Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51638
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor呂紹俊(Shao-Chun Lu)
dc.contributor.authorYu-Sheng Laien
dc.contributor.author賴昱昇zh_TW
dc.date.accessioned2021-06-15T13:42:20Z-
dc.date.available2019-02-26
dc.date.copyright2016-02-26
dc.date.issued2015
dc.date.submitted2015-12-29
dc.identifier.citation1. Farrell GC, Larter CZ. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology 2006;43:S99-S112.
2. Farrell GC, Wong VW, Chitturi S. NAFLD in Asia--as common and important as in the West. Nat Rev Gastroenterol Hepatol 2013;10:307-318.
3. Musso G, Gambino R, Cassader M, Pagano G. Meta-analysis: natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity. Ann Med 2011;43:617-649.
4. Stepanova M, Younossi ZM. Independent association between nonalcoholic fatty liver disease and cardiovascular disease in the US population. Clin Gastroenterol Hepatol 2012;10:646-650.
5. Armstrong MJ, Adams LA, Canbay A, Syn WK. Extrahepatic complications of nonalcoholic fatty liver disease. Hepatology 2014;59:1174-1197.
6. Harrison SA, Torgerson S, Hayashi PH. The natural history of nonalcoholic fatty liver disease: a clinical histopathological study. Am J Gastroenterol 2003;98:2042-2047.
7. Day CP, James OF. Steatohepatitis: a tale of two 'hits'? Gastroenterology 1998;114:842-845.
8. Fabbrini E, Mohammed BS, Magkos F, Korenblat KM, Patterson BW, Klein S. Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology 2008;134:424-431.
9. Farrell GC, van Rooyen D, Gan L, Chitturi S. NASH is an Inflammatory Disorder: Pathogenic, Prognostic and Therapeutic Implications. Gut Liver 2012;6:149-171.
10. Neuschwander-Tetri BA. Nontriglyceride hepatic lipotoxicity: the new paradigm for the pathogenesis of NASH. Curr Gastroenterol Rep 2010;12:49-56.
11. Neuschwander-Tetri BA. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology 2010;52:774-788.
12. Alkhouri N, Dixon LJ, Feldstein AE. Lipotoxicity in nonalcoholic fatty liver disease: not all lipids are created equal. Expert Rev Gastroenterol Hepatol 2009;3:445-451.
13. Larter CZ, Chitturi S, Heydet D, Farrell GC. A fresh look at NASH pathogenesis. Part 1: the metabolic movers. J Gastroenterol Hepatol 2010;25:672-690.
14. Watanabe S, Hashimoto E, Ikejima K, Uto H, Ono M, Sumida Y, Seike M, et al. Evidence-based clinical practice guidelines for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. J Gastroenterol 2015;50:364-377.
15. Milic S, Mikolasevic I, Krznaric-Zrnic I, Stanic M, Poropat G, Stimac D, Vlahovic-Palcevski V, et al. Nonalcoholic steatohepatitis: emerging targeted therapies to optimize treatment options. Drug Des Devel Ther 2015;9:4835-4845.
16. Li Z, Berk M, McIntyre TM, Gores GJ, Feldstein AE. The lysosomal-mitochondrial axis in free fatty acid-induced hepatic lipotoxicity. Hepatology 2008;47:1495-1503.
17. Brenner DA, Seki E, Taura K, Kisseleva T, Deminicis S, Iwaisako K, Inokuchi S, et al. Non-alcoholic steatohepatitis-induced fibrosis: Toll-like receptors, reactive oxygen species and Jun N-terminal kinase. Hepatol Res 2011;41:683-686.
18. Boden G, She P, Mozzoli M, Cheung P, Gumireddy K, Reddy P, Xiang X, et al. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver. Diabetes 2005;54:3458-3465.
19. Qureshi K, Abrams GA. Metabolic liver disease of obesity and role of adipose tissue in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol 2007;13:3540-3553.
20. Diehl AM. Tumor necrosis factor and its potential role in insulin resistance and nonalcoholic fatty liver disease. Clin Liver Dis 2004;8:619-638, x.
21. Mishima Y, Kuyama A, Tada A, Takahashi K, Ishioka T, Kibata M. Relationship between serum tumor necrosis factor-alpha and insulin resistance in obese men with Type 2 diabetes mellitus. Diabetes Res Clin Pract 2001;52:119-123.
22. Manco M, Marcellini M, Giannone G, Nobili V. Correlation of serum TNF-alpha levels and histologic liver injury scores in pediatric nonalcoholic fatty liver disease. Am J Clin Pathol 2007;127:954-960.
23. Wigg AJ, Roberts-Thomson IC, Dymock RB, McCarthy PJ, Grose RH, Cummins AG. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut 2001;48:206-211.
24. Su GL. Lipopolysaccharides in liver injury: molecular mechanisms of Kupffer cell activation. Am J Physiol Gastrointest Liver Physiol 2002;283:G256-265.
25. Tosello-Trampont AC, Landes SG, Nguyen V, Novobrantseva TI, Hahn YS. Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-alpha production. J Biol Chem 2012;287:40161-40172.
26. Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes 2007;56:1010-1013.
27. van der Poorten D, Milner KL, Hui J, Hodge A, Trenell MI, Kench JG, London R, et al. Visceral fat: a key mediator of steatohepatitis in metabolic liver disease. Hepatology 2008;48:449-457.
28. Dela Pena A, Leclercq I, Field J, George J, Jones B, Farrell G. NF-kappaB activation, rather than TNF, mediates hepatic inflammation in a murine dietary model of steatohepatitis. Gastroenterology 2005;129:1663-1674.
