請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51654完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王大銘(Da-Ming Wang) | |
| dc.contributor.author | I-Wei Chang | en |
| dc.contributor.author | 張逸惟 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:43:04Z | - |
| dc.date.available | 2016-02-16 | |
| dc.date.copyright | 2016-02-16 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-12-23 | |
| dc.identifier.citation | 1. Kertes, A.S. and C.J. King, Extraction Chemistry of Fermentation Product Carboxylic-acids. Biotechnology and Bioengineering, 1986. 28(2): p. 269-282.
2. Hudson, M.J., An Introduction to Some Aspects of Solvent-extraction Chemistry in Hydrometallurgy. Hydrometallurgy, 1982. 9(2): p. 149-168. 3. Tavlarides, L.L., J.H. Bae, and C.K. Lee, Solvent-extraction, Membranes, and Ion-exchange in Hydrometallurgical Dilute Metals Separation. Separation Science and Technology, 1987. 22(2-3): p. 581-617. 4. Ritcey, G.M. and A.W. Ashbrook, Solvent Extraction - Principles and Applications to Process Metallurgy - part 1. 1984, Amsterdam: Elsevier Science Publishers. 5. Nghiem, L., et al., Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs). Journal of Membrane Science, 2006. 281(1-2): p. 7-41. 6. Chen, Y.W., Separation and Recovery of Nd3+-Dy3+ Ions by Supported Liquid Membrane with Strip Dispersion, in Department of Chemical Engineering. 2013, National Taiwan University: Taipei, Taiwan. 7. Zhao, H., S.Q. Xia, and P.S. Ma, Use of ionic liquids as 'green' solvents for extractions. Journal of Chemical Technology and Biotechnology, 2005. 80(10): p. 1089-1096. 8. Coddington, J.M. and M.J. Taylor, High Field 11B and 13C Nmr Investigations of Aqueous Borate Solutions and Borate-Diol Complexes. Journal of Coordination Chemistry, 2009. 20(1): p. 27-38. 9. Momii, R.K. and Nachtrie.Nh, Nuclear Magnetic Resonance Study of Borate-polyborate Equilibria in Aqueous Solution. Inorganic Chemistry, 1967. 6(6): p. 1189-&. 10. Bishop, M., et al., Determination of the Mode and Efficacy of the Cross-linking of Guar by Borate using MAS 11B NMR of Borate Cross-linked Guar in Combination with Solution 11B NMR of Model Systems. Dalton Trans, 2004(17): p. 2621-34. 11. Brown, C.G. and B.R. Sanderson, Solvent-extraction of Boron. Chemistry & Industry, 1980(2): p. 68-73. 12. Ayers, P., A.W.L. Dudeney, and F. Kahraman, Solvent-extraction of Boron with 2-Ethyl-1,3-Hexanediol and 2-Chloro-4-(1,1,3,3-Tetramethylbutyl)-6-Methylol-Phenol. Journal of Inorganic & Nuclear Chemistry, 1981. 43(9): p. 2097-2100. 13. Egneus, B. and L. Uppstrom, Extraction of Boric-acid with Aliphatic 1,3-Diols and Other Chelating-agents. Analytica Chimica Acta, 1973. 66(2): p. 211-229. 14. Matsumoto, M., et al., Recovery of Boric Acid from Wastewater by Solvent Extraction. Separation Science and Technology, 2006. 32(5): p. 983-991. 15. Mulder, M., Basic Principles of Membrane Technology. 1996, Boston: Springer Science and Business Media. 16. Marr, R. and A. Kopp, Liquid Membrane Technology - A Survey of Associated Phenomena, Transport Mechanisms, and Models. Chemie Ingenieur Technik, 1980. 52(5): p. 399-410. 17. Vladimir, S. and I. Kislik, Liquid Membranes: Principles and Applications in Chemical Separations and Wastewater Treatment. 2010, New York: Elsevier. 18. Chakraborty, M., C. Bhattacharya, and S. Datta, Study of the stability of W/O/W-type emulsion during the extraction of nickel via emulsion liquid membrane. Separation Science and Technology, 2004. 39(11): p. 2609-2625. 19. N, L.N., Separating hydrocarbons with liquid membranes. 1968, Google Patents. 20. Cahn, R.P. and N.N. Li, Separation of Phenol from Waste Water by the Liquid Membrane Technique. Separation Science, 1974. 9(6): p. 505-519. 21. Correia, P. and J.M.R. de Carvalho, Recovery of phenol from phenolic resin plant effluents by emulsion liquid membranes. Journal of Membrane Science, 2003. 225(1-2): p. 41-49. 22. Salazar, E., et al., Kinetics of the Separation Concentration of Chromium(VI) with Emulsion Liquid Membranes. Industrial & Engineering Chemistry Research, 1992. 31(6): p. 1523-1529. 23. Wan, Y.H., X.D. Wang, and X.J. Zhang, Treatment of high concentration phenolic waste water by liquid membrane with N-503 as mobile carrier. Journal of Membrane Science, 1997. 135(2): p. 263-270. 24. Kato, S. and J. Kawasaki, Enhancement of Hydrocarbon Permeation by Polar Additives in Liquid Emulsion Membranes. Journal of Chemical Engineering of Japan, 1987. 20(6): p. 585-590. 25. Kondo, K. and M. Matsumoto, Separation and concentration of indium (III) by an emulsion liquid membrane containing diisostearylphosphoric acid as a mobile carrier. Separation and Purification Technology, 1998. 13(2): p. 109-115. 26. Yang, X.J., A.G. Fane, and K. Soldenhoff, Comparison of liquid membrane processes for metal separations: Permeability, stability, and selectivity. Industrial & Engineering Chemistry Research, 2003. 42(2): p. 392-403. 27. Neplenbroek, A.M., D. Bargeman, and C.A. Smolders, Supported Liquid Membranes - Instability Effects. Journal of Membrane Science, 1992. 67(2-3): p. 121-132. 28. Kemperman, A.J.B., et al., Stability of supported liquid membranes: State of the art. Separation Science and Technology, 1996. 31(20): p. 2733-2762. 29. Zha, F.F., A.G. Fane, and C.J.D. Fell, Instability Mechanisms of Supported Liquid Membranes in Phenol Transport Process. Journal of Membrane Science, 1995. 107(1-2): p. 59-74. 30. Danesi, P.R., Separation of Metal Species by Supported Liquid Membranes. Separation Science and Technology, 1984. 19(11-1): p. 857-894. 31. Takeuchi, H., K. Takahashi, and W. Goto, Some Observations on the Stability of Supported Liquid Membranes. Journal of Membrane Science, 1987. 34(1): p. 19-31. 32. Takahashi, K. and H. Takeuchi, Transport of Copper Through a Supported Liquid Membrane. Journal of Chemical Engineering of Japan, 1985. 18(3): p. 205-211. 33. Danesi, P.R., L. Reichleyyinger, and P.G. Rickert, Lifetime of Supported Liquid Membranes - The Influence of Interfacial Propertoes, Chemical-composition and Water Transport on the Long-term Stability of the Membranes. Journal of Membrane Science, 1987. 31(2-3): p. 117-145. 34. Belfer, S., et al., Immobilized Extractants - Selective Transport of Magnesium and Calcium from a Mixed Chloride Solution via a Hollow Fiber Module. Journal of Applied Polymer Science, 1990. 40(11-12): p. 2073-2085. 35. Ho, W.S.W. and T.K. Poddar, New membrane technology for removal and recovery of chromium from waste waters. Environmental Progress, 2001. 20(1): p. 44-52. 36. Muthuraman, G. and T.T. Teng, Use of vegetable oil in supported liquid membrane for the transport of Rhodamine B. Desalination, 2009. 249(3): p. 1062-1066. 37. Kadous, A., M. Didi, and D. Villemin, Extraction of Uranium(VI) using D2EHPA/TOPO based supported liquid membrane. Journal of Radioanalytical and Nuclear Chemistry, 2009. 280(1): p. 157-165. 38. Parhi, P.K. and K. Sarangi, Separation of copper, zinc, cobalt and nickel ions by supported liquid membrane technique using LIX 84I, TOPS-99 and Cyanex 272. Separation and Purification Technology, 2008. 59(2): p. 169-174. 39. Adebayo, A.O. and K. Sarangi, Separation of copper from chalcopyrite leach liquor containing copper, iron, zinc and magnesium by supported liquid membrane. Separation and Purification Technology, 2008. 63(2): p. 392-399. 40. Dimitrov, K., et al., Recovery of nickel from sulphate media by batch pertraction in a rotating film contactor using Cyanex 302 as a carrier. Chemical Engineering and Processing, 2008. 47(9-10): p. 1562-1566. 41. Amiri, A.A., et al., Highly selective transport of silver ion through a supported liquid membrane using calix[4]pyrroles as suitable ion carriers. Journal of Membrane Science, 2008. 325(1): p. 295-300. 42. Saji, J., et al., Extraction of iron(III) from acidic chloride solutions by Cyanex 923. Hydrometallurgy, 1998. 49(3): p. 289-296. 43. Kojima, T. and H. Fukutomi, Extraction Equilibria of Hydrochloric Acid by Trioctylamine in Low-Polar Organic Solvents. Bull. Them. Sot. Jpn., 1987. 60: p. 1309-1320. 44. Komasawa, I. and T. Otake, The Effects of Diluent in the Liquid-Liquid Extraction of Copper and Nickel Using 2-hydroxy-5-nonylbeenzophenone Oxime. Journal of Chemical Engineering of Japan, 1983. 16: p. 377. 45. Sasaki, Y., et al., A method for the determination of extraction capacity and its application to N,N,N',N'-tetraalkylderivatives of diglycolamide-monoamide/n-dodecane media. Analytica Chimica Acta, 2005. 543(1-2): p. 31-37. 46. Sato, T., H. Watanabe, and H. Nakamura, Extraction of Latic, Tartaric, Succinic, and Citric Acids by Triotylamine. Buneki Kagaku, 1985. 34: p. 559-563. 47. Marriott, J. and E. Sorensen, A general approach to modelling membrane modules. Chemical Engineering Science, 2003. 58(22): p. 4975-4990. 48. Bringas, E., et al., An overview of the mathematical modelling of liquid membrane separation processes in hollow fibre contactors. Journal of Chemical Technology & Biotechnology, 2009. 84(11): p. 1583-1614. 49. Lipnizki, F. and R.W. Field, Mass transfer performance for hollow fibre modules with shell-side axial feed flow: using an engineering approach to develop a framework. Journal of Membrane Science, 2001. 193(2): p. 195-208. 50. Alonso, A.I., et al., Experimental and theoretical analysis of a nondispersive solvent extraction pilot plant for the removal of Cr(VI) from a galvanic process wastewaters. Industrial & Engineering Chemistry Research, 1999. 38(4): p. 1666-1675. 51. Danesi, P.R., A Simplified Model for the Coupled Transport of Metal-ions Through Hollow-fiber Supported Liquid Membranes. Journal of Membrane Science, 1984. 20(3): p. 231-248. 52. Ohto, K., et al., Solvent-extraction Equilibria of Rare-earth-Metals by Acidic Organophosphorus Extractants with Bulky Substituents. Analytical Sciences, 1995. 11(4): p. 637-641. 53. Yoshizuka, K., et al., Solvent-extraction of Holmium and Yttrium with Bis(2-ethylhexyl)phosphoric Acid. Industrial & Engineering Chemistry Research, 1992. 31(5): p. 1372-1378. 54. Yoshizuka, K., et al., Structural effect of phosphoric esters having bulky substituents on the extraction of rare earth elements. Bulletin of the Chemical Society of Japan, 1996. 69(3): p. 589-596. 55. Fu, N.X. and M. Tanaka, Modeling of the equilibria of yttrium(III) and europium(III) solvent extraction from nitric acid with PC-88A. Materials Transactions, 2006. 47(1): p. 136-142. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51654 | - |
| dc.description.abstract | 近年,因其低耗能以及操作簡便性,支撐式液膜廣泛被使用於分離回收金屬離子,同時也有許多用於描述物質於支撐式液膜輸送的理論模型被提出。本研究提出一較為簡化的理論模型對具分散反萃取相支撐式液膜分離回收釹、鏑金屬離子進行預測,並由單一金屬離子的實驗求出參數。實驗得出鏑離子的平衡常數為35841.3、水相質傳係數為7.016×10-6m/s,錯合物於膜相質傳係數為4.301×10-7m/s;釹金屬離子的平衡常數為16.7、水相質傳係數為9.665×10-6m/s,錯合物於膜相質傳係數為3.430×10-7 m/s。理論模型在雙成份系統對於pH值改變及萃取劑濃度改變有好的預測,此較為簡化的模型將利於預測系統放大。 | zh_TW |
| dc.description.abstract | The use of supported liquid membrane to separate metal ions has been widely reported for its efficiency and simple process. Mathematical models for this technique have been proposed to describe the transport behavior. In this work, a simplified model for the separation of Dy3+ and Nd3+ through supported liquid membrane with strip dispersion (SLMSD) is established and the situation of excess amount of metal ions is considered. Parameters were calculated based on single-ion experiment. For Dy3+, the equilibrium constant was found to be 35841.3, the hydraulic mass transfer coefficient 7.016×10-6m/s, and the mass transfer coefficient of the complex in the membrane phase 4.301×10-7m/s. For Nd3+, the values were 16.7, 9.665×10-6m/s, 3.430×10-7m/s respectively. The model showed good agreements in Dy3+/Nd3+ separation experiments in various pH value and extractant concentration. The simplicity of the model gives an advantage on scale-up process. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:43:04Z (GMT). No. of bitstreams: 1 ntu-104-R02524058-1.pdf: 2296511 bytes, checksum: c643222599ca3b21bbf97c120c918114 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 第一章 緒論 1
第二章 文獻回顧 3 2-1溶劑萃取 3 2-1-1溶劑萃取的原理 3 2-1-2物理萃取 5 2-1-3化學萃取 5 2-1-3-1萃取劑 5 2-1-3-2稀釋劑 10 2-1-3-3修飾劑 12 2-2液膜分離技術 12 2-2-1液膜的輸送機制與原理 13 2-2-1-1簡單擴散傳送(simple transport) 13 2-2-1-2載體輔助傳送(facilitated or carrier-mediated transport) 14 2-2-1-3偶聯輔助傳送(coupled transport) 14 2-2-2液膜的型式 16 2-2-2-1乳化式液膜 17 2-2-2-2支撐式液膜 19 2-2-3支撐式液膜的不穩定性與改善 22 2-2-4影響支撐式液膜效率的參數 26 2-2-5支撐式液膜理論模型 28 第三章 實驗理論 33 3-1萃取平衡 33 3-2支撐式液膜之效能參數 34 3-3支撐式液膜透膜速率之理論模型 35 第四章 實驗方法 39 4-1設備與儀器 39 4-2實驗藥品 42 4-3實驗步驟 44 4-3-1搖瓶式萃取平衡實驗 44 4-3-2具分散反萃取相支撐式液膜 45 4-3-3樣品濃度量測 47 第五章 結果與討論 49 5-1釹、鏑離子透過係數的模型建立 49 5-1-1萃取反應機制與平衡常數 49 5-1-2質傳係數計算 53 5-1-3理論模型對雙成分系統的分離回收之預測 64 第六章 結論 69 參考文獻 71 | |
| dc.language.iso | zh-TW | |
| dc.subject | 萃取 | zh_TW |
| dc.subject | 二(2-乙基己基)磷酸 | zh_TW |
| dc.subject | 支撐式液膜 | zh_TW |
| dc.subject | 理論模型 | zh_TW |
| dc.subject | model | en |
| dc.subject | di-(2-ethylhexyl) phosphoric acid | en |
| dc.subject | extraction | en |
| dc.subject | supported liquid membrane | en |
| dc.title | pH值對具分散反萃取相支撐式液膜分離之影響及其數學模式分析 | zh_TW |
| dc.title | pH Effects on Separation Using Supported Liquid Membrane with Strip Dispersion and Mathematical Modeling Analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝學真,劉培毅,彭震 | |
| dc.subject.keyword | 支撐式液膜,理論模型,萃取,二(2-乙基己基)磷酸, | zh_TW |
| dc.subject.keyword | supported liquid membrane,model,extraction,di-(2-ethylhexyl) phosphoric acid, | en |
| dc.relation.page | 79 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-12-24 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
