. Mat Res Soc Symp Proc 724: N7.2.1-N7.2.4. Farris SM, Robinson GE, Fahrbach SE. 2001. Experience- and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee. J Neurosci 21: 6395-6404. Ferreira J, Cernicchiaro G, Winklhofer M, Dutra H, de Oliveira PS, S. Esquivel DM, Wajnberg E. 2005. Comparative magnetic measurements on social insects. J Magn Mater 289: 442-444. Fuller MR, Seegar WS, Schueck LS. 1998. Routes and travel rates of migrating peregrine falcons falco peregrinus and Swainson's Hawks buteo swainsoni in the western hemisphere. J Avian Biol 29: 433-440. Gegear RJ, Casselman A, Waddell S, Reppert SM. 2008. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature 454: 1014-1018. Gould JL. 1982. The map sense of pigeons. Nature 296: 205-211. Gould JL, Kirschvink JL, Deffeyes KS. 1978. Bees have magnetic remanence. Science 201:1026-1028. Groh C, Lu Z, Meinertzhagen IA, Rössler W. 2012. Age-related plasticity in the synaptic ultrastructure of neurons in the mushroom body calyx of the adult honeybee Apis mellifera. J Comp Neurol 520: 3509-3527. Hake M, Kjellén N, Alerstam T. 2001. Satellite tracking of Swedish Ospreys Pandion haliaetus: autumn migration routes and orientation. J Avian Biol 32: 47-56. Heisenberg M. 1998. What do the mushroom bodies do for the insect brain? An introduction. Learn Memory 5: 1-10. Hepburn H. 2006. Absconding, migration and swarming in honeybees: an ecological and evolutionary perspective. Life cycles in social insects–behaviour, ecology and evolution. St. Petersburg University Press, St. Petersburg. 121-136pp. Holland RA, Wikelski M, Wilcove DS. 2006. How and why do insects migrate? Science 313: 794-796. Hsu CY, Chan YP. 2011. Identification and localization of proteins associated with biomineralization in the iron deposition vesicles of honeybees (Apis mellifera). PLoS One 6:e19088. Hsu CY. 1993. Studies on the mechanism of magnetite biomineralization and magnetoreception in the honey bee. National Tsing Hua University. 8-15pp. Hsu CY, Li CW. 1993. The ultrasrtucture and formation of iron granules in the honeybee (Apis Mellifera). J Exp Biol 180: 1-13. Hsu CY, Li CW. 1994. Magnetoreception in honeybees. Science 265: 95-97. Hsu CY, Ko FY, Li CW, Fann K, Lue JT. 2007. Magnetoreception system in honey bee (Apis mellifera). PLoS One 2: 11. Ito I, Watanabe S, Kirino Y. 2006. Mapping of odor-related neuronal activity using a fluorescent derivative of glucose. Neurosci Lett 398: 224-229. Itoh Y, Abe T, Takaoka R, Tanahashi N. 2004. Fluorometric determination of glucose utilization in neurons in vitro and in vivo. J Cereb Blood Flow Metab 24: 993-1003. Jaycox ER, Skowronek W, Guynn G. 1974. Behavioral changes in worker honey bees (Apis mellifera) induced by injections of a juvenile hormone mimic. Ann Entomol Soc Am 67: 529-534. Johnsen S, Lohmann KJ. 2005. The physics and neurobiology of magnetoreception. Nat Rev Neurosci 6: 703-712. Keeton W, Larkin T, Windsor D. 1974. Normal fluctuations in the earth's magnetic field influence pigeon orientation. Journal of comparative physiology 95: 95-103. Kirschvink J. 1990. Geomagnetic sensitivity in cetaceans: an update with live stranding records in the United States. Sensory Abilities of Cetaceans. Springer, USA. 639-649 pp. Kirschvink JL, Walker MM. 1985. Particle-size considerations for magnetite-based magnetoreceptors. Magnetite Biomineralization and Magnetoreception in Organisms. Springer, USA. 243-254 pp. Kirschvink JL, Dizon AE, Westphal JA. 1986. Evidence from strandings for geomagnetic sensitivity in cetaceans. J Exp Biol 120: 1-24. Kirschvink