29. Schattenberg JM, Wang Y, Singh R, Rigoli RM, Czaja MJ. Hepatocyte CYP2E1 overexpression and steatohepatitis lead to impaired hepatic insulin signaling. J Biol Chem 2005;280:9887-9894.
30. Leclercq IA, Farrell GC, Field J, Bell DR, Gonzalez FJ, Robertson GR. CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J Clin Invest 2000;105:1067-1075.
31. Begriche K, Igoudjil A, Pessayre D, Fromenty B. Mitochondrial dysfunction in NASH: causes, consequences and possible means to prevent it. Mitochondrion 2006;6:1-28.
32. Nishida M, Funahashi T, Shimomura I. Pathophysiological significance of adiponectin. Med Mol Morphol 2007;40:55-67.
33. Amar J, Burcelin R, Ruidavets JB, Cani PD, Fauvel J, Alessi MC, Chamontin B, et al. Energy intake is associated with endotoxemia in apparently healthy men. Am J Clin Nutr 2008;87:1219-1223.
34. Miele L, Valenza V, La Torre G, Montalto M, Cammarota G, Ricci R, Masciana R, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 2009;49:1877-1887.
35. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007;56:1761-1772.
36. Kesar V, Odin JA. Toll-like receptors and liver disease. Liver Int 2014;34:184-196.
37. Brun P, Castagliuolo I, Pinzani M, Palu G, Martines D. Exposure to bacterial cell wall products triggers an inflammatory phenotype in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2005;289:G571-578.
38. Seki E, Brenner DA. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology 2008;48:322-335.
39. Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA, Schwabe RF. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 2007;13:1324-1332.
40. Tsukumo DM, Carvalho-Filho MA, Carvalheira JB, Prada PO, Hirabara SM, Schenka AA, Araujo EP, et al. Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes 2007;56:1986-1998.
41. Miura K, Kodama Y, Inokuchi S, Schnabl B, Aoyama T, Ohnishi H, Olefsky JM, et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology 2010;139:323-334 e327.
42. De Nardo D, De Nardo CM, Nguyen T, Hamilton JA, Scholz GM. Signaling crosstalk during sequential TLR4 and TLR9 activation amplifies the inflammatory response of mouse macrophages. J Immunol 2009;183:8110-8118.
43. Davis BK, Wen H, Ting JP. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 2011;29:707-735.
44. Csak T, Ganz M, Pespisa J, Kodys K, Dolganiuc A, Szabo G. Fatty Acid and Endotoxin Activate Inflammasomes in Mouse Hepatocytes that Release Danger Signals to Stimulate Immune Cells. Hepatology 2011;54:133-144.
45. de Roos B, Rungapamestry V, Ross K, Rucklidge G, Reid M, Duncan G, Horgan G, et al. Attenuation of inflammation and cellular stress-related pathways maintains insulin sensitivity in obese type I interleukin-1 receptor knockout mice on a high-fat diet. Proteomics 2009;9:3244-3256.
46. Dixon LJ, Flask CA, Papouchado BG, Feldstein AE, Nagy LE. Caspase-1 as a central regulator of high fat diet-induced non-alcoholic steatohepatitis. PLoS One 2013;8:e56100.
47. Bass NM. Lipidomic dissection of nonalcoholic steatohepatitis: moving beyond foie gras to fat traffic. Hepatology 2010;51:4-7.
48. Caballero F, Fernandez A, De Lacy AM, Fernandez-Checa JC, Caballeria J, Garcia-Ruiz C. Enhanced free cholesterol, SREBP-2 and StAR expression in human NASH. J Hepatol 2009;50:789-796.
49. Puri P, Baillie RA, Wiest MM, Mirshahi F, Choudhury J, Cheung O, Sargeant C, et al. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 2007;46:1081-1090.
50. Van Rooyen DM, Larter CZ, Haigh WG, Yeh MM, Ioannou G, Kuver R, Lee SP, et al. Hepatic free cholesterol accumulates in obese, diabetic mice and causes nonalcoholic steatohepatitis. Gastroenterology 2011;141:1393-1403, 1403 e1391-1395.
51. Fu S, Yang L, Li P, Hofmann O, Dicker L, Hide W, Lin X, et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 2011;473:528-531.
52. Li L, Hossain MA, Sadat S, Hager L, Liu L, Tam L, Schroer S, et al. Lecithin cholesterol acyltransferase null mice are protected from diet-induced obesity and insulin resistance in a gender-specific manner through multiple pathways. J Biol Chem 2011;286:17809-17820.
53. Wouters K, van Gorp PJ, Bieghs V, Gijbels MJ, Duimel H, Lutjohann D, Kerksiek A, et al. Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis. Hepatology 2008;48:474-486.
54. Wouters K, van Bilsen M, van Gorp PJ, Bieghs V, Lutjohann D, Kerksiek A, Staels B, et al. Intrahepatic cholesterol influences progression, inhibition and reversal of non-alcoholic steatohepatitis in hyperlipidemic mice. FEBS Lett 2010;584:1001-1005.
55. Leroux A, Ferrere G, Godie V, Cailleux F, Renoud ML, Gaudin F, Naveau S, et al. Toxic lipids stored by Kupffer cells correlates with their pro-inflammatory phenotype at an early stage of steatohepatitis. J Hepatol 2012;57:141-149.
56. Yasutake K, Nakamuta M, Shima Y, Ohyama A, Masuda K, Haruta N, Fujino T, et al. Nutritional investigation of non-obese patients with non-alcoholic fatty liver disease: the significance of dietary cholesterol. Scand J Gastroenterol 2009;44:471-477.
57. Musso G, Gambino R, De Michieli F, Cassader M, Rizzetto M, Durazzo M, Faga E, et al. Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis. Hepatology 2003;37:909-916.
58. Deushi M, Nomura M, Kawakami A, Haraguchi M, Ito M, Okazaki M, Ishii H, et al. Ezetimibe improves liver steatosis and insulin resistance in obese rat model of metabolic syndrome. FEBS Lett 2007;581:5664-5670.
59. Takeshita Y, Takamura T, Honda M, Kita Y, Zen Y, Kato K, Misu H, et al. The effects of ezetimibe on non-alcoholic fatty liver disease and glucose metabolism: a randomised controlled trial. Diabetologia 2014;57:878-890.
60. Ioannou GN, Haigh WG, Thorning D, Savard C. Hepatic cholesterol crystals and crown-like structures distinguish NASH from simple steatosis. J Lipid Res 2013;54:1326-1334.
61. Ioannou GN, Van Rooyen DM, Savard C, Haigh WG, Yeh MM, Teoh NC, Farrell GC. Cholesterol-lowering drugs cause dissolution of cholesterol crystals and disperse Kupffer cell crown-like structures during resolution of NASH. J Lipid Res 2015;56:277-285.
62. Bieghs V, Wouters K, van Gorp PJ, Gijbels MJ, de Winther MP, Binder CJ, Lutjohann D, et al. Role of scavenger receptor A and CD36 in diet-induced nonalcoholic steatohepatitis in hyperlipidemic mice. Gastroenterology 2010;138:2477-2486, 2486 e2471-2473.
63. Bieghs V, van Gorp PJ, Walenbergh SM, Gijbels MJ, Verheyen F, Buurman WA, Briles DE, et al. Specific immunization strategies against oxidized low-density lipoprotein: a novel way to reduce nonalcoholic steatohepatitis in mice. Hepatology 2012;56:894-903.
64. Bieghs V, Verheyen F, van Gorp PJ, Hendrikx T, Wouters K, Lutjohann D, Gijbels MJ, et al. Internalization of modified lipids by CD36 and SR-A leads to hepatic inflammation and lysosomal cholesterol storage in Kupffer cells. PLoS One 2012;7:e34378.
65. Yimin, Furumaki H, Matsuoka S, Sakurai T, Kohanawa M, Zhao S, Kuge Y, et al. A novel murine model for non-alcoholic steatohepatitis developed by combination of a high-fat diet and oxidized low-density lipoprotein. Lab Invest 2012;92:265-281.
66. Avogaro P, Bon GB, Cazzolato G. Presence of a modified low density lipoprotein in humans. Arteriosclerosis 1988;8:79-87.
67. Liaw YW, Lin CY, Lai YS, Yang TC, Wang CJ, Whang-Peng J, Liu LF, et al. A vaccine targeted at CETP alleviates high fat and high cholesterol diet-induced atherosclerosis and non-alcoholic steatohepatitis in rabbit. PLoS One 2014;9:e111529.
68. Jaakkola O, Solakivi T, Tertov VV, Orekhov AN, Miettinen TA, Nikkari T. Characteristics of low-density lipoprotein subfractions from patients with coronary artery disease. Coron Artery Dis 1993;4:379-385.
69. Chevrier I, Tregouet DA, Massonnet-Castel S, Beaune P, Loriot MA. Myeloperoxidase genetic polymorphisms modulate human neutrophil enzyme activity: genetic determinants for atherosclerosis? Atherosclerosis 2006;188:150-154.
70. Itabe H, Yamamoto H, Imanaka T, Shimamura K, Uchiyama H, Kimura J, Sanaka T, et al. Sensitive detection of oxidatively modified low density lipoprotein using a monoclonal antibody. J Lipid Res 1996;37:45-53.
71. Palinski W, Horkko S, Miller E, Steinbrecher UP, Powell HC, Curtiss LK, Witztum JL. Cloning of monoclonal autoantibodies to epitopes of oxidized lipoproteins from apolipoprotein E-deficient mice. Demonstration of epitopes of oxidized low density lipoprotein in human plasma. J Clin Invest 1996;98:800-814.
72. Yang CY, Raya JL, Chen HH, Chen CH, Abe Y, Pownall HJ, Taylor AA, et al. Isolation, characterization, and functional assessment of oxidatively modified subfractions of circulating low-density lipoproteins. Arterioscler Thromb Vasc Biol 2003;23:1083-1090.
73. Tang D, Lu J, Walterscheid JP, Chen HH, Engler DA, Sawamura T, Chang PY, et al. Electronegative LDL circulating in smokers impairs endothelial progenitor cell differentiation by inhibiting Akt phosphorylation via LOX-1. J Lipid Res 2008;49:33-47.
74. Chan HC, Ke LY, Chu CS, Lee AS, Shen MY, Cruz MA, Hsu JF, et al. Highly electronegative LDL from patients with ST-elevation myocardial infarction triggers platelet activation and aggregation. Blood 2013;122:3632-3641.
75. Chang PY, Chen YJ, Chang FH, Lu J, Huang WH, Yang TC, Lee YT, et al. Aspirin protects human coronary artery endothelial cells against atherogenic electronegative LDL via an epigenetic mechanism: a novel cytoprotective role of aspirin in acute myocardial infarction. Cardiovasc Res 2013;99:137-145.
76. Mello AP, da Silva IT, Abdalla DS, Damasceno NR. Electronegative low-density lipoprotein: origin and impact on health and disease. Atherosclerosis 2011;215:257-265.
77. Sanchez-Quesada JL, Villegas S, Ordonez-Llanos J. Electronegative low-density lipoprotein. A link between apolipoprotein B misfolding, lipoprotein aggregation and proteoglycan binding. Curr Opin Lipidol 2012;23:479-486.
78. Bancells C, Benitez S, Ordonez-Llanos J, Oorni K, Kovanen PT, Milne RW, Sanchez-Quesada JL. Immunochemical analysis of the electronegative LDL subfraction shows that abnormal N-terminal apolipoprotein B conformation is involved in increased binding to proteoglycans. J Biol Chem 2011;286:1125-1133.
