Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51641
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳志毅
dc.contributor.authorChao-Chen Changen
dc.contributor.author張晁禎zh_TW
dc.date.accessioned2021-06-15T13:42:27Z-
dc.date.available2016-02-15
dc.date.copyright2016-02-15
dc.date.issued2015
dc.date.submitted2015-12-28
dc.identifier.citation一
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, etal., 'Electric field effect in atomically thin carbon films,' Science, vol. 306, pp. 666-669,Oct 22 2004.
[2] J. S. Moon, D. Curtis, M. Hu, D. Wong, C. McGuire, P. M. Campbell, et al.,'Epitaxial-Graphene RF Field-Effect Transistors on Si-Face 6H-SiC Substrates,' IeeeElectron Device Letters, vol. 30, pp. 650-652, Jun 2009.
[3] K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim,'A roadmap for graphene,' Nature, vol. 490, pp. 192-200, Oct 11 2012.
[4] X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, et al., 'Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,' Science, vol.324, pp. 1312-1314, Jun 5 2009.
[5] W. H. Lin, T. H. Chen, J. K. Chang, J. I. Taur, Y. Y. Lo, W. L. Lee, et al., 'A Directand Polymer-Free Method for Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate,' Acs Nano, vol. 8, pp. 1784-1791, Feb 2014.
[6] T. Mueller, F. Xia, and P. Avouris, 'Graphene photodetectors for high-speed optical communications,' Nature Photonics, vol. 4, pp. 297-301, 2010.
[7] F. N. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, et al.,'Photocurrent Imaging and Efficient Photon Detection in a Graphene Transistor,' NanoLetters, vol. 9, pp. 1039-1044, Mar 2009.
[8] F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, 'Ultrafast graphenephotodetector,' Nat Nanotechnol, vol. 4, pp. 839-43, Dec 2009.
[9] A. K. Geim, 'Graphene: Status and Prospects,' Science, vol. 324, pp. 1530-1534,Jun 19 2009.
[10] A. K. Geim and K. S. Novoselov, 'The rise of graphene,' Nature Materials, vol. 6,pp. 183-191, Mar 2007.
[11] A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, 'The electronic properties of graphene,' Reviews of Modern Physics, vol. 81, pp. 109-162, 2009.
[12] J. W. Suk, A. Kitt, C. W. Magnuson, Y. F. Hao, S. Ahmed, J. H. An, et al., 'Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates,' Acs Nano, vol. 5, pp. 6916-6924, Sep 2011.
[13] Y. C. Lin, C. C. Lu, C. H. Yeh, C. Jin, K. Suenaga, and P. W. Chiu, 'Grapheneannealing: how clean can it be?,' Nano Lett, vol. 12, pp. 414-9, Jan 11 2012.
[14] U. N. Maiti, W. J. Lee, J. M. Lee, Y. Oh, J. Y. Kim, J. E. Kim, et al., '25thAnniversary Article: Chemically Modified/Doped Carbon Nanotubes & Graphene forOptimized Nanostructures & Nanodevices,' Advanced Materials, vol. 26, pp. 40-67, Jan2014.
[15] G. Jo, M. Choe, S. Lee, W. Park, Y. H. Kahng, and T. Lee, 'The application ofgraphene as electrodes in electrical and optical devices,' Nanotechnology, vol. 23, Mar23 2012.
[16] Y. M. Shi, K. K. Kim, A. Reina, M. Hofmann, L. J. Li, and J. Kong, 'Work FunctionEngineering of Graphene Electrode via Chemical Doping,' Acs Nano, vol. 4, pp. 2689-2694, May 2010.
[17] H. Pinto, R. Jones, J. P. Goss, and P. R. Briddon, 'p-type doping of graphene withF4-TCNQ,' J Phys Condens Matter, vol. 21, p. 402001, Oct 7 2009.
[18] S. Huh, J. Park, Y. S. Kim, K. S. Kim, B. H. Hong, and J. M. Nam, 'UV/Ozone-Oxidized Large-Scale Graphene Platform with Large Chemical Enhancement in Surface-Enhanced Raman Scattering,' Acs Nano, vol. 5, pp. 9799-9806, Dec 2011.
[19] Y. Ren, S. Chen, W. Cai, Y. Zhu, C. Zhu, and R. S. Ruoff, 'Controlling the electrical transport properties of graphene by in situ metal deposition,' Applied Physics Letters, vol. 97, p. 053107, 2010.