JL, Kobayashi A. 1991. Is geomagnetic sensitivity real? Replication of the Walker-Bitterman Magnetic conditioning experiment in honey bees. Am Zool 31: 169-185. Kirschvink JL, Padmanabha S, Boyce CK, Oglesby J. 1997. Measurement of the threshold sensitivity of honeybees to weak, extremely low-frequency magnetic fields. J Exp Biol 200: 1363-1368. Kirschvink JL, Walker MM, Diebel CE. 2001. Magnetite-based magnetoreception. Curr Opin Neurobiol 11: 462-467. Klimley AP. 1993. Highly directional swimming by scalloped hammerhead sharks, Sphyrna lewini, and subsurface irradiance, temperature, bathymetry, and geomagnetic field. Mar Biol 117: 1-22. Kuterbach DA, Walcott B. 1986a. Iron-containing cells in the honey bee (Apis mellifera). I. Adult morphology and physiology. J Exp Biol 126: 375-387. Kuterbach DA, Walcott B. 1986b. Iron-containing cells in the honey bee (Apis mellifera). II. Accumulation during development. J Exp Biol 126: 389-401. Kuterbach DA, Walcott B, Reeder RJ, Frankel RB. 1982. Iron-containing cells in the honey bee (Apis mellifera). Science 218: 695-697. Leida GA, Darci MSE, Eliane W. 2009. Solenopsis ant magnetic material: statistical and seasonal studies. Physic Biol 6: 046012. Liang C. 2012. Behavioral and neural response of honey bee (Apis mellifera) magnetoreception. National Taiwan Uinversity. 22-29pp Lucano MJ, Cernicchiaro G, Wajnberg E, Esquivel DMS. 2006. Stingless bee antennae: a magnetic sensory organ? Biometals 19: 295-300. Luschi P, Benhamou S, Girard C, Ciccione S, Roos D, Sudre J, Benvenuti S. 2007. Marine turtles use geomagnetic cues during open-sea homing. Curr Biol 17: 126-133. Malun D. 1998. Early development of mushroom bodies in the brain of the honeybee Apis mellifera as revealed by BrdU incorporation and ablation experiments. Learn Memory 5: 90-101. Menzel R. 2001. Searching for the memory trace in a mini-brain, the honeybee. Learn Memory 8: 53-62. Menzel R, Giurfa M. 2001. Cognitive architecture of a mini-brain: the honeybee. Trends Cogn Sci 5: 62-71. Menzel R, Brandt R, Gumbert A, Komischke B, Kunze J. 2000. Two spatial memories for honeybee navigation. Proc R Soc Lond Biol 267: 961-968. Menzel R, Durst C, Erber J, Eichbaum S. 1994. The mushroom bodies in the honeybee: from molecules to behaviour. Fortschr Zool: 81-82. Menzel R, Giurfa M. 2006. Dimensions of cognition in an insect, the honeybee. Behavioral and Cognitive Neuroscience Reviews 5: 24-40. Merritt R, Purcell C, Stroink G. 1983. Uniform magnetic field produced by three, four, and five square coils. Review of Scientific Instruments 54: 879-882. Phillips J. 1987. Specialized visual receptors respond to magnetic field alignment in the blowfly (Calliphora vicina). Soc Neurosci Abstr. 397pp. Phillips J, Freake M, Fischer J, Borland C. 2002. Behavioral titration of a magnetic map coordinate. J Comp Physiol 188: 157-160. Phillips JB, Adler K, Borland SC. 1995. True navigation by an amphibian. Anim Behav 50: 855-858. Ratnieks FLW. 2000. How far do bees forage. Bee Improvement 6: 10-11. Ritz T, Ahmad M, Mouritsen H, Wiltschko R, Wiltschko W. 2010a. Photoreceptor-based magnetoreception: optimal design of receptor molecules, cells, and neuronal processing. J R Soc Interface 7: 135-146. Ritz T, Yoshii T, Foerster C, Ahmad M. 2010b. Cryptochrome: A photoreceptor with the properties of a magnetoreceptor? Comm Integ Biol 3: 24-27. Riveros A, Esquivel DS, Wajnberg E, Srygley R. 2014. Do leaf-cutter ants Atta colombica obtain their magnetic sensors from soil? Behav Ecol Sociobiol 68: 55-62. Robinson WS. 2012. Migrating giant honey bees (Apis dorsata) congregate annually at stopover site in Thailand. PLoS One 7:e44976. Roffey J, Magor JI. 2003. Desert locust population parameters. Food and Agriculture Organization of the United Nations, Rome. Rossel S, Wehner R. 1984. How bees analyse the polarization patterns in the sky. J Comp Physiol 154: 607-615. Schulz DJ, Robinson GE. 2001. Octopamine influences division of labor in honey bee colonies. J Comp Physiol 187: 53-61. Seeley T. 1983. Division of labor between scouts and recruits in honeybee foraging. Behav Ecol Sociobiol 12: 253-259. Srinivasan MV. 2010. Honey bees as a model for vision, perception, and cognition. Annu Rev Entomol 55: 267-284. Steven RM, Gegear RJ, Merlin C. 2010. Navigational mechanisms of migrating monarch butterflies. Trends Neurosci 33: 399-406. Takagi S. 1995. Paramagnetism of honeybees. Journal of the Physical Society of Japan 64: 4378-4381. Urquhart FA, Urquhart NR. 1977. Overwintering areas and migratory routes of the monarch butterfly (Danaus P. Plexippus, Lepidoptrea: Danaidae) in North America, with special reference to the western population. The Canadian Entomologist 109: 1583-1589. Vacha M. 2006. Laboratory behavioural assay of insect magnetoreception: magnetosensitivity of Periplaneta americana. J Exp Biol 209: 3882-3886. Vacha M, Puzova T, Kvicalova M. 2009. Radio frequency magnetic fields disrupt magnetoreception in American cockroach. J Exp Biol 212: 3473-3477. Valkova T, Vacha M. 2012. How do honeybees use their magnetic compass? Can they see the North? Bull Entomol Res 102: 461-467. Velarde RA, Sauer CD, O. Walden KK, Fahrbach SE, Robertson HM. 2005. Pteropsin: A vertebrate-like non-visual opsin expressed in the honey bee brain. Insect Biochem Mol Biol 35: 1367-1377. Vidal-Gadea A, Ward K, Beron C, Ghorashian N, Gokce S, Russell J, Truong N, Parikh A, Gadea O, Ben-Yakar A, Pierce-Shimomura J. 2015. Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans. Fernald R, editor. Von Frisch K. 1967. The dance language and orientation of bees. Harvard University Press, Cambridge. 592 pp. Wajnberg E, Cernicchiaro G, Motta de Souza Esquivel D. 2004. Antennae: the strongest magnetic part of the migratory ant. Biometals 17: 467-470. Walcott C. 1978. Anomalies in the earth’s magnetic field increase the scatter of pigeons’ vanishing bearings. Animal Migration, Navigation, and Homing. Springer, Berlin Heidelberg. 143-151pp. Walker M, Bitterman ME. 1985. Conditioned responding to magnetic fields by honeybees. J Comp Physiol 157: 67-71. Walker M, Kirschvink J, Ahmed G, Dizon A. 1992. Fin whales (Balaenoptera physalus) avoid geomagnetic gradients during migration. J Exp Biol 171:67-78. Walker MM, Bitterman M. 1989a. Honeybees can be trained to respond to very small changes in geomagnetic field intensity. J Exp Biol 145: 489-494. Walker MM, Bitterman M. 1989b. Attached magnets impair magnetic field discrimination by honeybees. J Exp Biol 141: 447-451. Walker MM, Dennis TE, Kirschvink JL. 2002. The magnetic sense and its use in long-distance navigation by animals. Curr Opin Neurobiol 12: 735-744. Waloff Z. 1959. Notes on some aspects of the desert locust problem Rep. of the FAO Panel of aspects of the strategy of the desert locust plauge control. FAO Document 59: 6-4737. Wang TH, Jian CH, Hsieh YK, Wang FN, Wang CF. 2013. Spatial distributions of inorganic elements in honeybees (Apis mellifera L.) and possible relationships to dietary habits and surrounding environmental pollutants. J Agricult Food Chem 61: 5009-5015. Yamada K, Saito M, Matsuoka H, Inagaki N. 2007. A real-time method of imaging glucose uptake in single, living mammalian cells. Nat Protocols 2: 753-762. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51667 | - |
| dc.description.abstract | 蜜蜂 (Apis mellifera L.)的採集活動需依賴發達的導航系統,其利用感受磁場的能力來協助導航已被廣泛接受。前人研究顯示蜜蜂的行為會受到外加磁場所影響,並在蜜蜂腹部發現超順磁鐵顆粒 (Superparamagnetic magnetite),由於超順磁鐵顆粒會隨外加磁場變化,因此被推論為蜜蜂的磁感受器。隨著蜜蜂日齡的增長,蜜蜂腹部的鐵顆粒沉積量也隨之增加。然而,目前尚未有相關證據證明鐵顆粒的含量會影響蜜蜂的磁感受力與腦處理磁場訊息的區位。本研究以不同日齡的蜜蜂為研究對象,透過古典制約的方式以磁場刺激制約口吻延伸反應,觀察蜜蜂磁感受力的差異;並利用感應耦合電漿質譜分析儀的技術量化腹部鐵顆粒含量,同時,透過2-NBDG的染色技術,探討蜜蜂腦部處理磁感受之區位。研究結果發現,鐵顆粒沉積量會隨著日齡成長而增加,外勤蜂具有較佳的磁感受能力,在外勤蜂中區分出磁感受能力較佳與不佳的個體,發現磁感受能力較佳之外勤蜂,鐵顆粒含量較高。2-NBDG的染色結果顯示,蕈狀體為處理磁場訊息的主要區位,不同磁感受能力之外勤蜂蕈狀體在染色後螢光亮度上有顯著差異。經由內勤蜂與外勤蜂感磁能力的差異與腦部運作區位,本研究有助於了解蜜蜂磁感受能力在行為生態上可能扮演的角色。 | zh_TW |
| dc.description.abstract | The foraging ability of honey bee, Apis mellifera L., relies on a well-developed compass system. In addition to sun position, sun-linked skylight patterns and landmarks, it has been shown that honey bees are able to navigate based on magnetic compass. It is not only when they were stationary but also flying honey bees have the ability to detect the earth’s magnetic field with intensity as low as 26 nano-Tesla (nT). Previous studies showed that the bees are able to sense the magnetic field through the iron granules in their fat bodies and trophocytes mostly located in the ventral abdomen. However, the magnetoreception of honey bee has not been fully elucidated yet and the mechanism behind sensing the magnetic field is still mysterious. Although there are many behavioral evidences to support that honey bees are able to sense magnetic field, the physiological evidence is still needed. To further study honey bee’s magnetoreception, classical conditioning of proboscis extension reflex (PER) with magnetic stimulus and inductively coupled plasma-mass (ICP-MS) was employed in this study. By comparing the difference in magnetic reception, the results showed that forager performed better than nurse bee, and this could be due to the iron granule in honey bees which precipitate along with aging positively. The results showed that there are responsive and non-responsive foragers. With 2-NBDG staining technique, mushroom bodies play an important role in magnetoreception in honey bee’s brain. The intensity of responsive and non-responsive foragers are significantly different. Based on the evidence of neural responses to the changes of magnetic field, it is believed that this study will shed light on the physiology of honey bee magnetoreception. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:43:41Z (GMT). No. of bitstreams: 1 ntu-104-R02632004-1.pdf: 784103 bytes, checksum: da0ebd0ff6b124454e3a456448a64694 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審訂書……………………………………………………………………i
致謝……………………………………………………………………ii 中文摘要……………………………………………………………………iii Abstract……………………………………………………………………iv Chapter 1 Introduction……………………………………………………………………1 Chapter 2 Literature review……………………………………………………………………4 2.1 Orientation and navigation in animals……………………………………………………………………4 2.2 Magnetoreception in animals……………………………………………………………………5 2.3 Magnetoreception in honey bee……………………………………………………………………6 2.4 Mushroom body in insect brain……………………………………………………………………8 Chapter 3 Materials and methods……………………………………………………………………10 3.1 Honey bees……………………………………………………………………10 3.2 Classical conditioning training……………………………………………………………………10 3.3 Generation of extra magnetic field……………………………………………………………………11 3.4 Quantification of iron concentration……………………………………………………………………12 3.5 2-NBDG staining……………………………………………………………………13 3.6 Confocal microscopy……………………………………………………………………14 Chapter 4 Results……………………………………………………………………16 4.1 PER response to magnetic field changes……………………………………………………………………16 4.2 Iron concentration of honey bees in different ages……………………………………………………………………17 4.3 2-NBDG staining……………………………………………………………………17 Chapter 5 Discussion……………………………………………………………………19 5.1 Magnetic sensitivity in honey bee is age-dependent……………………………………………………………………19 5.2 The relationship between magnetoreception and iron concentration……………………………………………………………………20 5.3 The labor division of honey bee: responsive and non-responsive foragers……………………………………………………………………21 5.4 Magnetoreception in honey bee: from abdomen to brain……………………………………………………………………22 References……………………………………………………………………24 List of Figures Figure 1. Sketch of the Merritt four coil system for providing magnetic stimulation………………………………………………………………………………………………………………36 Figure 2. Averaged PER rate of nurse bees and foragers to extra magnetic field stimulation...……………………………………………………………………………………………………………37 Figure 3. The learning percentage of magnetic PER training in foragers and nurse bees…………………………………………………………………………………………………………………...…..38 Figure 4. The learning percentage of magnetic PER training in responsive forager, non-responsive forager and nurse bee……………………………………………………………….……39 Figure 5. Comparison of learning ability among responsive forager, non-responsive forager and nurse bee……………………………………………………………………………………...……..40 Figure 6. The iron concentration of bee workers in different ages………………………………………………………………………………………………….…………………….41 Figure 7. Comparison of image intensity of 2-NBDG staining between the bee brain with and without extra magnetic field stimulation.………………………………………………………………………………………..………...…….....42 Figure 8. Comparison of image intensity of 2-NBDG staining between the central bodies in bee with and without extra magnetic field stimulation………………………………………………………………………………………………..………......43 Figure 9. Comparison of image intensity of 2-NBDG staining between the lobula in bee with and without extra magnetic field stimulation………………………………………………………………………………………………….......…....44 Figure 10. A confocal section of right mushroom body of bee workers……………………………………………………………………..……………………………….......…....45 Figure11. Comparison of image intensity of 2-NBDG staining and PER rate between responsive forager and non-responsive forager……………………………………………….……………………………………………………….......…....46 List of Tables Table 1. The combination of different treatments on magnetic field and 2-NBDG staining in different groups of honey bee……………………………………………….………….......47 | |
| dc.language.iso | en | |
| dc.subject | 腦 | zh_TW |
| dc.subject | 蜜蜂 | zh_TW |
| dc.subject | 生物感磁 | zh_TW |
| dc.subject | 古典制約 | zh_TW |
| dc.subject | 鐵顆粒 | zh_TW |
| dc.subject | brain | en |
| dc.subject | honey bee | en |
| dc.subject | magnetoreception | en |
| dc.subject | classical condition | en |
| dc.subject | iron | en |
| dc.title | 蜜蜂工蜂磁感受能力與分工職能之差異性 | zh_TW |
| dc.title | Differentiation of labour division and magnetoreception of honey bee (Apis mellifera) workers | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 路光暉,焦傳金 | |
| dc.subject.keyword | 蜜蜂,生物感磁,古典制約,鐵顆粒,腦, | zh_TW |
| dc.subject.keyword | honey bee,magnetoreception,classical condition,iron,brain, | en |
| dc.relation.page | 47 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-12-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 昆蟲學研究所 | zh_TW |
| 顯示於系所單位: | 昆蟲學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 765.73 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