79. Bancells C, Canals F, Benitez S, Colome N, Julve J, Ordonez-Llanos J, Sanchez-Quesada JL. Proteomic analysis of electronegative low-density lipoprotein. J Lipid Res 2010;51:3508-3515.
80. Gaubatz JW, Gillard BK, Massey JB, Hoogeveen RC, Huang M, Lloyd EE, Raya JL, et al. Dynamics of dense electronegative low density lipoproteins and their preferential association with lipoprotein phospholipase A(2). Journal of Lipid Research 2007;48:348-357.
81. Benitez S, Camacho M, Arcelus R, Vila L, Bancells C, Ordonez-Llanos J, Sanchez-Quesada JL. Increased lysophosphatidylcholine and non-esterified fatty acid content in LDL induces chemokine release in endothelial cells. Relationship with electronegative LDL. Atherosclerosis 2004;177:299-305.
82. Estruch M, Sanchez-Quesada JL, Beloki L, Ordonez-Llanos J, Benitez S. The Induction of Cytokine Release in Monocytes by Electronegative Low-Density Lipoprotein (LDL) Is Related to Its Higher Ceramide Content than Native LDL. Int J Mol Sci 2013;14:2601-2616.
83. Greco G, Balogh G, Brunelli R, Costa G, De Spirito M, Lenzi L, Mei G, et al. Generation in human plasma of misfolded, aggregation-prone electronegative low density lipoprotein. Biophys J 2009;97:628-635.
84. Asatryan L, Hamilton RT, Isas JM, Hwang J, Kayed R, Sevanian A. LDL phospholipid hydrolysis produces modified electronegative particles with an unfolded apoB-100 protein. J Lipid Res 2005;46:115-122.
85. Parasassi T, De Spirito M, Mei G, Brunelli R, Greco G, Lenzi L, Maulucci G, et al. Low density lipoprotein misfolding and amyloidogenesis. FASEB J 2008;22:2350-2356.
86. Chen CH, Jiang T, Yang JH, Jiang W, Lu J, Marathe GK, Pownall HJ, et al. Low-density lipoprotein in hypercholesterolemic human plasma induces vascular endothelial cell apoptosis by inhibiting fibroblast growth factor 2 transcription. Circulation 2003;107:2102-2108.
87. Sanchez-Quesada JL, Camacho M, Anton R, Benitez S, Vila L, Ordonez-Llanos J. Electronegative LDL of FH subjects: chemical characterization and induction of chemokine release from human endothelial cells. Atherosclerosis 2003;166:261-270.
88. Lu J, Yang JH, Burns AR, Chen HH, Tang D, Walterscheid JP, Suzuki S, et al. Mediation of electronegative low-density lipoprotein signaling by LOX-1: a possible mechanism of endothelial apoptosis. Circ Res 2009;104:619-627.
89. Chu CS, Wang YC, Lu LS, Walton B, Yilmaz HR, Huang RY, Sawamura T, et al. Electronegative low-density lipoprotein increases C-reactive protein expression in vascular endothelial cells through the LOX-1 receptor. PLoS One 2013;8:e70533.
90. Estruch M, Bancells C, Beloki L, Sanchez-Quesada JL, Ordonez-Llanos J, Benitez S. CD14 and TLR4 mediate cytokine release promoted by electronegative LDL in monocytes. Atherosclerosis 2013;229:356-362.
91. Thomson AW, Knolle PA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol 2010;10:753-766.
92. Dixon LJ, Barnes M, Tang H, Pritchard MT, Nagy LE. Kupffer cells in the liver. Compr Physiol 2013;3:785-797.
93. Bergheim I, Weber S, Vos M, Kramer S, Volynets V, Kaserouni S, McClain CJ, et al. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J Hepatol 2008;48:983-992.
94. Lotersztajn S, Julien B, Teixeira-Clerc F, Grenard P, Mallat A. Hepatic fibrosis: molecular mechanisms and drug targets. Annu Rev Pharmacol Toxicol 2005;45:605-628.
95. Yin C, Evason KJ, Asahina K, Stainier DY. Hepatic stellate cells in liver development, regeneration, and cancer. J Clin Invest 2013;123:1902-1910.
96. Dongiovanni P, Romeo S, Valenti L. Hepatocellular carcinoma in nonalcoholic fatty liver: role of environmental and genetic factors. World J Gastroenterol 2014;20:12945-12955.
97. McCuskey RS. The hepatic microvascular system in health and its response to toxicants. Anat Rec (Hoboken) 2008;291:661-671.
98. Herrnberger L, Hennig R, Kremer W, Hellerbrand C, Goepferich A, Kalbitzer HR, Tamm ER. Formation of fenestrae in murine liver sinusoids depends on plasmalemma vesicle-associated protein and is required for lipoprotein passage. PLoS One 2014;9:e115005.
99. Xie G, Choi SS, Syn WK, Michelotti GA, Swiderska M, Karaca G, Chan IS, et al. Hedgehog signalling regulates liver sinusoidal endothelial cell capillarisation. Gut 2013;62:299-309.
100. Xie G, Wang X, Wang L, Wang L, Atkinson RD, Kanel GC, Gaarde WA, et al. Role of differentiation of liver sinusoidal endothelial cells in progression and regression of hepatic fibrosis in rats. Gastroenterology 2012;142:918-927 e916.
101. Marchesini G, Bugianesi E, Forlani G, Cerrelli F, Lenzi M, Manini R, Natale S, et al. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 2003;37:917-923.
102. Sookoian S, Pirola CJ. Non-alcoholic fatty liver disease is strongly associated with carotid atherosclerosis: a systematic review. J Hepatol 2008;49:600-607.
103. Pittas AG, Joseph NA, Greenberg AS. Adipocytokines and insulin resistance. J Clin Endocrinol Metab 2004;89:447-452.
104. Yoneda M, Mawatari H, Fujita K, Iida H, Yonemitsu K, Kato S, Takahashi H, et al. High-sensitivity C-reactive protein is an independent clinical feature of nonalcoholic steatohepatitis (NASH) and also of the severity of fibrosis in NASH. J Gastroenterol 2007;42:573-582.
105. Targher G, Bertolini L, Rodella S, Lippi G, Franchini M, Zoppini G, Muggeo M, et al. NASH predicts plasma inflammatory biomarkers independently of visceral fat in men. Obesity (Silver Spring) 2008;16:1394-1399.
106. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 2005;115:1343-1351.
107. Musso G, Cassader M, Gambino R, Durazzo M, Pagano G. Association between postprandial LDL conjugated dienes and the severity of liver fibrosis in NASH. Hepatology 2006;43:1169-1170.
108. Castelli WP, Garrison RJ, Wilson PW, Abbott RD, Kalousdian S, Kannel WB. Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study. JAMA 1986;256:2835-2838.
109. Field FJ, Watt K, Mathur SN. TNF-alpha decreases ABCA1 expression and attenuates HDL cholesterol efflux in the human intestinal cell line Caco-2. J Lipid Res 2010;51:1407-1415.
110. Briand F, Thieblemont Q, Muzotte E, Sulpice T. High-fat and fructose intake induces insulin resistance, dyslipidemia, and liver steatosis and alters in vivo macrophage-to-feces reverse cholesterol transport in hamsters. J Nutr 2012;142:704-709.
111. Gerrity RG. The Role of the Monocyte in Atherogenesis .1. Transition of Blood-Borne Monocytes into Foam Cells in Fatty Lesions. American Journal of Pathology 1981;103:181-190.
112. Ikura Y, Ohsawa M, Suekane T, Fukushima H, Itabe H, Jomura H, Nishiguchi S, et al. Localization of oxidized phosphatidylcholine in nonalcoholic fatty liver disease: impact on disease progression. Hepatology 2006;43:506-514.
113. Schaffer JE. Lipotoxicity: when tissues overeat. Curr Opin Lipidol 2003;14:281-287.
114. Diehl AM. Lessons from animal models of NASH. Hepatol Res 2005;33:138-144.
115. Leclercq IA, Farrell GC, Schriemer R, Robertson GR. Leptin is essential for the hepatic fibrogenic response to chronic liver injury. J Hepatol 2002;37:206-213.
116. Yang SQ, Lin HZ, Lane MD, Clemens M, Diehl AM. Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis. Proc Natl Acad Sci U S A 1997;94:2557-2562.
117. Wortham M, He L, Gyamfi M, Copple BL, Wan YJ. The transition from fatty liver to NASH associates with SAMe depletion in db/db mice fed a methionine choline-deficient diet. Dig Dis Sci 2008;53:2761-2774.
118. Brix AE, Elgavish A, Nagy TR, Gower BA, Rhead WJ, Wood PA. Evaluation of liver fatty acid oxidation in the leptin-deficient obese mouse. Mol Genet Metab 2002;75:219-226.
119. Fellmann L, Nascimento AR, Tibirica E, Bousquet P. Murine models for pharmacological studies of the metabolic syndrome. Pharmacol Ther 2013;137:331-340.
120. Carmiel-Haggai M, Cederbaum AI, Nieto N. A high-fat diet leads to the progression of non-alcoholic fatty liver disease in obese rats. FASEB J 2005;19:136-138.
121. Ip E, Farrell G, Hall P, Robertson G, Leclercq I. Administration of the potent PPARalpha agonist, Wy-14,643, reverses nutritional fibrosis and steatohepatitis in mice. Hepatology 2004;39:1286-1296.
122. Yu J, Ip E, Dela Pena A, Hou JY, Sesha J, Pera N, Hall P, et al. COX-2 induction in mice with experimental nutritional steatohepatitis: Role as pro-inflammatory mediator. Hepatology 2006;43:826-836.
123. McCuskey RS, Ito Y, Robertson GR, McCuskey MK, Perry M, Farrell GC. Hepatic microvascular dysfunction during evolution of dietary steatohepatitis in mice. Hepatology 2004;40:386-393.
124. Larter CZ, Yeh MM, Williams J, Bell-Anderson KS, Farrell GC. MCD-induced steatohepatitis is associated with hepatic adiponectin resistance and adipogenic transformation of hepatocytes. J Hepatol 2008;49:407-416.
125. Hebbard L, George J. Animal models of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 2011;8:35-44.
126. Lieber CS, Leo MA, Mak KM, Xu Y, Cao Q, Ren C, Ponomarenko A, et al. Model of nonalcoholic steatohepatitis. Am J Clin Nutr 2004;79:502-509.
127. Ito M, Suzuki J, Tsujioka S, Sasaki M, Gomori A, Shirakura T, Hirose H, et al. Longitudinal analysis of murine steatohepatitis model induced by chronic exposure to high-fat diet. Hepatol Res 2007;37:50-57.
128. Xu ZJ, Fan JG, Ding XD, Qiao L, Wang GL. Characterization of high-fat, diet-induced, non-alcoholic steatohepatitis with fibrosis in rats. Dig Dis Sci 2010;55:931-940.
129. Jornayvaz FR, Samuel VT, Shulman GI. The role of muscle insulin resistance in the pathogenesis of atherogenic dyslipidemia and nonalcoholic fatty liver disease associated with the metabolic syndrome. Annu Rev Nutr 2010;30:273-290.
130. Mari M, Caballero F, Colell A, Morales A, Caballeria J, Fernandez A, Enrich C, et al. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab 2006;4:185-198.
131. Matsuzawa N, Takamura T, Kurita S, Misu H, Ota T, Ando H, Yokoyama M, et al. Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology 2007;46:1392-1403.
132. Subramanian S, Goodspeed L, Wang S, Kim J, Zeng L, Ioannou GN, Haigh WG, et al. Dietary cholesterol exacerbates hepatic steatosis and inflammation in obese LDL receptor-deficient mice. J Lipid Res 2011;52:1626-1635.
133. Bieghs V, Van Gorp PJ, Wouters K, Hendrikx T, Gijbels MJ, van Bilsen M, Bakker J, et al. LDL receptor knock-out mice are a physiological model particularly vulnerable to study the onset of inflammation in non-alcoholic fatty liver disease. PLoS One 2012;7:e30668.
134. Depner CM, Torres-Gonzalez M, Tripathy S, Milne G, Jump DB. Menhaden oil decreases high-fat diet-induced markers of hepatic damage, steatosis, inflammation, and fibrosis in obese Ldlr-/- mice. J Nutr 2012;142:1495-1503.
135. Wouters K, Shiri-Sverdlov R, van Gorp PJ, van Bilsen M, Hofker MH. Understanding hyperlipidemia and atherosclerosis: lessons from genetically modified apoe and ldlr mice. Clin Chem Lab Med 2005;43:470-479.
136. Ogawa T, Fujii H, Yoshizato K, Kawada N. A human-type nonalcoholic steatohepatitis model with advanced fibrosis in rabbits. Am J Pathol 2010;177:153-165.
137. Bhathena J, Kulamarva A, Martoni C, Urbanska AM, Malhotra M, Paul A, Prakash S. Diet-induced metabolic hamster model of nonalcoholic fatty liver disease. Diabetes Metab Syndr Obes 2011;4:195-203.
138. Yin W, Carballo-Jane E, McLaren DG, Mendoza VH, Gagen K, Geoghagen NS, McNamara LA, et al. Plasma lipid profiling across species for the identification of optimal animal models of human dyslipidemia. J Lipid Res 2012;53:51-65.
139. Wang PR, Guo Q, Ippolito M, Wu M, Milot D, Ventre J, Doebber T, et al. High fat fed hamster, a unique animal model for treatment of diabetic dyslipidemia with peroxisome proliferator activated receptor alpha selective agonists. Eur J Pharmacol 2001;427:285-293.
140. Lin MH, Lu SC, Huang PC, Liu YC, Liu SY. The amount of dietary cholesterol changes the mode of effects of (n-3) polyunsaturated fatty acid on lipoprotein cholesterol in hamsters. Ann Nutr Metab 2004;48:321-328.
141. Lin MH, Lu SC, Huang PC, Liu YC, Liu SY. A high-cholesterol, n-3 polyunsaturated fatty acid diet causes different responses in rats and hamsters. Ann Nutr Metab 2005;49:386-391.
142. Chang PY, Lu SC, Su TC, Chou SF, Huang WH, Morrisett JD, Chen CH, et al. Lipoprotein-X reduces LDL atherogenicity in primary biliary cirrhosis by preventing LDL oxidation. J Lipid Res 2004;45:2116-2122.
143. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957;226:497-509.
144. Yu CH, Chen HL, Chen WT, Ni YH, Lin YL, Chang MH. Portal hemodynamic changes after hepatocyte transplantation in acute hepatic failure. J Biomed Sci 2004;11:756-763.
145. Chou YY, Lu SC. Inhibition by rapamycin of the lipoteichoic acid-induced granulocyte-colony stimulating factor expression in mouse macrophages. Arch Biochem Biophys 2011;508:110-119.
146. Sakamoto N, Ishibashi T, Sugimoto K, Sawamura T, Sakamoto T, Inoue N, Saitoh S, et al. Role of LOX-1 in monocyte adhesion-triggered redox, Akt/eNOS and Ca2+ signaling pathways in endothelial cells. J Cell Physiol 2009;220:706-715.
147. Tabas I, Williams KJ, Boren J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 2007;116:1832-1844.
148. Leeuwenburgh C, Hardy MM, Hazen SL, Wagner P, Oh-ishi S, Steinbrecher UP, Heinecke JW. Reactive nitrogen intermediates promote low density lipoprotein oxidation in human atherosclerotic intima. J Biol Chem 1997;272:1433-1436.
149. Podrez EA, Schmitt D, Hoff HF, Hazen SL. Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro. J Clin Invest 1999;103:1547-1560.
150. Hansson GK, Robertson AK, Soderberg-Naucler C. Inflammation and atherosclerosis. Annu Rev Pathol 2006;1:297-329.
151. Estruch M, Sanchez-Quesada JL, Llanos JO, Benitez S. Electronegative LDL: A Circulating Modified LDL with a Role in Inflammation. Mediators of Inflammation 2013.
152. Sanchez-Quesada JL, Benitez S, Ordonez-Llanos J. Electronegative low-density lipoprotein. Curr Opin Lipidol 2004;15:329-335.
153. Ishigaki Y, Oka Y, Katagiri H. Circulating oxidized LDL: a biomarker and a pathogenic factor. Curr Opin Lipidol 2009;20:363-369.
154. Estruch M, Sanchez-Quesada JL, Ordonez Llanos J, Benitez S. Electronegative LDL: a circulating modified LDL with a role in inflammation. Mediators Inflamm 2013;2013:181324.
155. Sanchez-Quesada JL, Benitez S, Perez A, Wagner AM, Rigla M, Carreras G, Vila L, et al. The inflammatory properties of electronegative low-density lipoprotein from type 1 diabetic patients are related to increased platelet-activating factor acetylhydrolase activity. Diabetologia 2005;48:2162-2169.
156. Itabe H, Obama T, Kato R. The Dynamics of Oxidized LDL during Atherogenesis. J Lipids 2011;2011:418313.
157. Holvoet P, Lee DH, Steffes M, Gross M, Jacobs DR, Jr. Association between circulating oxidized low-density lipoprotein and incidence of the metabolic syndrome. JAMA 2008;299:2287-2293.
158. Kleinbongard P, Heusch G, Schulz R. TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther 2010;127:295-314.
159. Targher G, Day CP, Bonora E. Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N Engl J Med 201
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51638-
dc.description.abstract非酒精性脂肪肝是非酗酒過量或病毒感染或特定醫療行為引起之肝臟累積過量脂肪之疾病,而非酒精性脂肪肝有機會進一步進展成較惡化的階段,稱之為非酒精性脂肪肝炎。非酒精性脂肪肝炎的特徵除了肝臟脂肪堆積之外,還有肝發炎、肝損傷與肝纖維化等症狀。動脈粥狀硬化亦可發現類似的現象,包含脂質沈積於血管上、巨噬細胞入侵引起發炎以及平滑肌細胞產生纖維化。目前對於非酒精性脂肪肝如何進展到非酒精性脂肪肝炎的機制並無定論,較被廣為接受的理論為「雙衝擊假說」,然而詳細機制仍不清楚。近年來許多研究指出氧化低密度脂蛋白可能是進展至非酒精性脂肪肝炎的危險因子之一,然而這些研究並無直接偵測到氧化低密度脂蛋白含量。陰電性低密度脂蛋白為一群帶有負電荷的輕微修飾之低密度脂蛋白,研究指出心血管疾病、代謝症候群與高膽固醇血症患者血中具有高量的陰電性低密度脂蛋白,然而仍未有研究指出陰電性低密度脂蛋白是否參與非酒精性脂肪肝炎的病程進展。因此本研究論文旨在利用高油高膽固醇飲食誘發之非酒精性脂肪肝炎動物模式探討陰電性低密度脂蛋白在非酒精性脂肪肝炎進展中所扮演的角色。將敘利亞倉鼠與C57BL/6小鼠餵食相同的高油高膽固醇飼料12週後發現此兩品系動物皆累積相當的脂肪於肝臟中。然而病理分析顯示倉鼠發展出較惡化的非酒精性脂肪肝炎,其中包含小泡狀脂肪堆積、肝細胞氣球狀變異、免疫細胞浸潤與橋狀纖維化;而小鼠僅發展出輕微的肝發炎反應與混合型脂肪堆積。此外,高油高膽固醇飲食餵食下,倉鼠顯著增加血漿中低密度脂蛋白膽固醇及陰電性低密度脂蛋白含量,而小鼠僅些微提高,倉鼠陰電性低密度脂蛋白含量更是比小鼠高出16倍。除此之外,我們亦發現高油高膽固醇餵食之倉鼠肝臟中含有大量具ApoB之脂蛋白滯留於肝竇狀隙與肝門靜脈周邊,此區域聚集了多數巨大且含高量游離膽固醇之柯佛氏細胞。進一步研究發現這些含ApoB之脂蛋白主要為陰電性低密度脂蛋白,至此顯示倉鼠肝臟病理變化類似於動脈粥狀硬化初始階段,而此現象在小鼠中並無觀察到。此外,體外實驗顯示自倉鼠或兔子分離之陰電性低密度脂蛋白可分別誘使大鼠原代柯佛氏細胞與小鼠骨髓細胞分化而成的巨噬細胞產生腫瘤壞死因子-α。進一步預處理類凝集素氧化低密度脂蛋白受器-1 (LOX-1)封阻抗體TS92或同時處理IκBα抑制劑BAY-11-7082則顯著降低腫瘤壞死因子-α於大鼠原代柯佛氏細胞的表現。體外實驗的結果顯示陰電性低密度脂蛋白透過與LOX-1並活化NF-κB而促使大鼠柯佛氏細胞產生發炎反應進而造成非酒精性脂肪肝炎。本論文研究結果提供一個直接證據顯示陰電性低密度脂蛋白為造成肝發炎的危險因子之一且在非酒精性脂肪肝炎發展中扮演重要角色。zh_TW
dc.description.abstractNonalcoholic fatty liver disease (NAFLD) is defined as the presence of fat storage in the liver without abuse alcohol, virus infection or certain medications. NAFLD can further progress into the progressed stage called nonalcoholic steatohepatitis (NASH). NASH is considered as the presence of hepatic steatosis and inflammation with hepatocyte injury, hepatic fibrosis is also present in advanced stage of NASH, which is like that of atherosclerosis. The transition from NAFLD to NASH can be explained by the two hit hypothesis, but the mechanisms remain unclear. Recent studies suggest that oxidized low density lipoprotein (oxLDL) is a potential risk that triggers progression from simple steatosis to NASH. However, oxLDL has not been directly measured or detected in these studies. Electronegative low density lipoprotein (LDL(-)) is a pool of minimal modified LDL found in patients with cardiovascular disease, metabolic syndrome and hypercholesterolemia, but its relationship with NASH has not been established. The aim of this study was to examine the role(s) of LDL(-) in the development of NASH in a high fat high cholesterol (HFC) diet induced animal models. Golden Syrian hamsters and C57BL/6 mice were fed with the same HFC diet for 12 weeks. Both species accumulated considerably amount of lipid in liver, but the pathology was much worsen in hamsters. Hamsters developed advanced NASH features including microvesicular steatosis, hepatocyte ballooning degeneration, lobular inflammation and bridging fibrosis, whereas mice developed mixed type of steatosis with mild inflammatory cell infiltration. HFC diet also increased high level of plasma LDL cholesterol in hamsters, but only a slight increase in mice. In LDL fraction, LDL(-) was 16-fold higher in hamsters than in mice. Moreover, massive amount of ApoB containing lipoproteins were retained in sinusoid and portal area in the liver of HFC diet-fed hamsters accompanied with enlarged Kupffer cells accumulated with unesterified cholesterol. Further analysis revealed that the majority of retained ApoB containing lipoproteins are LDL(-), this observation was similar to the initiation stage of atherosclerosis. On the other hand, this phenomenon was not found in mice fed with HFC diet. In addition, in vitro studies showed that LDL(-), from HFC diet-fed hamsters and rabbits, induced TNF-α production in primary rat Kupffer cells and bone marrow derived macrophages. Furthermore, pretreatment of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) blocking antibody, TS92, or co-treatment of BAY-11-7082, an inhibitor of IκBα kinase, significantly decreased TNF-α secretion in rat Kupffer cells, which suggest that LDL(-) trigger Kupffer cell activation during NASH development through NF-κB dependent pathway by binding to LOX-1. These results provide a direct evidence to show that LDL(-) is one of risk factor in hepatic inflammation and play a critical role in the development of NASHen
dc.description.provenanceMade available in DSpace on 2021-06-15T13:42:20Z (GMT). No. of bitstreams: 1
ntu-104-D98442001-1.pdf: 16966959 bytes, checksum: caba51f147ce9f2ba18df3665e3e12b1 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員審定書 i
謝誌 ii
摘要 iii
Abstract v
List of abbreviations: viii
List of Figures and Tables xv
Chapter I. Introduction 1
1.1 Nonalcoholic fatty liver disease 1
1.2 Risk factors involved in NASH progression 2
1.2.1 Lipotoxicity 2
1.2.2 Cytokines and oxidative stress 3
1.2.3 Endotoxin and innate immune response 5
1.2.4 The inflammasome 6
1.2.5 Cholesterol and oxidized low-density lipoprotein (oxLDL) 7
1.2.6 Oxidized LDL and Electronegative LDL 9
1.3 Cell types involved in NASH progression 11
1.3.1 Kupffer cells (KCs) 11
1.3.2 Hepatic stellate cell 12
1.3.3 Sinusoidal endothelial cells 13
1.4 NASH and cardiovascular disease 14
1.5 Current NASH animal model 16
1.5.1 Genetic models 16
1.5.2 Nutrition models 17
1.6 Study aims 21
Chapter II. Materails and methods 22
2.1 Materials 22
2.2 Methods 23
2.2.1 Animals and diets 23
2.2.2 Plasma biochemistry 24
2.2.3 Lipoprotein isolation and analysis of negative charged LDL 25
2.2.4 Hepatic lipid analysis 26
2.2.5 Western Blot Analysis 27
2.2.6 RNA isolation and Real-time PCR 28
2.2.7 Histological and immunohistochemical analyses 29
2.2.8 Liver perfusion 32
2.2.9 Bone marrow derived macrophages 33
2.2.10 Isolation and culture of rat Kupffer cells 33
2.2.11 Quantification of TNF-α in the culture medium 35
2.2.12 Statistical Analysis 37
Chapter III. Results 38
3.1 An HFC diet induces higher levels of plasma ALT and AST in hamsters than in mice. 38
3.2 HFC diet-fed hamsters develop liver fibrosis and inflammation. 38
3.3 Higher LDL levels are seen in the plasma of HFC diet-fed hamsters. 40
3.4 Periportal accumulation of ApoB-containing lipoproteins, macrophages, and unesterified cholesterol in HFC diet-fed hamsters. 40
3.5 Identification of LDL(-) in the plasma and liver of hamsters fed with the HFC diet for 6 weeks. 41
3.6 LDL(-) induces production of TNF-α in BMDM and in rat Kupffer cells in vitro. 44
Chapter IV. Discussion 47
Chapter V. Future perspectives and Conclusions 58
Chapter VI. Figures 60
References: 73
dc.language.isoen
dc.subject類凝集素氧化低密度脂蛋白受器-1zh_TW
dc.subject陰電性低密度脂蛋白zh_TW
dc.subject倉鼠zh_TW
dc.subject肝發炎zh_TW
dc.subject非酒精性脂肪肝炎zh_TW
dc.subjectelectronegative LDLen
dc.subjectlectin-like oxidized low-density lipoprotein receptor-1 (LOX-1)en
dc.subjectnonalcoholic steatohepatitisen
dc.subjecthepatic inflammationen
dc.subjecthamsteren
dc.title陰電性低密度脂蛋白在高油高膽固醇飼料引起之倉鼠非酒精性脂肪肝炎之可能角色zh_TW
dc.titlePossible roles of electronegative LDL in a high fat/high cholesterol diet-induced NASH hamster modelen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree博士
dc.contributor.coadvisor黃伯超(Po-Chao Huang)
dc.contributor.oralexamcommittee陳惠玲(Hui-Ling Chen),黃青真(Ching-Jang Huang),張博淵(Po-Yuan Chang)
dc.subject.keyword陰電性低密度脂蛋白,倉鼠,肝發炎,非酒精性脂肪肝炎,類凝集素氧化低密度脂蛋白受器-1,zh_TW
dc.subject.keywordelectronegative LDL,hamster,hepatic inflammation,nonalcoholic steatohepatitis,lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1),en
dc.relation.page109
dc.rights.note有償授權
dc.date.accepted2015-12-29
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
Appears in Collections:生物化學暨分子生物學科研究所

Files in This Item:
File SizeFormat 
ntu-104-1.pdf
  Restricted Access
16.57 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved