請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51655完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊泮池 | |
| dc.contributor.author | Ting-Fang Che | en |
| dc.contributor.author | 車婷芳 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:43:07Z | - |
| dc.date.available | 2018-02-24 | |
| dc.date.copyright | 2016-02-24 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-12-22 | |
| dc.identifier.citation | 1. Chekhun, V.F., et al. Peculiarities of antioxidant system and iron metabolism in organism during development of tumor resistance to cisplatin. Exp Oncol 36, 196-201 (2014).
2. Gong, Q., et al. The effects of calcipotriol on the dendritic morphology of human melanocytes under oxidative stress and a possible mechanism: is it a mitochondrial protector? Journal of dermatological science 77, 117-124 (2015). 3. Franco-Iborra, S., Vila, M. & Perier, C. The Parkinson Disease Mitochondrial Hypothesis: Where Are We at? The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry (2015). 4. Lariviere, R., et al. Sacs knockout mice present pathophysiological defects underlying autosomal recessive spastic ataxia of Charlevoix-Saguenay. Human molecular genetics 24, 727-739 (2015). 5. JY, S., et al. Collapsin response mediator protein-1 and the invasion and metastasis of cancer cells. J Natl Cancer Inst 93, 1392-1400 (2001). 6. Gold, W.A., Lacina, T.A., Cantrill, L.C. & Christodoulou, J. MeCP2 deficiency is associated with reduced levels of tubulin acetylation and can be restored using HDAC6 inhibitors. Journal of molecular medicine 93, 63-72 (2015). 7. Sharma, S.V., Bell, D.W., Settleman, J. & Haber, D.A. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 7, 169-181 (2007). 8. Tan, X., Thapa, N., Sun, Y. & Anderson, R.A. A kinase-independent role for EGF receptor in autophagy initiation. Cell 160, 145-160 (2015). 9. Maechler, P. & Wollheim, C.B. Mitochondrial function in normal and diabetic b-cells. Nature 414, 807-812 (2001). 10. Rizzuto, R. Close Contacts with the Endoplasmic Reticulum as Determinants of Mitochondrial Ca2+ Responses. Science 280, 1763-1766 (1998). 11. Wallace, D.C. Mitochondria and cancer. Nat Rev Cancer 12, 685-698 (2012). 12. Wallace, D.C. Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine. Annual review of biochemistry 76, 781-821 (2007). 13. Andreux, P.A., Houtkooper, R.H. & Auwerx, J. Pharmacological approaches to restore mitochondrial function. Nature reviews. Drug discovery 12, 465-483 (2013). 14. Frohman, M.A. Mitochondria as integrators of signal transduction and energy production in cardiac physiology and disease. Journal of molecular medicine 88, 967-970 (2010). 15. Carew, J.S. & Huang, P. Mitochondrial defects in cancer. Mol Cancer 1, 9 (2002). 16. Chi, S., Cao, H., Wang, Y. & McNiven, M.A. Recycling of the epidermal growth factor receptor is mediated by a novel form of the clathrin adaptor protein Eps15. J Biol Chem 286, 35196-35208 (2011). 17. Ohashi, K., Maruvka, Y.E., Michor, F. & Pao, W. Epidermal growth factor receptor tyrosine kinase inhibitor-resistant disease. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 31, 1070-1080 (2013). 18. Han, W. & Lo, H.W. Landscape of EGFR signaling network in human cancers: biology and therapeutic response in relation to receptor subcellular locations. Cancer Lett 318, 124-134 (2012). 19. Ashrafian, H., et al. A mutation in the mitochondrial fission gene Dnm1l leads to cardiomyopathy. PLoS Genet 6, e1001000 (2010). 20. Knott, A.B., Perkins, G., Schwarzenbacher, R. & Bossy-Wetzel, E. Mitochondrial fragmentation in neurodegeneration. Nature reviews. Neuroscience 9, 505-518 (2008). 21. Wang, H., Lim, P.J., Karbowski, M. & Monteiro, M.J. Effects of overexpression of huntingtin proteins on mitochondrial integrity. Human molecular genetics 18, 737-752 (2009). 22. Reddy, P.H., et al. Dynamin-related protein 1 and mitochondrial fragmentation in neurodegenerative diseases. Brain research reviews 67, 103-118 (2011). 23. Alirol, E. & Martinou, J.C. Mitochondria and cancer: is there a morphological connection? Oncogene 25, 4706-4716 (2006). 24. Chan, D.C. Mitochondria: dynamic organelles in disease, aging, and development. Cell 125, 1241-1252 (2006). 25. Archer, S.L. Mitochondrial dynamics--mitochondrial fission and fusion in human diseases. N Engl J Med 369, 2236-2251 (2013). 26. Warburg, O. On the origin of cancer cells. Science 123, 309-314 (1956). 27. Vander Heiden, M.G., Cantley, L.C. & Thompson, C.B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033 (2009). 28. Ye, X.Q., et al. Mitochondrial and energy metabolism-related properties as novel indicators of lung cancer stem cells. Int J Cancer 129, 820-831 (2011). 29. Westermann, B. Mitochondrial fusion and fission in cell life and death. Nature reviews. Molecular cell biology 11, 872-884 (2010). 30. Blackstone, C. & Chang, C.R. Mitochondria unite to survive. Nature cell biology 13, 521-522 (2011). 31. Zhao, J., et al. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene (2012). 32. Pradeep, H. & Rajanikant, G.K. Computational prediction of a putative binding site on drp1: implications for antiparkinsonian therapy. Journal of chemical information and modeling 54, 2042-2050 (2014). 33. YN, W. & MC, H. Nuclear functions and subcellular trafficking mechanisms of the epidermal growth factor receptor family. Cell & Bioscience 2(2012). 34. Lin, S.Y., et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nature cell biology 3, 802-808 (2001). 35. Lo, H.W., et al. Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell 7, 575-589 (2005). 36. Boerner, J.L., Demory, M.L., Silva, C. & Parsons, S.J. Phosphorylation of Y845 on the epidermal growth factor receptor mediates binding to the mitochondrial protein cytochrome c oxidase subunit II. Molecular and cellular biology 24, 7059-7071 (2004). 37. Demory, M.L., et al. Epidermal growth factor receptor translocation to the mitochondria: regulation and effect. J Biol Chem 284, 36592-36604 (2009). 38. Ding, Y., et al. Receptor tyrosine kinase ErbB2 translocates into mitochondria and regulates cellular metabolism. Nat Commun 3, 1271 (2012). 39. Goh, L.K. & Sorkin, A. Endocytosis of receptor tyrosine kinases. Cold Spring Harb Perspect Biol 5, a017459 (2013). 40. Haglund, K. & Dikic, I. The role of ubiquitylation in receptor endocytosis and endosomal sorting. Journal of cell science 125, 265-275 (2012). 41. Bitler, B.G., Goverdhan, A. & Schroeder, J.A. MUC1 regulates nuclear localization and function of the epidermal growth factor receptor. Journal of cell science 123, 1716-1723 (2010). 42. Lo, H.W., et al. Nuclear-cytoplasmic transport of EGFR involves receptor endocytosis, importin beta1 and CRM1. J Cell Biochem 98, 1570-1583 (2006). 43. Du, Y., et al. Syntaxin 6-mediated Golgi translocation plays an important role in nuclear functions of EGFR through microtubule-dependent trafficking. Oncogene 33, 756-770 (2014). 44. Wang, Y.N., et al. The translocon Sec61beta localized in the inner nuclear membrane transports membrane-embedded EGF receptor to the nucleus. J Biol Chem 285, 38720-38729 (2010). 45. Chen, H., et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. The Journal of cell biology 160, 189-200 (2003). 46. Liesa, M. & Shirihai, O.S. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 17, 491-506 (2013). 47. Suen, D.F., Norris, K.L. & Youle, R.J. Mitochondrial dynamics and apoptosis. Genes Dev 22, 1577-1590 (2008). 48. Santel, A., et al. Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. Journal of cell science 116, 2763-2774 (2003). 49. Frank, S., et al. The Role of Dynamin-Related Protein 1, a Mediator of Mitochondrial Fission, in Apoptosis. Developmental Cell 1, 515-525 (2001). 50. Mozdy, A.D. & Shaw, J.M. A fuzzy mitochondrial fusion apparatus comes into focus. Nature reviews. Molecular cell biology 4, 468-478 (2003). 51. Chen, H. & Chan, D.C. Emerging functions of mammalian mitochondrial fusion and fission. Human molecular genetics 14 Spec No. 2, R283-289 (2005). 52. Koshiba, T., et al. Structural basis of mitochondrial tethering by mitofusin complexes. Science 305, 858-862 (2004). 53. da Silva, A.F., Mariotti, F.R., Maximo, V. & Campello, S. Mitochondria dynamism: of shape, transport and cell migration. Cellular and molecular life sciences : CMLS 71, 2313-2324 (2014). 54. Otera, H., Ishihara, N. & Mihara, K. New insights into the function and regulation of mitochondrial fission. Biochim Biophys Acta 1833, 1256-1268 (2013). 55. Mitra, K. Mitochondrial fission-fusion as an emerging key regulator of cell proliferation and differentiation. BioEssays : news and reviews in molecular, cellular and developmental biology 35, 955-964 (2013). 56. Yadav, A., Agarwal, S., Tiwari, S.K. & Chaturvedi, R.K. Mitochondria: prospective targets for neuroprotection in Parkinson's disease. Curr Pharm Des 20, 5558-5573 (2014). 57. Alaimo, A., et al. Manganese induces mitochondrial dynamics impairment and apoptotic cell death: a study in human Gli36 cells. Neuroscience letters 554, 76-81 (2013). 58. Alaimo, A., et al. Deregulation of mitochondria-shaping proteins Opa-1 and Drp-1 in manganese-induced apoptosis. PLoS One 9, e91848 (2014). 59. Rossignol, R., et al. Energy Substrate Modulates Mitochondrial Structure and Oxidative Capacity in Cancer Cells. Cancer Research 64, 958-993 (2004). 60. Ferreira-da-Silva, A., et al. Mitochondrial dynamics protein Drp1 is overexpressed in oncocytic thyroid tumors and regulates cancer cell migration. PLoS One 10, e0122308 (2015). 61. Campello, S., et al. Orchestration of lymphocyte chemotaxis by mitochondrial dynamics. J Exp Med 203, 2879-2886 (2006). 62. Desai, S.P., Bhatia, S.N., Toner, M. & Irimia, D. Mitochondrial localization and the persistent migration of epithelial cancer cells. Biophys J 104, 2077-2088 (2013). 63. Chu, Y.-W., et al. Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol 17(1997). 64. Han, C.-L., et al. A multiplexed quantitative strategy for membrane proteomics. Molecular & Cellular Proteomics 7, 1983-1997 (2008). 65. Lin, W.-T., et al. Multi-Q: A Fully Automated Tool for Multiplexed Protein Quantitation. Journal of proteome 5, 2328-2338 (2006). 66. Lin, H.Y., et al. Suppressor of cytokine signaling 6 (SOCS6) promotes mitochondrial fission via regulating DRP1 translocation. Cell Death Differ 20, 139-153 (2013). 67. Smirnova, E., Griparic, L., Shurland, D.-L. & Bliek, A.M.v.d. Drp1is required for mitochondrial division in mammalian cells. Molecular biology of the cell 12, 2245-2256 (2001). 68. Geiger, B., Tokuyasu, K.T., Dutton, A.H. & Singer, S.J. Vinculin, an intracellular protein localized at specialized sites where microfilament bundles terminate at cell membranes. Proc Natl Acad Sci U S A 77, 4127-4131 (1980). 69. Marmor, M.D. & Yarden, Y. Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene 23, 2057-2070 (2004). 70. Huotari, J. & Helenius, A. Endosome maturation. The EMBO journal 30, 3481-3500 (2011). 71. Marroquin, L.D., Hynes, J., Dykens, J.A., Jamieson, J.D. & Will, Y. Circumventing the Crabtree effect: replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants. Toxicological sciences : an official journal of the Society of Toxicology 97, 539-547 (2007). 72. Chen, H. & Chan, D.C. Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Human molecular genetics 18, R169-176 (2009). 73. Weihua, Z., et al. Survival of cancer cells is maintained by EGFR independent of its kinase activity. Cancer Cell 13, 385-393 (2008). 74. Ishihara, N., Eura, Y. & Mihara, K. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. Journal of cell science 117, 6535-6546 (2004). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51655 | - |
| dc.description.abstract | 粒線體功能失常被發現與癌症產生有相關連。在本篇研究中,我們利用同位素相對標記與絕對定量技術(isobaric tag for relative and absolute quantitation, iTRAQ)分析具有不同侵襲能力的肺癌細胞中其粒線體蛋白質的組成有何不同。我們發現上皮生長因子受器(Epidermal growth factor recptor, EGFR)在具有高度侵襲能力的CL1-5細胞粒線體中量較多。另外,我們發現EGF可以使EGFR移至粒線體中並引起粒線體的形態改變分裂。也因此粒線體EGFR促使能量產升上升、細胞運動能力增加,且造成粒線體分布到運動偽足前側。另外,無論EGFR磷酸化與否,EGFR都可以影響粒線體形態。粒線體中EGFR被發現可與粒線體融合蛋白Mfn1交互作用,在mitEGFR表現的細胞中過量表現Mfn1後,可發現Mfn1可以回復mitEGFR所造成細胞特性改變,諸如粒線體形態改變、能量產生與細胞運動能力,發現mitEGFR可能是藉由影響Mfn1聚合而影響粒線體形態。有趣的是,由臨床病人檢體發現,粒線體中EGFR表現與病人存活率呈現負相關,且相較於原位癌部位,在淋巴癌轉移部位之粒線體EGFR表現量相對較多。總結來說,本篇研究發現EGFR可藉由EGF引起的內吞現象轉位到粒線體中,並且造成粒線體形態分裂,而引起能量產生改變、粒線體分布於運動偽足前端,進而使癌細胞運動能力上升。粒線體EGFR的存在可能與癌細胞侵襲相關,且可做為癌症預後因子。 | zh_TW |
| dc.description.abstract | Dysfunction of the mitochondria, the versatile cellular organelles, is shown to be related to cancer progression. In the present study, the iTRAQ was exploited to analyze mitochondrial proteomics of lung cancer cell lines with variable migration abilities. We found that EGFR is highly expressed in highly invasive lung cancer cell mitochondria. We demonstrated that the mitochondrial translocation of EGFR by EGF induces mitochondrial fission, and upregulates energy production, causes mitochondrial redistribution in the lamellipodia, and enhances cell motility. Besides, EGFR can still regulate mitochondria dynamics and cell motility, independent of its phosphorylation status. Furthermore, EGFR was found to interact with mitofusion1 (Mfn1), a mitochondrial protein which causes mitochondria fusion by polymerization to regulate mitochondrial dynamics. Overexpressing Mfn1 significantly reversed the phenotypes resulted from mitochondrial translocation of EGFR. Corresponding to the above finding, the EGFR expression in cytosol rather than on the cell surface is reversely correlated to the overall survival of NSCLC patients. Notably, the cytosolic EGFR expression levels in the lymph node-locating tumor cells are higher than that of the paired primary tumor sites. Collectively, our results show that mitochondrial EGFR plays an important role on mitochondrial morphology, energy production and distributions, which further promotes cellular motility. Accordingly, mitochondrial EGFR expression is involved in cancer invasion and can serve as a diagnostic marker for predicting NSCLC malignancy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:43:07Z (GMT). No. of bitstreams: 1 ntu-104-D96448001-1.pdf: 3172230 bytes, checksum: ec205d0d6d552d950df16ce744b871aa (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 1
致謝 2 中文摘要 3 ABSTRACT 4 CHAPTER 1. Introductions 10 1.1 Lung cancer 11 1.2 Mitochondria 12 1.3 Epidermal growth factor receptor (EGFR) 12 1.4 Mitochondria dysfunctions and cancer 13 1.5 EGFR and its subcellular localization 14 1.6 Mitochondria dynamics 15 1.7 Mitochondria dynamics and cellular functions 17 1.8 Mitochondria dynamics and cellular motility 18 1.9 Purposes and aims of this study 18 CHAPTER 2. Materials and Methods 21 2.1 Cell lines 22 2.2 Antibodies 22 2.3 Quantitation of mitochondrial DNA (mtDNA) 23 2.4 Evaluation of oxygen consumption rate and extracellular acidification rate of CL1-0 and CL1-5 cells 23 2.5 Fractionation of mitochondria 24 2.6 iTRAQ (isobaric tag for relative and absolute quantitation) on mitochondria proteome 24 2.7 Immunofluorescence staining 25 2.8 Electronic microscopy 26 2.9 Constructs and transfection 27 2.10 Western blotting 27 2.11 Drug treatment 28 2.12 Analysis of mitochondrial length by high-content microscopy 29 2.13 Estimation of cellular ATP production 29 2.14 Migration and invasion assay 30 2.15 Single-cell tracking assay 30 2.16 Viruses and transduction 31 2.17 In vivo metastasis assay 31 2.18 Clinical lung cancer samples and immunohistochemistry 32 2.19 Statistical analysis 32 2.20 Immunoprecipitation assay 33 CHAPTER 3. Results 35 3.1 Analysis of mitochondria proteome in NSCLC cells with different invasive abilities 36 3.2 Validation of EGFR expression in the mitochondria and the role of EGF 37 3.3 Investigation of the effects of EGFR on the mitochondria in NSCLC 39 3.4 Investigation of the effects of mitEGFR on the energy production 41 3.5 Investigation of the effects of mitEGFR on the cancer cell motility and the distribution of the mitochondria 43 3.6 The effects of EGFR phosphorylation on the mitochondria dynamics and the following phenotype 44 3.7 In vivo metastasis model of mitEGFR and the clinical correlations of cytosolic EGFR expression in NSCLC 45 3.8 Investigation of the underlying mechanisms how EGFR regulates mitochondria dynamics 47 CHAPTER 4. Discussions and Future Plans 49 REFERENCES 55 LIST OF FIGURES 66 LIST OF PLASMID INFORMATION 109 LIST OF TABLES 113 | |
| dc.language.iso | en | |
| dc.subject | 非小細胞肺癌 | zh_TW |
| dc.subject | 肺癌 | zh_TW |
| dc.subject | 上皮生長因子受器 | zh_TW |
| dc.subject | 粒線體 | zh_TW |
| dc.subject | EGFR | en |
| dc.subject | NSCLC | en |
| dc.subject | mitochondria | en |
| dc.subject | lung cancer | en |
| dc.title | 上皮生長因子受器可移行至粒線體且可調節粒線體動態平衡並促進非小細胞肺癌之轉移 | zh_TW |
| dc.title | Mitochondrial Translocation of EGFR Regulates Mitochondrial Dynamics and Promotes Cancer Metastasis in NSCLC | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 洪澤民,徐立中,吳君泰,陳琦媛 | |
| dc.subject.keyword | 肺癌,上皮生長因子受器,粒線體,非小細胞肺癌, | zh_TW |
| dc.subject.keyword | lung cancer,EGFR,mitochondria,NSCLC, | en |
| dc.relation.page | 116 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-12-23 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
