請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51636
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡武廷 | |
dc.contributor.author | Meng-Chiao Ku | en |
dc.contributor.author | 古孟巧 | zh_TW |
dc.date.accessioned | 2021-06-15T13:42:14Z | - |
dc.date.available | 2018-02-15 | |
dc.date.copyright | 2016-02-15 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-12-29 | |
dc.identifier.citation | 1. Ferrell, J.K., F.M. Richardson, and K.O. Beatty Jr, Dye Displacement Technique for Velocity Distribution Measurements. Industrial & Engineering Chemistry, 1955. 47(1): p. 29-33.
2. Gemmrich, J. and L. Hasse, Small‐scale surface streaming under natural conditions as effective in air‐sea gas exchange. Tellus B, 1992. 44(2): p. 150-159. 3. Handler, R., G. Smith, and R. Leighton, The thermal structure of an air–water interface at low wind speeds. Tellus A, 2001. 53(2): p. 233-244. 4. Handler, R.A., I. Savelyev, and M. Lindsey, Infrared imagery of streak formation in a breaking wave. Physics of Fluids (1994-present), 2012. 24(12): p. 121701. 5. Handler, R.A. and G.B. Smith, Statistics of the temperature and its derivatives at the surface of a wind‐driven air‐water interface. Journal of Geophysical Research: Oceans (1978–2012), 2011. 116(C6). 6. Huang, N.E., et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 1998. The Royal Society. 7. Kenney, B.C., Observations of coherent bands of algae in a surface shear layer. Limnology and oceanography, 1993. 38(5): p. 1059-1067. 8. Kline, S.J., et al., The structure of turbulent boundary layers. Journal of Fluid Mechanics, 1967. 30(04): p. 741-773. 9. Long, S.R., Applications of HHT in image analysis. Hilbert–Huang Transform and Its Applications, 2005: p. 289-305. 10. Melville, W.K., R. Shear, and F. Veron, Laboratory measurements of the generation and evolution of Langmuir circulations. Journal of Fluid Mechanics, 1998. 364: p. 31-58. 11. Nakagawa, H. and I. Nezu, Structure of space-time correlations of bursting phenomena in an open-channel flow. Journal of Fluid Mechanics, 1981. 104: p. 1-43. 12. Runstadler, P.W., S.J. Kline, and W.C. Reynolds, An experimental investigation of the flow structure of the turbulent boundary layer. 1963, DTIC Document. 13. Schnieders, J., et al., Analyzing the footprints of near‐surface aqueous turbulence: An image processing‐based approach. Journal of Geophysical Research: Oceans, 2013. 118(3): p. 1272-1286. 14. Scott, N.V., R.A. Handler, and G.B. Smith, Wavelet analysis of the surface temperature field at an air–water interface subject to moderate wind stress. International Journal of Heat and Fluid Flow, 2008. 29(4): p. 1103-1112. 15. Smith, C.R. and S.P. Metzler, The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. Journal of Fluid Mechanics, 1983. 129: p. 27-54. 16. Smith, G., R. Handler, and N. Scott, Observations of the Structure of the Surface Temperature Field at an Air-Water Interface for Stable and Unstable Cases, in Transport at the Air-Sea Interface, C. Garbe, R. Handler, and B. Jähne, Editors. 2007, Springer Berlin Heidelberg. p. 205-222. 17. Tsai, W.-T., A numerical study of the evolution and structure of a turbulent shear layer under a free surface. Journal of Fluid Mechanics, 1998. 354: p. 239-276. 18. Tsai, W.t., On the formation of streaks on wind‐driven water surfaces. Geophysical research letters, 2001. 28(20): p. 3959-3962. 19. Tsai, W.-T., S.-M. Chen, and C.-H. Moeng, A numerical study on the evolution and structure of a stress-driven free-surface turbulent shear flow. Journal of Fluid Mechanics, 2005. 545: p. 163-192. 20. Woodcock, A.H., Surface cooling and streaming in shallow fresh and salt waters. J. Mar. Res, 1941. 4(2): p. 153-160. 21. 品質管制編輯委員會編著, 品質管制. 1983, 中壢市: 先鋒企業管理發展中心. 22. 溫國暉, 風剪趨動水體紊流邊界層水面高速條痕結構特徵之探討, 國立交通大學土木工程系. 2004. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51636 | - |
dc.description.abstract | 風浪表面因水下流場的渦流結構而形成與風場同向且間距相近的條痕結構,條痕區域的溫度因熱量的傳輸方向而改變,當熱自水體傳輸至空氣時,條痕區域的溫度較周邊低,而於熱圖像形成低溫條痕。本研究發展一影像辨識法,以自動擷取實驗室風浪表面熱圖像的條痕結構,進而分析條痕間距的特性。我們先以「經驗模態分解法」濾除熱圖像中因熱輻射轉換至電訊號過程所產生的短波雜訊,並透過辨識熱圖像中跨流向上的相對低溫點位,運用適當點位連結範圍將點位連結而形成條痕,進一步分析跨流向上條痕間距的分佈統計特性。結果顯示條痕間距之機率密度分佈近似於對數常態分佈,且與無滑移邊界的結果相似;無因次化之平均條痕間距隨風速增大而愈大,然而於無滑移邊界流場之結果則趨於一定值 ((λ^+ ) ̅=100)。 | zh_TW |
dc.description.abstract | Thermal streaky structures can be observed on wind-wave surface. They are induced by the underlying coherent eddies in parallel with the wind. The temperature in these streaks is lower than that in the surrounding area when the heat flux is upward from the water to the air, and vice versa. Cold streaky structures, therefore, are observed on infrared thermographic images. In this study, an image recognition method is developed to automatically capture these streaky structure on thermographic images of laboratory wind waves. The method of empirical mode decomposition is first applied to filter out the short-length noises in the thermographic images. The local temperature minima in the spanwise direction are then identified. A streak passing a local temperature minimum is formed by connecting the neighboring downstream/upstream local temperature minima within a chosen radius. Spanwise spacings between the neighboring streaks can then be calculated and analyzed. It is found that the probability density distribution of the streak spacing is close to lognormal distribution, similar to the streaks observed next to a no-slip wall. The non-dimensional mean streak spacing based on friction length, however, increases with the friction wind speed. This is different from the flow next to a no-slip wall in which the non-dimensional mean streak spacing approximates 100 friction unit. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:42:14Z (GMT). No. of bitstreams: 1 ntu-104-R02525006-1.pdf: 13182541 bytes, checksum: 5d6552e7f7b8868b1c75fb789b83fbcd (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 致謝 I
中文摘要 II 英文摘要 III 目錄 IV 圖目錄 V 表目錄 XIII 第一章、 前言 1 1.1 無滑移紊流邊界層條痕結構 1 1.2 水面紊流邊界層條痕結構 6 1.3 研究動機與章節概述 14 第二章、 風浪水槽實驗 16 第三章、 自動辨識條痕結構 21 3.1 研究回顧:水面影像之條痕結構 21 3.2 雜訊去除 (noise removal) 35 3.2.1 直方圖 35 3.2.2 經驗模態分解法 37 3.3 自動辨識步驟 52 第四章、 條痕間距特性探討 69 4.1 統計條痕間距分佈 69 4.2 點位連結範圍造成條痕間距計算的影響 76 4.3 與他人結果進行比較 79 第五章、 結論與建議 86 參考文獻 88 | |
dc.language.iso | zh-TW | |
dc.title | 風浪表面熱圖像的條痕結構辨識與間距特性探討 | zh_TW |
dc.title | Eduction and Analyses of Streaky Structure on Thermographic Images of Laboratory Wind Waves | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王兆璋,戴璽恆,張恆華 | |
dc.subject.keyword | 風浪,紅外線影像,經驗模態分解法,特徵條痕,紊流邊界層,對數常態分佈, | zh_TW |
dc.subject.keyword | wind wave,infrared images,empirical mode decomposition,characteristic streak,turbulent boundary layer,streak spacing,logarithmic-normal distribution, | en |
dc.relation.page | 89 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-12-30 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 12.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。