Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51631
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇國棟(Guo-Dung J. Su)
dc.contributor.authorKuo-Hao Wuen
dc.contributor.author吳國昊zh_TW
dc.date.accessioned2021-06-15T13:42:01Z-
dc.date.available2020-08-24
dc.date.copyright2020-08-24
dc.date.issued2020
dc.date.submitted2020-08-10
dc.identifier.citation[1] Y. Bar-Cohen, Biomimetics: biologically inspired technology 01/01 2006.
[2] M. Land, 'The optical structures of animal eyes,' Current biology : CB, vol. 15, pp. R319-23, 06/01 2005, doi: 10.1016/j.cub.2005.04.041.
[3] H. E. Roaf, 'The Vertebrate Eye and its Adaptive Radiation,' Nature, vol. 151, no. 3826, pp. 236-236, 1943/02/01 1943, doi: 10.1038/151236a0.
[4] N. Sugiura and S. Morita, 'Variable-focus liquid-filled optical lens,' Appl. Opt., vol. 32, no. 22, pp. 4181-4186, 1993/08/01 1993, doi: 10.1364/AO.32.004181.
[5] C. W. Fowler and E. S. Pateras, 'Liquid crystal lens review,' Ophthalmic and Physiological Optics, vol. 10, no. 2, pp. 186-194, 1990/04/01 1990, doi: 10.1111/j.1475-1313.1990.tb00974.x.
[6] C.-T. Lee, Y. Li, H.-Y. Lin, and S.-T. Wu, 'Design of polarization-insensitive multi-electrode GRIN lens with a blue-phase liquid crystal,' Optics express, vol. 19, pp. 17402-7, 08/29 2011, doi: 10.1364/OE.19.017402.
[7] Y.-H. Lin, Y.-J. Wang, and V. Reshetnyak, 'Liquid crystal lenses with tunable focal length,' Liquid Crystals Reviews, vol. 5, no. 2, pp. 111-143, 2017/07/03 2017, doi: 10.1080/21680396.2018.1440256.
[8] H.-C. Lin, M.-S. Chen, and Y.-H. Lin, 'A Review of Electrically Tunable Focusing Liquid Crystal Lenses,' Transactions on Electrical and Electronic Materials, vol. 12, 12/25 2011, doi: 10.4313/TEEM.2011.12.6.234.
[9] S. Sato, 'Applications of Liquid Crystals to Variable-Focusing Lenses,' Optical Review, vol. 6, no. 6, pp. 471-485, 1999/11/01 1999, doi: 10.1007/s10043-999-0471-z.
[10] Y.-H. Lin, Ren Hongwen., Wu, Yung-Hsun, Wu, Shin-Tson, Zhao Yue, Lin, Hung-Chun, 'Electrically tunable wettability of liquid crystal/polymer composite films,' Optics Express, vol. 16, pp. 17591-17598, 10/27 2008, doi: 10.1364/OE.16.017591.
[11] a. S.-T. W. H. Ren, Introduction to adaptive lenses. John Wiley Sons, 2012.
[12] G. Beni and S. Hackwood, 'Electro‐wetting displays,' Applied Physics Letters, vol. 38, no. 4, pp. 207-209, 1981, doi: 10.1063/1.92322.
[13] S. Sato, 'Liquid-Crystal Lens-Cells with Variable Focal Length,' Japanese Journal of Applied Physics, vol. 18, no. 9, pp. 1679-1684, 1979/09 1979, doi: 10.1143/jjap.18.1679.
[14] M. Hain, R. Glöckner, S. Bhattacharya, D. Dias, S. Stankovic, and T. Tschudi, 'Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup,' Optics Communications, vol. 188, no. 5, pp. 291-299, 2001/02/15/ 2001, doi: https://doi.org/10.1016/S0030-4018(01)00989-0.
[15] A. F. Naumov, M. Y. Loktev, I. R. Guralnik, and G. Vdovin, 'Liquid-crystal adaptive lenses with modal control,' Opt. Lett., vol. 23, no. 13, pp. 992-994, 1998/07/01 1998, doi: 10.1364/OL.23.000992.
[16] S.-H. Chung, S.-W. Choi, Y.-J. Kim, H.-J. Ahn, and H.-K. Baik, 'Liquid Crystal Lens for Compensation of Spherical Aberration in Multilayer Optical Data Storage,' Japanese Journal of Applied Physics, vol. 45, no. 2B, pp. 1152-1157, 2006, doi: 10.1143/jjap.45.1152.
[17] B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, 'Liquid Crystal Lens with Spherical Electrode,' Japanese Journal of Applied Physics, vol. 41, no. Part 2, No. 11A, pp. L1232-L1233, 2002/11/01 2002, doi: 10.1143/jjap.41.l1232.
[18] P. C. P. Chao, Y. Y. Kao, and C. J. Hsu, 'A new negative liquid crystal lens with multiple ring electrodes in unequal widths,' IEEE Photonics Journal, vol. 4, no. 1, pp. 250-266, 2012, doi: 10.1109/jphot.2012.2183583.
[19] M. Ye and S. Sato, 'Liquid Crystal Lens with Insulator Layers for Focusing Light Waves of Arbitrary Polarizations,' Japanese Journal of Applied Physics, vol. 42, no. Part 1, No. 10, pp. 6439-6440, 2003/10/09 2003, doi: 10.1143/jjap.42.6439.
[20] M. Ye and S. Sato, 'Liquid crystal lens with focus movable along and off axis,' Optics Communications, vol. 225, no. 4, pp. 277-280, 2003/10/01/ 2003, doi: https://doi.org/10.1016/j.optcom.2003.07.050.
[21] M. Ye and S. Sato, 'Optical Properties of Liquid Crystal Lens of Any Size,' Japanese Journal of Applied Physics, vol. 41, no. Part 2, No. 5B, pp. L571-L573, 2002/05/15 2002, doi: 10.1143/jjap.41.l571.
[22] Y. J. Liu, X. W. Sun, and Q. Wang, 'A focus-switchable lens made of polymer–liquid crystal composite,' Journal of Crystal Growth, vol. 288, no. 1, pp. 192-194, 2006/02/02/ 2006, doi: https://doi.org/10.1016/j.jcrysgro.2005.12.025.
[23] Y.-S. Hwang, T.-H. Yoon, and J. C. Kim, 'Design and Fabrication of Variable Focusing Lens Array Using Liquid Crystal for Integral Photography,' Japanese Journal of Applied Physics, vol. 42, no. Part 1, No. 10, pp. 6434-6438, 2003/10/09 2003, doi: 10.1143/jjap.42.6434.
[24] C. Lin, C. Chen, R. Chiang, I. Jiang, C. Kuo, and C. Huang, 'Dual-Frequency Liquid-Crystal Lenses Based on a Surface-Relief Dielectric Structure on an Electrode,' IEEE Photonics Technology Letters, vol. 23, no. 24, pp. 1875-1877, 2011, doi: 10.1109/LPT.2011.2170410.
[25] R. Hamdi, G. Petriashvili, G. Lombardo, M. De Santo, and R. Barberi, 'Liquid crystal bubbles forming a tunable micro-lenses array,' Journal of Applied Physics, vol. 110, pp. 074902-074902, 10/03 2011, doi: 10.1063/1.3642972.
[26] Y. Arakawa, S. Nakajima, S. Kang, M. Shigeta, G.-i. Konishi, and J. Watanabe, 'Design of an extremely high birefringence nematic liquid crystal based on a dinaphthyl-diacetylene mesogen,' Journal of Materials Chemistry, 10.1039/C2JM32448B vol. 22, no. 28, pp. 13908-13910, 2012, doi: 10.1039/C2JM32448B.
[27] M. H. Peter J. Collings, Introduction to Liquid Crystals: Chemistry and Physics. 1997.
[28] C. G. Pochi Yeh, Optics of Liquid Crystal Displays. 2009.
[29] S. T. W. Deng‐Ke Yang Fundamentals of Liquid Crystal Devices. 2014.
[30] R. H. Chen, Liquid Crystal Displays: Fundamental Physics and Technology. 2011.
[31] Y. Hsu, B. Chen, and C. Sheu, 'Improvement of Hole-Patterned Electrode Liquid Crystal Lens by Coplanar Inner Ring Electrode,' IEEE Photonics Technology Letters, vol. 31, no. 20, pp. 1627-1630, 2019, doi: 10.1109/LPT.2019.2939268.
[32] H.-C. Lin and Y.-H. Lin, 'An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,' Optics Express, vol. 20, no. 3, pp. 2045-2052, 2012/01/30 2012, doi: 10.1364/OE.20.002045.
[33] C.-Y. Huang, M. Raj, P. Selvaraj, K. Subramani, B. S, and C.-J. Hsu, 'Fast-response liquid crystal lens with doping of organic N-benzyl-2-methyl-4-nitroaniline,' Optics Express, vol. 28, 03/17 2020, doi: 10.1364/OE.390001.
[34] J. P. P. G. de Gennes, The physics of liquid crystals. Clarendon Press; Oxford University Press, 1993.
[35] W.-M. Huang, R.-K. Yang, and G.-D. J. Su, 'Variable focus microlens array with curved electrodes,' Journal of Micromechanics and Microengineering, vol. 27, no. 5, p. 055003, 2017/03/23 2017, doi: 10.1088/1361-6439/aa64ba.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51631-
dc.description.abstract本論文主要介紹GRIN lens type大孔徑液晶透鏡的模擬方法以及相對簡單且成本較低的製程方法。模擬的部分主要介紹如何設計出立體漸變的電極結構產生漸變之電場分布使液晶分子旋轉至特定角度,讓其感受到等校於類似凹透鏡之相位曲線以達到散焦之效果。為了讓此研究可以應用在VR/AR使用者的近視校正上,我們設計了孔徑大約等於瞳孔大小的6mm 且其屈光度為 -5之液晶透鏡。在經過嚴謹準確的模擬之後,我們利用精密加工製作出具有立體漸變的電極結構之模具,接著利用 PDMS 以及 NOA65 製作透明且具有所設計之立體電極結構,之後在其表面旋轉塗佈上透明電極 PEDOT:PSS 後,就能得到所設計之立體電極,再來利用 NOA65 將電極填平並將其和具有 ITO 電極之玻璃基板塗佈上 PVA 後封裝,最後再灌入液晶,就可以得到我們所設計的大孔徑液晶透鏡。接著我們利用 CCD 觀察干涉條紋驗證在不同電壓下其屈光度和模擬結果有無差異,之後設計幾個實驗去觀測此液晶透鏡的成像效果如何。此元件我們認為可在 VR/AR 的近視校正以及其他可變焦之光學系統上的有所應用。zh_TW
dc.description.abstractIn this thesis, the simulation and the fabrication of the GRIN lens-type liquid crystal lens is demonstrated. The simulation part is about how to design the 3D gradient electrode structure to generate the gradient electric field that makes each LC director orient in specific orientation to obtain the defocus effect. It is expected that this research can solve the problem of nearsighted users of VR/AR. We design a liquid crystal lens which has an optical power of -5 diopters and the aperture is 6 mm. After rigorous and accurate simulation, we use Precision Machining to fabricate the aluminum mold which has the designed 3D structure and mold it with PDMS and NOA65 to make a transparent 3D structure. After we spin coated PEDOT:PSS on the surface, we can get the designed 3D electrode. Then we’ll flatten the surface of 3D electrode with NOA65 and assemble it with another ITO glass substrate. Finally, the liquid crystal is injected in the gap between two substrates, and we can finally obtain our designed large aperture liquid crystal lens. Afterwards, we use CCD to observe the interference fringes to verify whether the diopters are different with simulation under different voltages. Then we set up experimental tools to measure the image properties of the LC lens. This component is good for nearsighted correction in VR/AR system and also for optical zoom system and focus-tunable lens applications.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:42:01Z (GMT). No. of bitstreams: 1
U0001-0908202017034100.pdf: 3538239 bytes, checksum: 358fa9b61d06826ac6cf386de3359c9a (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝…….. i
中文摘要… ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLE xiv
Chapter 1 Introduction 1
1.1 Focus tunable lens 1
1.1.1 Elastomeric Membrane Lens 3
1.1.2 Electrowetting Lens 6
1.1.3 Liquid Crystal Lens 7
1.2 Introduction of Liquid Crystal 11
1.2.1 Types of Liquid Crystals and Molecular Structure 12
1.2.2 Physical Properties of Liquid Crystals 14
1.3 Introduction of GRIN lens type Liquid Crystal Lens 19
Chapter 2 Theoretically calculation 24
2.1 Freedericksz transition 24
2.2 Focal length 29
2.2.1 Method 1 29
2.2.2 Method 2 31
2.3 Simulation method for LC lens 33
Chapter 3 Design and the simulation of LC lens 35
3.1 Motivation and the design 35
3.2 Simulation of the Large Aperture LC lens 36
3.2.1 Ideal phase profile 36
3.2.2 Simulation of Techwiz LCD 3D 39
Chapter 4 Fabrication process and Materials 46
4.1 Materials 46
4.1.1 Polydimethylsiloxane (PDMS) 46
4.1.2 Liquid Crystal 47
4.1.3 PEDOT:PSS 48
4.1.4 NOA65 49
4.2 Fabrication process 51
4.2.1 Precision Machining of designed 3D structure 52
4.2.2 The concave 3D structure on PDMS 54
4.2.3 The designed 3D structure on glass substrate 55
4.2.4 Transparent conductive layer and the flatten layer 55
4.2.5 Assemble to a LALC lens 56
Chapter 5 Experimental results 60
5.1 The interference fringes 60
5.2 Image performance………………………………………………………...62
Chapter 6 Conclusion 66
REFERENCE 68
dc.language.isoen
dc.title3D電極可變焦距大孔徑液晶透鏡之模擬和製作zh_TW
dc.titleSimulation and the Fabrication of Large Aperture, Focus-Tunable Liquid Crystal Lens with 3D Electrodeen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃定洧(Ding-Wei Huang),蔡永傑(Wing-Kit Choi)
dc.subject.keyword可變焦距透鏡,液晶透鏡,精密加工,VR/AR,近視校正,zh_TW
dc.subject.keywordFocus-tunable lens,Liquid crystal lens,Precision Machining,VR/AR,Nearsighted correction,en
dc.relation.page71
dc.identifier.doi10.6342/NTU202002723
dc.rights.note有償授權
dc.date.accepted2020-08-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0908202017034100.pdf
  目前未授權公開取用
3.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved