請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51624完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王名儒(Min-Zu Wang) | |
| dc.contributor.author | You-Hao Chang | en |
| dc.contributor.author | 張祐豪 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:41:42Z | - |
| dc.date.available | 2016-02-15 | |
| dc.date.copyright | 2016-02-15 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-01-06 | |
| dc.identifier.citation | [1] CMS Collaboration, V. Khachatryan et al., “First Measurement of the Underlying Event Activity at the LHC with √s = 0.9 TeV,” Eur. Phys .J. C 70 (2010) 555–572, 1006.2083.
[2] CMS Collaboration, S. Chatrchyan et al., “Measurement of the Underlying Event Activity at the LHC with √s = 7 TeV and Comparison with √s = 0.9 TeV,” JHEP 1109 (2011) 109, 1107.0330. [3] CMS Collaboration, S. Chatrchyan et al., “Measurement of the underlying event in the Drell-Yan process in proton-proton collisions at √s = 7 TeV,” Eur. Phys. J. C 72 (2012) 2080, 1204.1411. [4] C. Goebel, F. Halzen, and D. Scott, “Double Drell-Yan Annihilations in Hadron Collisions: Novel Tests of the Constituent Picture,” Phys. Rev. D 22 (1980) 2789. [5] N. Paver and D. Treleani, “Multi - Quark Scattering and Large pT Jet Production in Hadronic Collisions,” Nuovo Cim. A 70 (1982) 215. [6] B. Humpert, “ARE THERE MULTI - QUARK INTERACTIONS?,” Phys. Lett. B 131 (1983) 461. [7] B. Humpert and R. Odorico, “Multiparton Scattering and QCD Radiation as Sources of Four Jet Events,” Phys. Lett. B 154 (1985) 211. [8] T. Sjo ̈strand and M. van Zijl, “A Multiple Interaction Model for the Event Structure in Hadron Collisions,” Phys. Rev. D 36 (1987) 2019. [9] G. Calucci and D. Treleani, “Double parton scatterings in high-energy hadronic collisions,” Nucl. Phys. Proc. Suppl. 71 (1999) 392–399, hep-ph/9711225. [10] M. Drees and T. Han, “Signals for Double Parton Scattering at the Fermilab Tevatron,” Phys. Rev. Lett. 77 (Nov, 1996) 4142–4145. [11] P. Bartalini, E. L. Berger, B. Blok, G. Calucci, R. Corke, M. Diehl, Y. Dokshitzer, L. Fano, L. Frankfurt, J. R. Gaunt, S. Gieseke, G. Gustafson, D. Kar, C. H. Kom, A. Kulesza, E. Maina, Z. Nagy, C. Roehr, A. Siodmok, M. Schmelling, W. J. Stirling, M. Strikman, and D. Treleani, “Multi-Parton Interactions at the LHC,” ((2011)), no. ANL-HEP-PR-11-65. CMS-CR-2011-048. DESY 11-185. KA-TP-32-2011. TTK-11-52, 1111.0469. [12] M. Mekhfi, “Multiparton Processes: an Application to Double Drell-Yan,” Phys. Rev. D 32 (1985) 2371. [13] L. Ametller, N. Paver, and D. Treleani, “Possible Signature of Multiple Parton Interactions in Collider Four Jet Events,” Phys. Lett. B 169 (1986) 289. [14] R. Godbole, S. Gupta, and J. Lindfors, “Double Parton Scattering Contribution to W + Jets,” Z. Phys. C 47 (1990) 69. [15] J. R. Gaunt, C.-H. Kom, A. Kulesza, and W. J. Stirling, “Same-sign W pair production as a probe of double parton scattering at the LHC,” Eur. Phys. J. C 69 (2010) 53, 1003.3953. [16] CDF Collaboration, “Double parton scattering in pp collisions at √s = 1.8 TeV,” Phys. Rev. D 56 (Oct, 1997) 3811. [17] D0 Collaboration, V. Abazov et al., “Double parton interactions in photon+3 jet events in pp collisions √s = 1.96 TeV,” Phys. Rev. D 81 (2010) 052012, 0912.5104. [18] D0 Collaboration, V. M. Abazov et al., “Azimuthal decorrelations and multiple parton interactions in photon+2 jet and photon+3 jet events in pp ̄ collisions at √s = 1.96 TeV,” Phys. Rev. D 83 (2011) 052008, 1101.1509. [19] D0 Collaboration, V. M. Abazov et al., “Double parton interactions in γ + 3 jet and γ + b/c jet + 2 jet events in pp ̄ collisions at √s = 1.96 TeV,” Phys.Rev. D89 (2014), no. 7, 072006, 1402.1550. [20] Axial Field Spectrometer Collaboration, T. Akesson et al., “Double Parton Scattering in pp Collisions at √s = 63 GeV,” Z. Phys. C 34 (1987) 163. [21] UA2 Collaboration, J. Alitti et al., “A Study of multi-jet events at the CERN pp collider and a search for double parton scattering,” Phys. Lett. B 268 (1991) 145. [22] CDF Collaboration, F. Abe et al., “Study of four jet events and evidence for double parton interactions in pp ̄ collisions at √s = 1.8 TeV,” Phys. Rev. D 47 (1993) 4857. [23] CMS Collaboration, S. Chatrchyan et al., “Measurement of four-jet production in proton-proton collisions at √s=7 TeV,” Phys. Rev. D 89 (2014) 092010, 1312.6440. [24] CMS Collaboration, S. Chatrchyan et al., “Study of double parton scattering using W + 2-jet events in proton-proton collisions at √s = 7 TeV,” JHEP 03 (2014) 032, 1312.5729. [25] ATLAS Collaboration, G. Aad et al., “Measurement of hard double-parton interactions in W(→ lν)+ 2 jet events at √s=7 TeV with the ATLAS detector,” New J. Phys. 15 (2013) 033038, 1301.6872. [26] M. Glu ̈ck, L. Gordon, E. Reya, and W. Vogelsang, “High P(T) photon production at pp ̄ collider,” Phys. Rev. Lett. 73 (1994) 388. [27] M. Cacciari, G. P. Salam, and G. Soyez, “The Anti-k(t) jet clustering algorithm,” JHEP 04 (2008) 063, 0802.1189. [28] M. Cacciari, G. P. Salam, and G. Soyez, “FastJet User Manual,” Eur. Phys. J. C 72 (2012) 1896, 1111.6097. [29] O. S. Bruning, (Ed. ) et al., “LHC design report. Vol. I: The LHC main ring,”. CERN-2004-003-V-1. [30] C. M. S. Collaboration, “CMS, the Compact Muon Solenoid: Technical proposal,” CERN/LHCC 94-38 (1994). [31] ATLAS Collaboration, W. W. Armstrong et al., “ATLAS: Technical proposal for a general-purpose pp experiment at the Large Hadron Collider at CERN,”. CERN-LHCC-94-43. [32] ALICE Collaboration, “ALICE: Technical proposal for a large ion collider experiment at the CERN LHC,”. CERN-LHCC-95-71. [33] LHCb Collaboration, S. Amato et al., “LHCb technical proposal,”. CERN-LHCC-98-04. [34] TOTEM Collaboration, V. Berardi et al., “TOTEM: Technical design report. Total cross section, elastic scattering and diffraction dissociation at the Large Hadron Collider at CERN,”. CERN-LHCC-2004-002. [35] LHCf Collaboration, O. Adriani et al., “Technnical proposal for the CERN LHCf experiment: Measurement of photons and neutral pions in the very forward region of LHC,”. CERN-LHCC-2005-032. [36] CMS Collaboration, “The CMS experiment at the CERN LHC,” JINST 3 (2008) S08004. [37] CMS Collaboration, CMS, “Jet Energy Corrections Determination at 7 TeV,” CMS Physics Analysis Summary CMS-PAS-JME-10-010, CERN, 2010. [38] M. Cacciari and G. P. Salam, “Pileup subtraction using jet areas,” Phys. Lett. B 659 (2008) 119, 0707.1378. [39] CMS Collaboration, “Particle–Flow Event Reconstruction in CMS and Performance for Jets, Taus, and Emiss,” CMS Physics Analysis Summary T CMS-PAS-PFT-09-001, 2009. [40] CMS Collaboration, “Commissioning of the Particle-flow Event Reconstruction with the first LHC collisions recorded in the CMS detector,” CMS Physics Analysis Summary CMS-PAS-PFT-10-001, 2010. [41] CMS Collaboration, V. Khachatryan et al., “Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at √s = 8 TeV.” Submitted to JINST, 2015. [42] CMS Collaboration, S. Chatrchyan et al., “Commissioning of the CMS High-Level Trigger with Cosmic Rays,” JINST 5 (2010) T03005, 0911.4889. [43] CMS Collaboration, “CMS workload management,” tech. rep., 2007. [44] T. Sjo ̈strand, S. Mrenna, and P. Skands, “A Brief Introduction to PYTHIA 8.1,” Comput. Phys. Comm. 178 (2007) 852, hep-ph/0710.3820. [45] T. Sjo ̈strand, S. Mrenna, and P. Skands, “PYTHIA 6.4 physics and manual,” JHEP 05 (2006) 026, hep-ph/0603175. [46] F. Maltoni and T. Stelzer, “MadEvent: Automatic event generation with MadGraph,” JHEP 02 (2003) 027, hep-ph/0208156. [47] A. Johan, H. Michel, M. Fabio, M. Olivier, and S. Tim, “MadGraph 5 : Going Beyond,” JHEP 06 (2011) 128, hep-ph/1106.0522. [48] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations,” JHEP 07 (2014) 079, 1405.0301. [49] A. Buckley, H. Hoeth, H. Lacker, H. Schulz, and J. E. von Seggern, “Systematic event generator tuning for the LHC,” Eur. Phys. J. C 65 (2010) 331–357, 0907.2973. [50] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J. G. Cadenas, I. Gonza ́lez, G. G. Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. L. V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. M. de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. D. Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. S. Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J. Wellisch, T. Wenaus, D. Williams, D. Wright, T. Yamada, H. Yoshida, and D. Zschiesche, “Geant4–a simulation toolkit,” NIM A 506 (2003) 250. [51] J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie, R. Chytracek, G. A. P. Cirrone, G. Cooperman, G. Cosmo, G. Cuttone, G. G. Daquino, M. Donszelmann, M. Dressel, G. Folger, F. Foppiano, J. Generowicz, V. Grichine, S. Guatelli, P. Gumplinger, A. Heikkinen, I. Hrivnacova, A. Howard, S. Incerti, V. Ivanchenko, T. Johnson, F. Jones, T. Koi, R. Kokoulin, M. Kossov, H. Kurashige, V. Lara, S. Larsson, F. Lei, O. Link, F. Longo, M. Maire, A. Mantero, B. Mascialino, I. McLaren, P. Lorenzo, K. Minamimoto, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, L. Peralta, J. Perl, A. Pfeiffer, M. Pia, A. Ribon, P. Rodrigues, G. Russo, S. Sadilov, G. Santin, T. Sasaki, D. Smith, N. Starkov, S. Tanaka, E. Tcherniaev, B. Tome, A. Trindade, P. Truscott, L. Urban, M. Verderi, A. Walkden, J. P. Wellisch, D. Williams, D. Wright, and H. Yoshida, “Geant4 Developments and Applications,” IEEE Trans. Nucl. Sci. 53 (2006) 270. [52] R. Field, “Early LHC Underlying Event Data - Findings and Surprises,” (2010) 1010.3558. [53] J. Pumplin, D. Stump, J. Huston, H. Lai, P. M. Nadolsky, et al., “New generation of parton distributions with uncertainties from global QCD analysis,” JHEP 07 (2002) 012, hep-ph/0201195. [54] P. Z. Skands and D. Wicke, “Non-perturbative QCD effects and the top mass at the Tevatron,” Eur. Phys. J. C 52 (2007) 133–140, hep-ph/0703081. [55] R. Corke and T. Sjo ̈strand, “Interleaved Parton Showers and Tuning Prospects,” JHEP 03 (2011) 032, 1011.1759. [56] R. Corke and T. Sjo ̈strand, “Multiparton Interactions and Rescattering,” JHEP 01 (2010) 035, 0911.1909. [57] CMS Collaboration, S. Chatrchyan et al., “Study of the underlying event at forward rapidity in pp collisions at √s = 0.9, 2.76, and 7 TeV,” JHEP 04 (2013) 072, 1302.2394. [58] T. Gleisberg, S. Ho ̈che, F. Krauss, M. Schonherr, S. Schumann, et al., “Event generation with SHERPA 1.1,” JHEP 02 (2009) 007, 0811.4622. [59] S. Schumann and F. Krauss, “A Parton shower algorithm based on Catani-Seymour dipole factorisation,” JHEP 03 (2008) 038, 0709.1027. [60] T. Gleisberg and S. Ho ̈che, “Comix, a new matrix element generator,” JHEP 12 (2008) 039, 0808.3674. [61] S. Ho ̈che, F. Krauss, S. Schumann, and F. Siegert, “QCD matrix elements and truncated showers,” JHEP 05 (2009) 053, 0903.1219. [62] M. Scho ̈nherr and F. Krauss, “Soft Photon Radiation in Particle Decays in SHERPA,” JHEP 12 (2008) 018, 0810.5071. [63] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, et al., “New parton distributions for collider physics,” Phys. Rev. D 82 (2010) 074024, 1007.2241. [64] CMS Collaboration, “Photon reconstruction and identification at √s = 7TeV,” CMS Physics Analysis Summary CMS-PAS-EGM-10-005, CERN, 2010. [65] CMS Collaboration, “Electromagnetic calorimeter commissioning and first results with 7 TeV data,” CMS Note 2010/012, CERN, 2010. [66] CMS Collaboration, “Measurement of the Differential Cross Section for Isolated Prompt Photon Production in pp Collisions at 7 TeV,” Phys. Rev. D 84 (2011) 052011. 45 p, hep-ex/1108.2044. [67] CMS Collaboration, V. Khachatryan et al., “Measurement of the Isolated Prompt Photon Production Cross Section in pp Collisions at √s = 7 TeV,” Phys. Rev. Lett. 106 (2011) 082001, 1012.0799. [68] CMS Collaboration, S. Chatrchyan et al., “Measurement of the Differential Cross Section for Isolated Prompt Photon Production in pp Collisions at 7 TeV,” Phys. Rev. D 84 (2011) 052011, 1108.2044. [69] CMS Collaboration, “Electromagnetic calorimeter calibration with 7 TeV data,” CMS Physics Analysis Summary CMS-PAS-EGM-10-003, CERN, Geneva, 2010. [70] CMS Collaboration, S. Chatrchyan et al., “Measurement of the Inclusive W and Z Production Cross Sections in pp Collisions at √s = 7 TeV,” JHEP 10 (2011) 132, 1107.4789. [71] CMS Collaboration, “ECAL 2010 performance results,” Tech. Rep. CMS-DP-2011-008, CERN, Geneva, 2011. [72] CMS Collaboration, “Commissioning of the Particle-Flow reconstruction in Minimum-Bias and Jet Events from pp Collisions at 7 TeV,” Tech. Rep. CMS-PAS-PFT-10-002, CERN, Geneva, 2010. [73] CMS Collaboration, “Jet Energy Corrections determination at 7 TeV,” Tech. Rep. CMS-PAS-JME-10-010, CERN, Geneva, 2010. [74] CMS Collaboration, S. Chatrchyan et al., “Measurement of the Inclusive Jet Cross Section in pp Collisions at √s = 7 TeV,” Phys. Rev. Lett. 107 (2011) 132001, 1106.0208. [75] G. D’Agostini, “A Multidimensional unfolding method based on Bayes’ theorem,” Nucl. Instrum. Meth. A 362 (1995) 487. [76] T. Adye, “Unfolding algorithms and tests using RooUnfold,” (2011) 1105.1160. [77] A. Ho ̈cker and V. Kartvelishvili, “SVD approach to data unfolding,” Nucl. Instrum. Meth. A 372 (1996) 469, hep-ph/9509307. [78] CMS Collaboration, S. Chatrchyan et al., “Measurement of the triple-differential cross section for photon+jets production in proton-proton collisions at √s=7 TeV,” JHEP 1406 (2014) 009, 1311.6141. [79] CMS Collaboration, S. Chatrchyan et al., “Energy calibration and resolution of the CMS electromagnetic calorimeter in pp collisions at √s = 7 TeV,” JINST 8 (2013) P09009, 1306.2016. [80] CMS Collaboration, S. Chatrchyan et al., “Determination of jet energy calibration and transverse momentum resolution in CMS,” JINST 6 (2011) P11002, 1107.4277. [81] CMS Collaboration, “CMS twiki page: Pile-up Systematic Errors,” tech. rep., CERN, 1900. Geneva. [82] CMS Collaboration, S. Chatrchyan et al., “Description and performance of track and primary-vertex reconstruction with the CMS tracker,” JINST 9 (2014), no. 10, P10009, 1405.6569. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51624 | - |
| dc.description.abstract | 在大強子對撞機實驗中,同時間在同一粒子對撞中產生多組反應的機率是不可忽略的。這些額外的反應隨著對撞時的質心能量的增加,其發生的機率也隨之增 加,並且變得能夠辨識,甚至於影響分析那些來自主要對撞反應的物理現象。我們探討質心能量為七兆電子伏特的質子質子對撞實驗中單光子加上三個噴流事例的雙部分子散射現象。其中實驗數據是在二零一零年由大強子對撞機實驗的緊湊 渺子線圈偵測器所收集而來,數據的總有效照度約為三十六 皮靶負一次方。藉由分析緊湊秒子線圈偵測器所得數據,並加以重組數據資訊及篩選事例, 我們測量出質子質子對撞後末狀態為一個光子加上三個噴流的事例截面可能性為一百二十四點九 皮靶,統計誤差約為八點九 皮靶,系統誤差約為二十二點六 皮靶。同時 我們也探討了事例中, 光子和三個噴流的空間分布以及橫向動量平衡等有利於觀察雙部分子散射現像的物理量,而藉由蒙地卡羅法來模擬預測且和實際數據作比 對, 使我們了解各種物理模型正確性並對其加以修正。 | zh_TW |
| dc.description.abstract | The probability of having more than one interaction per collision is non-negligible at the LHC. These additional interactions might reach a hard scale comparable to the primary scattering and become experimentally distinguishable at high energies. Distributions sensitive to double parton scattering are investigated in the photon + 3 jets final state in proton-proton collisions at a center-of-mass energy of 7 TeV. The data were collected by the CMS experiment at the LHC with an integrated luminosity of 36 pb−1 in 2010. The cross section σ for a final state with a photon and a jet of transverse momentum pT > 75 GeV together with 2 jets of pT > 20 GeV, where the photon and jets are within the fiducial volume of the CMS detector, is measured to be 124.9 ± 8.9 (stat.) ± 22.6 (syst.) pb. The differential cross sections are measured as a function of the difference in azimuthal angles and the transverse momentum balance between the photon-jet pair and the di-jet pair. Further it is investigated whether additional contributions from double par- ton scattering can improve the agreement between the measured data and the Monte Carlo predictions. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:41:42Z (GMT). No. of bitstreams: 1 ntu-105-D98222027-1.pdf: 4800776 bytes, checksum: c8be8dbf58cea126fe24759fb1aabf7c (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
Acknowledgment iii 中文摘要 v Abstract vii Table of Contents ix Chapter I Introduction 1 Chapter II Experimental Apparatus 7 II.1 Overview of the LHC....................... 7 II.2 The CMS Detector ........................ 10 II.2.1 Magnet........................... 12 II.2.2 TrackingDetectors..................... 12 II.2.3 Electromagnetic Calorimeter (ECAL) . . . . . . . . . . . 14 II.2.4 Hadronic Calorimeter(HCAL) .............. 17 II.2.5 Jet Reconstruction as CMS ................ 19 II.2.6 MuonSystem ....................... 20 II.2.7 GlobalEventReconstruction ............... 22 II.3 Trigger System .......................... 23 II.3.1 Level-1Trigger(L1).................... 23 II.3.2 High Level Trigger(HLT)................. 24 II.4 Computing ............................ 24 Chapter III Data and Monte Carlo Simulation 29 Chapter IV Event Selection 35 IV.1 Trigger Requirement ....................... 36 IV.2 Pileup Reweighting ........................ 37 IV.3 Photon identification ....................... 40 IV.4 Jetidentification.......................... 42 Chapter V Discriminating observables 49 Chapter VI Photon + 3 jets events at detector level 55 VI.1 DPS performance at detector level ................ 55 VI.2 Purity of isolated prompt photons................. 58 Chapter VII Correction and unfolding 65 VII.1 Acceptance, background, purity and stability . . . . . . . . . . . 66 VII.2 Unfolding with RooUnfold .................... 69 Chapter VIII Systematic Uncertainties 73 VIII.1 Photon energy scale uncertainty ................. 74 VIII.2 Photon energy resolution uncertainty . . . . . . . . . . . . . . . 74 VIII.3 Jet energy scale uncertainty.................... 75 VIII.4 Jet energy resolution uncertainty ................. 76 VIII.5 Model dependence uncertainty .................. 77 VIII.6 Photon identification efficiency uncertainty . . . . . . . . . . . . 77 VIII.7 Pilepup reweighting uncertainty ................. 78 VIII.8 Second Primary Vertex selection Uncertainty . . . . . . . . . . 79 VIII.9 Jet-vertex association Uncertainty . . . . . . . . . . . . . . . . 80 VIII.10 The sample size of Monte Carlo simulation . . . . . . . . . . . 80 VIII.11 HLT efficiency correction uncertainty . . . . . . . . . . . . . . 81 VIII.12 Total systematic uncertainty ................... 81 Chapter IX Results 85 Chapter X Bibliography 91 Bibliography 93 | |
| dc.language.iso | en | |
| dc.subject | 基底事件 | zh_TW |
| dc.subject | 量子色動力學 | zh_TW |
| dc.subject | 雙部分子散射現象 | zh_TW |
| dc.subject | 多部分子反應 | zh_TW |
| dc.subject | Multiple parton interaction | en |
| dc.subject | Double parton scattering | en |
| dc.subject | Underlying event | en |
| dc.subject | QCD | en |
| dc.title | 利用緊湊渺子線圈探討質子質子對撞實驗中單光子加上三個噴流事例的雙部分子散射現象 | zh_TW |
| dc.title | Study of Double Parton Scattering in Photon + 3 Jets Final State in Proton-Proton Collisions at √s = 7TeV in CMS | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 巴保祿(Paolo Bartalini),余欣珊(Shin-Shan Yu) | |
| dc.contributor.oralexamcommittee | 張寶棣(Pao-Ti Chang),陳凱風(Kai-Feng Chen),裴思達(Stathes Paganis) | |
| dc.subject.keyword | 量子色動力學,基底事件,多部分子反應,雙部分子散射現象, | zh_TW |
| dc.subject.keyword | QCD,Underlying event,Multiple parton interaction,Double parton scattering, | en |
| dc.relation.page | 100 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-01-06 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 4.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