[20] E. J. Lee, K. Balasubramanian, R. T. Weitz, M. Burghard, and K. Kern, 'Contact and edge effects in graphene devices,' Nat Nanotechnol, vol. 3, pp. 486-90, Aug 2008.
[21] G. Giovannetti, P. Khomyakov, G. Brocks, V. Karpan, J. van den Brink, and P. Kelly, 'Doping Graphene with Metal Contacts,' Physical Review Letters, vol. 101, 2008.
[22] F. Schwierz, 'Graphene transistors,' Nat Nanotechnol, vol. 5, pp. 487-96, Jul 2010.
[23] M. Y. Han, B. Ozyilmaz, Y. B. Zhang, and P. Kim, 'Energy band-gap engineering of graphene nanoribbons,' Physical Review Letters, vol. 98, May 18 2007.
[24] A. H. Zhang, Y. H. Wu, S. H. Ke, Y. P. Feng, and C. Zhang, 'Bandgap engineeringof zigzag graphene nanoribbons by manipulating edge states via defective boundaries,'Nanotechnology, vol. 22, Oct 28 2011.
[25] C. A. Xu, H. Li, and K. Banerjee, 'Modeling, Analysis, and Design of GrapheneNano-Ribbon Interconnects,' Ieee Transactions on Electron Devices, vol. 56, pp. 1567-1578, Aug 2009.
[26] X. G. Liang, Y. S. Jung, S. W. Wu, A. Ismach, D. L. Olynick, S. Cabrini, et al.,'Formation of Bandgap and Subbands in Graphene Nanomeshes with Sub-10 nm Ribbon Width Fabricated via Nanoimprint Lithography,' Nano Letters, vol. 10, pp. 2454-2460, Jul 2010.
[27] J. W. Bai, X. Zhong, S. Jiang, Y. Huang, and X. F. Duan, 'Graphene nanomesh,'Nature Nanotechnology, vol. 5, pp. 190-194, Mar 2010.
[28] S. Lebegue, M. Klintenberg, O. Eriksson, and M. I. Katsnelson, 'Accurate electronic band gap of pure and functionalized graphane from GW calculations,' Physical Review B, vol. 79, Jun 2009.
[29] J. O. Sofo, A. S. Chaudhari, and G. D. Barber, 'Graphane: A two-dimensionalhydrocarbon,' Physical Review B, vol. 75, Apr 2007.
[30] D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, et al., 'Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane,' Science, vol. 323, pp. 610-613, Jan 30 2009.
[31] S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, 'A self-consistent theory for graphene transport,' Proc Natl Acad Sci U S A, vol. 104, pp. 18392-7, Nov 20 2007.
[32] M. Trushin and J. Schliemann, 'Conductivity of graphene: How to distinguish between samples with short- and long-range scatterers,' EPL (Europhysics Letters), vol.83, p. 17001, 2008.
[33] J. W. Kłos and I. V. Zozoulenko, 'Effect of short- and long-range scattering on the conductivity of graphene: Boltzmann approach vs tight-binding calculations,' PhysicalReview B, vol. 82, 2010.
[34] K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, 'Temperature-Dependent Transport in Suspended Graphene,' Physical Review Letters, vol. 101, 2008.
[35] T. Ando, 'Screening Effect and Impurity Scattering in Monolayer Graphene,'89 Journal of the Physical Society of Japan, vol. 75, p. 074716, 2006.
[36] C. Jang, S. Adam, J. H. Chen, E. D. Williams, S. Das Sarma, and M. S. Fuhrer,'Tuning the Effective Fine Structure Constant in Graphene: Opposing Effects ofDielectric Screening on Short- and Long-Range Potential Scattering,' Physical ReviewLetters, vol. 101, 2008.
[37] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, et al.,'Ultrahigh electron mobility in suspended graphene,' Solid State Communications, vol.146, pp. 351-355, 2008.
[38] J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, 'Intrinsic and extrinsic performance limits of graphene devices on SiO2,' Nat Nanotechnol, vol. 3, pp. 206-9, Apr 2008.
[39] M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, and E. D. Williams, 'Atomicstructure of graphene on SiO2,' Nano Letters, vol. 7, pp. 1643-1648, Jun 2007.
[40] H. E. Romero, N. Shen, P. Joshi, H. R. Gutierrez, S. A. Tadigadapa, J. O. Sofo, et al., 'n-Type Behavior of Graphene Supported on Si/SiO2 Substrates,' Acs Nano, vol. 2, pp. 2037-2044, Oct 2008.
[41] S. Ryu, L. Liu, S. Berciaud, Y. J. Yu, H. Liu, P. Kim, et al., 'Atmospheric oxygenbinding and hole doping in deformed graphene on a SiO(2) substrate,' Nano Lett, vol. 10, pp. 4944-51, Dec 8 2010.
[42] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, et al., 'Boronnitride substrates for high-quality graphene electronics,' Nat Nanotechnol, vol. 5, pp.722-6, Oct 2010.
[43] R. Decker, Y. Wang, V. W. Brar, W. Regan, H. Z. Tsai, Q. Wu, et al., 'Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy,' Nano Lett, vol. 11, pp. 2291-5, Jun 8 2011.
[44] J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, et al., 'Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride,' Nat Mater, vol. 10, pp. 282-5, Apr 2011.
[45] K. Shankar and T. N. Jackson, 'Morphology and electrical transport in pentacenefilms on silylated oxide surfaces,' Journal of Materials Research, vol. 19, pp. 2003-2007, 2011.
[46] S. Chattopadhyay, A. Uysal, B. Stripe, Y.-g. Ha, T. J. Marks, E. A. Karapetrova, etal., 'How Water Meets a Very Hydrophobic Surface,' Physical Review Letters, vol. 105, 2010.
[47] Y. L. Wang and M. Lieberman, 'Growth of ultrasmooth octadecyltrichlorosilane self-assembled monolayers on SiO2,' Langmuir, vol. 19, pp. 1159-1167, Feb 18 2003.
[48] M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. V. Klitzing, et al., 'Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions,' Nano Lett, vol. 10, pp. 1149-53, Apr 14 2010.
[49] M. E. Mcgovern, K. M. R. Kallury, and M. Thompson, 'Role of Solvent on the Silanization of Glass with Octadecyltrichlorosilane,' Langmuir, vol. 10, pp. 3607-3614, Oct 1994.
[50] M. Mezger, H. Reichert, S. Schoder, J. Okasinski, H. Schroder, H. Dosch, et al., 'High-resolution in situ x-ray study of the hydrophobic gap at the water-octadecyltrichlorosilane interface,' Proc Natl Acad Sci U S A, vol. 103, pp. 18401-4, Dec 5 2006.
[51] S. C. Clear and P. F. Nealey, 'Lateral force microscopy study of the frictional behavior of self-assembled monolayers of octadecyltrichlorosilane on silicon/silicon dioxide immersed in n-alcohols,' Langmuir, vol. 17, pp. 720-732, Feb 6 2001.
[52] S. Hansel, M. Lafkioti, and V. Krstić, 'Suppression of short-range scattering via hydrophobic substrates and the fractional quantum Hall effect in graphene,' physica status solidi (RRL) - Rapid Research Letters, vol. 6, pp. 376-378, 2012.
[53]Low-Contact-Resistance Graphene Devices with Nickel-Etched-Graphene Contacts Wei Sun Leong, Hao Gong, and John T. L. Thong, 2014
二
[1] Microchem PMMA Data Sheet http://www.microchem.com/pdf/PMMA_Data_Sheet.pdf
[2] N. O. Weiss, H. L. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, et al., 'Graphene: An Emerging Electronic Material,' Advanced Materials, vol. 24, pp. 5782-5825, Nov 14 2012.
[3] J. W. Kłos and I. V. Zozoulenko, 'Effect of short- and long-range scattering on the conductivity of graphene: Boltzmann approach vs tight-binding calculations,' Physical Review B, vol. 82, 2010.
[4] M. Auslender and M. Katsnelson, 'Generalized kinetic equations for charge carriers in graphene,' Physical Review B, vol. 76, 2007.
[5] J. Kailasvuori and M. C. Lüffe, 'Quantum corrections in the Boltzmann conductivity of graphene and their sensitivity to the choice of formalism,' Journal of Statistical Mechanics: Theory and Experiment, vol. 2010, p. P06024, 2010.
[6] E. Hwang, S. Adam, and S. Sarma, 'Carrier Transport in Two-Dimensional Graphene Layers,' Physical Review Letters, vol. 98, 2007.
三
[1] S. Russo∗, M.F. Craciun, M. Yamamoto, A. F. Morpurgo, and S. Tarucha Contact resistance in graphene-based devices
[2] W. Li, Y. Liang, D. Yu, L. Peng, K. P. Pernstich, T. Shen, et al., 'Ultraviolet/ozone treatment to reduce metal-graphene contact resistance,' Applied Physics Letters, vol. 102,p. 183110, 2013.
[3] O. Balci and C. Kocabas, 'Rapid thermal annealing of graphene-metal contact,' Applied Physics Letters, vol. 101, p. 243105, 2012.
[4] W. Li, Y. Liang, D. Yu, L. Peng, K. P. Pernstich, T. Shen, et al., 'Ultraviolet/ozone treatment to reduce metal-graphene contact resistance,' Applied Physics Letters, vol. 102, p. 183110, 2013.
[5] Gabriele Fisichella, Salvatore Di Franco, Patrick Fiorenza1, Raffaella Lo Nigro, Fabrizio Roccaforte, Cristina Tudisco, Guido G. Condorelli, Nicolò Piluso, Noemi Spartà, Stella Lo Verso, Corrado Accardi, Cristina Tringali, Sebastiano Ravesi and Filippo Giannazzo Micro- and nanoscale electrical characterization of large-area graphene transferred to functional substrates.
[6] A. Venugopal, L. Colombo, and E. M. Vogel Contact resistance in few and multilayer graphene devices.
[7] Fengnian Xia, Vasili Perebeinos, Yu-ming Lin, Yanqing Wu and Phaedon Avouris 'The origins and limits of metal–graphene junction resistance' nature nanotechnology, 2011.
[8] G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly 'The origins and limits of metal–graphene junction resistance'Doping Graphene with Metal Contacts
[9] Calcium - Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Calcium
[10] Eiichiro Watanabe, Arolyn Conwill, Daiju Tsuya, Yasuo Koide 'Low contact resistance metals for graphene based devices' Diamond & Related Materials 24 2012 171–174
四
[1] O. Frank, M. Mohr, J. Maultzsch, C. Thomsen, I. Riaz, R. Jalil, et al., 'Raman 2DBand Splitting in Graphene: Theory and Experiment,' Acs Nano, vol. 5, pp. 2231-2239, Mar 2011.
[2]Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene Hailong Zhou1, Woo Jong Yu1,w, Lixin Liu2, Rui Cheng2, Yu Chen2, Xiaoqing Huang2, Yuan Liu2, Yang Wang2, Yu Huang2,3 & Xiangfeng Duan1,3
[3]Graphene Single Crystals: Size and Morphology EngineeringDechao Geng , Huaping Wang , and Gui Yu * Adv. Mater. 2015, 27, 2821–2837
[4]Controlled Growth of Single-Crystal Twelve-Pointed Graphene Grains on a Liquid Cu Surface Dechao Geng , Lan Meng , Bingyan Chen , Enlai Gao , Wei Yan , Hui Yan , Birong Luo , Jie Xu , Huaping Wang , Zupan Mao , Zhiping Xu , Lin He , Zhiyong Zhang , Lianmao Peng , and Gui YuAdv. Mater. 2014, 26, 6423–6429
[5]Low-Contact-Resistance Graphene Devices with Nickel-Etched-Graphene Contacts Wei Sun Leong,† Hao Gong,‡ and John T. L. Thong†,* 2014
[6]Toward the Synthesis of Wafer-Scale Single-Crystal Graphene on Copper FoilsZ. Yan , J. Lin , Z. W. Peng , Z. Z. Sun , Y. Zhu , L. Li , C. S. Xiang , E. L. Samuel , C. Kittrell , J. M. Tour , ACS Nano 2012 , 6 , 9110 .
[7]Repeated GrowthEtchingRegrowthfor Large-Area Defect-Free Single-Crystal Graphene by Chemical Vapor DepositionT. Ma , W. C. Ren , Z. B. Liu , L. Huang , L. P. Ma , X. L. Ma ,Z. Y. Zhang , L. M. Peng , H. M. Cheng , ACS Nano 2014 , 8 , 12806 .
[8]H. L. Zhou , W. J. Yu , L. X. Liu , R. Cheng , Y. Chen , X. Q. Huang ,Y. Liu , Y. Wang , Y. Huang , X. F. Duan , Nat. Commun. 2013 , 4 ,e2096 .
[9] “Ballistic Transport in Graphene Nanostrips in the Presence of Disorder: Importance of Edge Effects” Denis A. Areshkin, Daniel Gunlycke, and Carter T., White NANO LETTERS 2007”
[10] “Edge Effects in Finite Elongated Graphene Nanoribbons” Oded Hod, Juan E. Peralta, and Gustavo E. Scuseria, Phys. Rev. B 2007
[11] “Contact and edge effects in grapheneDevices”EDUARDO J. H. LEE, KANNAN BALASUBRAMANIAN, RALF THOMAS WEITZ, MARKO BURGHARD AND KLAUS KERN, nature nanotechnology VOL 3 AUGUST 2008
五
[1] Michele Lazzeri and Francesco Mauri Nonadiabatic Kohn Anomaly in a Doped Graphene Monolayer Phys. Rev. Lett. 97, 266407 – Published 29 December 2006
[2] Dacheng Wei, Yunqi Liu, Yu Wang, Hongliang Zhang, Liping Huang and Gui Yu Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties Nano Lett., 2009, 9 (5), pp 1752–1758
[3] Beidou Guo, Qian Liu, Erdan Chen, Hewei Zhu, Liang Fang, and Jian Ru Gong Controllable N-Doping of Graphene Nano Lett., 2010, 10 (12), pp 4975–4980
[4] M. E. Mcgovern, K. M. R. Kallury, and M. Thompson, 'Role of Solvent on the Silanization of Glass with Octadecyltrichlorosilane,' Langmuir, vol. 10, pp. 3607-3614, Oct 1994.
[5] N. Tillman, A. Ulman, J. S. Schildkraut, and T. L. Penner, 'Incorporation of Phenoxy Groups in Self-Assembled Monolayers of Trichlorosilane Derivatives - Effects on Film Thickness, Wettability, and Molecular-Orientation,' Journal of the American Chemical Society, vol. 110, pp. 6136-6144, Aug 31 1988.
[6] D. Janssen, R. De Palma, S. Verlaak, P. Heremans, and W. Dehaen, 'Static solvent 148 contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide,' Thin Solid Films, vol. 515, pp. 1433-1438, 2006.
[7] W. H. Lee, J. Park, Y. Kim, K. S. Kim, B. H. Hong, and K. Cho, 'Control of grapheme field-effect transistors by interfacial hydrophobic self-assembled monolayers,' Adv Mater, vol. 23, pp. 3460-4, Aug 9 2011.
[8] Y. C. Lin, C. C. Lu, C. H. Yeh, C. Jin, K. Suenaga, and P. W. Chiu, 'Graphene annealing: how clean can it be?,' Nano Lett, vol. 12, pp. 414-9, Jan 11 2012.
[9] S. Y. Chen, P. H. Ho, R. J. Shiue, C. W. Chen, and W. H. Wang, 'Transport/magnetotransport of high-performance graphene transistors on organic molecule-functionalized substrates,' Nano Lett, vol. 12, pp. 964-9, Feb 8 2012.
[10] M.-H. Chen, Y.-J. Lu, Y.-J. Chang, C.-C. Wu, and C.-I. Wu, 'Interfacial Reactions and Doping in Organic Light Emitting Diodes Incorporated with Cesium-Based Compounds,' Electrochemical and Solid-State Letters, vol. 13, p. H203, 2010.
[11] S. Morozov, K. Novoselov, M. Katsnelson, F. Schedin, D. Elias, J. Jaszczak, et al., 'Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer,' Physical Review Letters, vol. 100, 2008.
[12] K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, 'A roadmap for graphene,' Nature, vol. 490, pp. 192-200, Oct 11 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51641-
dc.description.abstract本篇論文的主題圍繞著石墨烯進行,一開始先簡介石墨烯的歷史及基礎特性,藉此對石墨烯有基本認識,並且了解到為何石墨烯會是近期新興的研究題材。石墨烯有許多可研究的領域,而其中石墨烯場效電晶體就是一個相當熱門的元件領域。
  因此,我們開始著手於石墨烯場效電晶體的研究,其高載子遷移率的特性讓石墨烯只要蒸鍍上電極,就可以簡單地贏過其他材料日積月累的成果,儘管如此,人們仍然想要讓其表現更接近理論計算,讓其更臻進步,因此有許多研究團隊藉由提升石墨烯的品質來讓其元件通道表現更好,有些研究團隊透過基板的改質,讓雜質可以去除,修復石墨烯本身的缺陷。
  而在本篇論文中,第一部份測量了石墨烯與金屬之間的接觸電阻,經由檢測多種金屬與石墨烯之間的交互作用,選取了表現最佳的金屬作為後續研究的元件電極。接著,利用電子束微影的方式搭配乾淨的轉印手段,將石墨烯場效電晶體的表現達到其他研究團隊使用單晶石墨烯的水平,透過這樣的方式,可以更有效地降低成長石墨烯的困難,利用較簡單的製程達到最好的元件表現。
zh_TW
dc.description.abstract“Graphene” is the center of the topic in this thesis. First, this thesis reviews the history and fundamental electronic property of graphene, and it explains why graphene became the most popular material recently. Graphene field effect transistor is one of the important research topics among the diverse researches of graphene.
Due to the above reasons, this thesis focuses on graphene field effect transistor. The high mobility property result in once the electrode deposit on graphene, it can defeat other material. However, the performance of graphene is expected to be better and better. As a result, some use single crystal graphene that make the channel better, others use self-assembled monolayer to make the wafer smoother.
In first part of this thesis, we measure the contact resistance of graphene and metal. Based on the measuring results, we choose the best one to be the electrode of graphene field effect transistor. Furthermore, we use electron beam lithography and polymer free method to reach the single crystal carrier mobility researched by other teams. By this method, we can use polycrystalline graphene to reach higher mobility. Thus, the process will be much simpler than before.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:42:27Z (GMT). No. of bitstreams: 1
ntu-104-R02941123-1.pdf: 4036505 bytes, checksum: 58f33dcfc5ac4b270a2ce12155dc3020 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents誌謝 i
中文摘要 iii
Abstract iv
Cintents v
LIST OF FIGURES viii
LIST OF TABLES viii
Chapter 1 緒論 1
1.1 石墨烯的歷史 1
1.2 石墨烯的基本特性 2
1.2.1 石墨烯的電特性及半導體能帶結構 2
1.2.2 石墨烯的轉印 4
1.2.3 石墨烯的參雜 5
1.3 石墨烯場效電晶體 7
1.3.1 石墨烯場效電晶體的基本性質與結構 7
1.3.2 基板相關特性 9
1.4 研究目標 11
1.5 參考文獻 12
Chapter 2 實驗方法與材料 18
2.1 實驗材料 18
2.1.1 過硫酸銨(APS) 18
2.1.2 PMMA(495A2,950A4) 18
2.2 實驗方法 19
2.2.1 樣品準備. 19
2.2.2 轉印. 20
2.2.3 上光阻. 21
2.2.4 電子顯微鏡及電子束微影. 21
2.2.5 熱蒸鍍. 22
2.2.6 理論分析. 24
2.2.7 紫外線光電子頻譜 (UPS) 與 X射線光電子頻譜 (XPS) . 25
2.2.9 拉曼頻譜. 28
2.3 參考文獻 29
Chapter 3 接觸電阻 30
3.1 接觸電阻基本理論 30
3.2 傳輸線模型 31
3.2.1 傳輸線模型理論基礎 31
3.2.2 實驗基本架構 33
3.3 石墨烯與金屬的接觸電阻 34
3.3.1 實驗數據 34
3.3.2 結果分析 39
3.4 石墨烯與金屬之間的交互作用 42
3.4.1 利用XPS分析銀與石墨烯之間的交互作用 42
3.4.2 利用XPS分析銀與石墨烯之間的交互作用 45
3.5 參考文獻 49
Chapter 4 電子束微影石墨烯場效電晶體 51
4.1 石墨烯在矽基板上之特性 51
4.1.1 石墨烯在金上的XPS及UPS分析 51
4.1.2 石墨烯在矽基板上的拉曼量測 53
4.1.3 石墨烯轉印方法對石墨烯場效電晶體之影響 55
4.2 電子束微影 57
4.2.1 直接蒸鍍電極之石墨烯場效電晶體 57
4.2.2 微小尺寸之石墨烯場效電晶體 60
4.3 參考文獻 67
Chapter 5 結語 69
5.1 總結 69
5.2 未來展望 69
5.3 參考文獻 70
dc.language.isozh-TW
dc.subject無高分子轉印法zh_TW
dc.subject石墨烯場效電晶體zh_TW
dc.subject電子束微影zh_TW
dc.subject傳輸線模型zh_TW
dc.subjectgraphene field effect transistoren
dc.subjectTransmission line modelen
dc.subjectpolymer-freeen
dc.subjectelectron beam lithographyen
dc.title使用電子束微影製備高載子遷移率之石墨烯場效電晶體zh_TW
dc.titleUsing Electron Beam Lithography To Manufacture High-Mobility Graphene Field Effect Transistorsen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳奕君,吳肇欣,陳美杏
dc.subject.keyword石墨烯場效電晶體,電子束微影,傳輸線模型,無高分子轉印法,zh_TW
dc.subject.keywordgraphene field effect transistor,electron beam lithography,polymer-free,Transmission line model,en
dc.relation.page71
dc.rights.note有償授權
dc.date.accepted2015-12-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
3.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved