請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51621
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 葉汀峰(Ting-Feng Yeh) | |
dc.contributor.author | Chi-Wen Chan | en |
dc.contributor.author | 詹棨文 | zh_TW |
dc.date.accessioned | 2021-06-15T13:41:34Z | - |
dc.date.available | 2019-02-24 | |
dc.date.copyright | 2016-02-24 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2016-01-06 | |
dc.identifier.citation | 呂錦明(2001)竹林之培育及經營管理。行政院農業委員會林業試驗所。臺北市。204頁。
呂錦明(2010)臺灣竹圖鑑。晨星出版有限公司。臺北市。271頁。 李培芬(2006)自然資源與生態資料庫III-農林漁牧。行政院農業委員會林務局。臺北市。215頁。 邱立文、黃群修、吳俊奇、謝小恬(2015)第4次全國森林資源調查成果概要。台灣林業。41:3-13。 林維治(1958)臺灣竹類生長之研究。臺灣省林業試驗所報告第54號。29頁。. Albersheim, P.; Darvill, A.; Roberts, K.; Sederoff, R.; Staehelin, A. (2011) Plant Cell walls. Garland Science, Taylor & Francis Group, New York, 430 pp. Aloni, Y.; Delmer, D. P.; Benziman, M. (1982) Achievement of high rates of in vitro synthesis of 1, 4-beta-D-glucan: activation by cooperative interaction of the Acetobacter xylinum enzyme system with GTP, polyethylene glycol, and a protein factor. Proceedings of the National Academy of Sciences U.S.A 79:6448-6452. Arioli, T.; Peng, L.; Betzner, A. S.; Burn, J.; Wittke, W.; Herth, W.; Camilleri, C.; Hofte, H.; Plazinski, J.; Birch, R. (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717-720. Baskin, T.; Betzner, A.; Hoggart, R.; Cork, A.; Williamson, R. (1992) Root morphology mutants in Arabidopsis thaliana. Functional Plant Biology 19:427-437. Belding, R. D.; Lokaj, G. R. W. (2002) Aminoethoxyvinylglycine treatment of peach fruit reduces ethylene production and softening. HortScience 37:1065-1068. Bitter, T.; Muir, H. M. (1962) A modified uronic acid carbazole reaction. Analytical Biochemistry 4:330-334. Blake, A. W.; McCartney, L.; Flint, J. E.; Bolam, D. N.; Boraston, A. B.; Gilbert, H. J.; Knox, J. P. (2006) Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. Journal of Biological Chemistry 281:29321-29329. Blakeney, A. B.; Harris, P. J.; Henry, R. J.; Stone, B. A. (1983) A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydrate Research 113:291-299. Brabham, C.; DeBolt, S. (2012) Chemical genetics to examine cellulose biosynthesis. Frontiers in Plant Science 3:1-6. Caño-Delgado, A. I.; Metzlaff, K.; Bevan, M. W. (2000) The eli1 mutation reveals a link between cell expansion and secondary cell wall formation in Arabidopsis thaliana. Development 127:3395-3405. Caño‐Delgado, A.; Penfield, S.; Smith, C.; Catley, M.; Bevan, M. (2003) Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant Journal 34:351-362. Chang, W. J.; Chang, M. J.; Chang, S. T.; Yeh, T. F. (2013) Chemical composition and Immunohistological variations of a growing bamboo shoot. Journal of Wood Chemistry and Technology 33:144-155. Chen, C. Y.; Hsieh, M. H.; Yang, C. C.; Lin, C. S.; Wang, A. Y. (2010) Analysis of the cellulose synthase genes associated with primary cell wall synthesis in Bambusa oldhamii. Phytochemistry 71:1270-1279. Chen, W.; Yu, H.; Liu, Y.; Hai, Y.; Zhang, M.; Chen, P. (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433-442. Cifuentes, C.; Bulone, V.; Emons, A. M. C. (2010) Biosynthesis of callose and cellulose by detergent extracts of tobacco cell membranes and quantification of the polymers synthesized in vitro. Journal of Integrative Plant Biology 52:221-233. Cosgrove, D. J. (2005) Growth of the plant cell wall. Nature Reviews Molecular Cell Biology 6:850-861. Das, M.; Chakraborty, D. (2006) Influence of alkali treatment on the fine structure and morphology of bamboo fibers. Journal of Applied Polymer Science 102:5050-5056. Delmer, D. P. (1999) Cellulose biosynthesis: exciting times for a difficult field of study. Annual Review of Plant Biology 50:245-276. Delmer, D. P.; Amor, Y. (1995) Cellulose biosynthesis. Plant Cell 7:987-1000. Dence, C. W. (1992) The determination of lignin. In Methods in lignin chemistry, S. Y. Lin and C. W. Dence, Eds. Springer-Verlag. New York.pp. 33-58. Dereeper, A.; Guignon, V.; Blanc, G.; Audic, S.; Buffet, S.; Chevenet, F.; Dufayard, J.-F.; Guindon, S.; Lefort, V.; Lescot, M. (2008) Phylogeny. fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Research 36:465-469. Desnos, T.; Orbovic, V.; Bellini, C.; Kronenberger, J.; Caboche, M.; Traas, J.; Hofte, H. (1996) Procuste1 mutants identify two distinct genetic pathways controlling hypocotyl cell elongation, respectively in dark-and light-grown Arabidopsis seedlings. Development 122:683-693. Desprez, T.; Juraniec, M.; Crowell, E. F.; Jouy, H.; Pochylova, Z.; Parcy, F.; Hofte, H.; Gonneau, M.; Vernhettes, S. (2007) Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proceedings of the National Academy of Sciences U.S.A 104:15572-15577. Desprez, T.; Vernhettes, S.; Fagard, M.; Refregier, G.; Desnos, T.; Aletti, E.; Py, N.; Pelletier, S.; Hofte, H. (2002) Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase isoform CESA6. Plant Physiology 128:482-490. Endler, A.; Persson, S. (2011) Cellulose synthases and synthesis in Arabidopsis. Molecular Plant 4:199-211. Fagard, M.; Desnos, T.; Desprez, T.; Goubet, F.; Refregier, G.; Mouille, G.; McCann, M.; Rayon, C.; Vernhettes, S.; Hofte, H. (2000) PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12:2409-2424. Focher, B.; Palma, M.; Canetti, M.; Torri, G.; Cosentino, C.; Gastaldi, G. (2001) Structural differences between non-wood plant celluloses: evidence from solid state NMR, vibrational spectroscopy and X-ray diffractometry. Industrial Crops and Products 13:193-208. Gillmor, C. S.; Poindexter, P.; Lorieau, J.; Palcic, M. M.; Somerville, C. (2002) α-Glucosidase I is required for cellulose biosynthesis and morphogenesis in Arabidopsis. Journal of Cell Biology 156:1003-1013. Glaser, L. (1958) The synthesis of cellulose in cell-free extracts of Acetobacter xylinum. Journal of Biological Chemistry 232:627-636. Gonneau, M.; Desprez, T.; Guillot, A.; Vernhettes, S.; Höfte, H. (2014) Catalytic Subunit Stoichiometry within the Cellulose Synthase Complex. Plant Physiology 166:1709-1712. Griffiths, J.; Šola, K.; Kushwaha, R.; Lam, P.; Tateno, M.; Young, R.; Voiniciuc, C.; Dean, G.; Shawn, D. M.; DeBolt, S. (2015) Unidirectional movement of cellulose synthase complexes in Arabidopsis seed coat epidermal cells deposit cellulose involved in mucilage extrusion, adherence and ray formation. Plant Physiology 168:502-520. Guerriero, G.; Spadiut, O.; Kerschbamer, C.; Giorno, F.; Baric, S.; Ezcurra, I. (2012) Analysis of cellulose synthase genes from domesticated apple identifies collinear genes WDR53 and CesA8A: partial co-expression, bicistronic mRNA, and alternative splicing of CESA8A. Journal of Experimental Botany 63:6045-6056. Harris, D. M.; Corbin, K.; Wang, T.; Gutierrez, R.; Bertolo, A. L.; Petti, C.; Smilgies, D.-M.; Estevez, J. M.; Bonetta, D.; Urbanowicz, B. R. (2012) Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1A903V and CESA3T942I of cellulose synthase. Proceedings of the National Academy of Sciences U.S.A 109:4098-4103. Hauser, M.-T.; Morikami, A.; Benfey, P. N. (1995) Conditional root expansion mutants of Arabidopsis. Development 121:1237-1252. He, J.; Cui, S.; Wang, S. y. (2008) Preparation and crystalline analysis of high‐grade bamboo dissolving pulp for cellulose acetate. Journal of Applied Polymer Science 107:1029-1038. Heim, D. R.; Roberts, J. L.; Pike, P. D.; Larrinua, I. M. (1989) Mutation of a locus of Arabidopsis thaliana confers resistance to the herbicide isoxaben. Plant Physiology 90:146-150. Heim, D. R.; Roberts, J. L.; Pike, P. D.; Larrinua, I. M. (1990) A second locus, ixr B1 in Arabidopsis thaliana, that confers resistance to the herbicide isoxaben. Plant Physiology 92:858-861. Hestrin, S. (1962) Synthesis of polymeric homopolysaccharides. In The bacteria, I. Gunsalus and R. Stanier, Eds. Academic. New York.pp. 373-388. Hill, J. L.; Hammudi, M. B.; Tien, M. (2014) The Arabidopsis Cellulose Synthase Complex: A Proposed Hexamer of CESA Trimers in an Equimolar Stoichiometry. Plant Cell:4834-4842. Kang, M.; Elango, N.; Mattia, E.; Au-Young, J.; Robbins, P.; Cabib, E. (1984) Isolation of chitin synthetase from Saccharomyces cerevisiae. Purification of an enzyme by entrapment in the reaction product. Journal of Biological Chemistry 259:14966-14972. Kawagoe, Y.; Delmer, D. P. (1997) Pathways and genes involved in cellulose biosynthesis. In Genetic engineering, J. K. Setlow, Eds. Plenum Press. New York.pp. 63-87. Kawahara, Y.; de la Bastide, M.; Hamilton, J. P.; Kanamori, H.; McCombie, W. R.; Ouyang, S.; Schwartz, D. C.; Tanaka, T.; Wu, J.; Zhou, S. (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:1-10. Kumar, M.; Turner, S. (2015) Protocol: a medium-throughput method for determination of cellulose content from single stem pieces of Arabidopsis thaliana Plant Methods 11:46. Kurek, I.; Kawagoe, Y.; Jacob-Wilk, D.; Doblin, M.; Delmer, D. (2002) Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains. Proceedings of the National Academy of Sciences U.S.A 99:11109-11114. Lai-Kee-Him, J.; Chanzy, H.; Müller, M.; Putaux, J.-L.; Imai, T.; Bulone, V. (2002) In Vitro Versus in Vivo Cellulose Microfibrils from Plant Primary Wall Synthases: Structural Differences. Journal of Biological Chemistry 277:36931-36939. Li, Q.; Lin, Y.-C.; Sun, Y.-H.; Song, J.; Chen, H.; Zhang, X.-H.; Sederoff, R. R.; Chiang, V. L. (2012) Splice variant of the SND1 transcription factor is a dominant negative of SND1 members and their regulation in Populus trichocarpa. Proceedings of the National Academy of Sciences U.S.A 109:14699-14704. Lin, F. C.; Brown Jr, R. M. (1989) Purification of cellulose synthase from Acetobacter xylinum. In Cellulose and Wood-Chemistry and Technology, C. Scheurch, Eds. New York: Wiley Interscience. pp. 473-492. Lin, F. C.; Brown, R.; Drake, R.; Haley, B. (1990) Identification of the uridine 5'-diphosphoglucose (UDP-Glc) binding subunit of cellulose synthase in Acetobacter xylinum using the photoaffinity probe 5-azido-UDP-Glc. Journal of Biological Chemistry 265:4782-4784. Liu, M.; Qiao, G.; Jiang, J.; Yang, H.; Xie, L.; Xie, J.; Zhuo, R. (2012) Transcriptome sequencing and de novo analysis for ma bamboo (Dendrocalamus latiflorus Munro) using the Illumina platform. 7:e46766. Mayer, R.; Ross, P.; Weinhouse, H.; Amikam, D.; Volman, G.; Ohana, P.; Calhoon, R. D.; Wong, H. C.; Emerick, A. W.; Benziman, M. (1991) Polypeptide composition of bacterial cyclic diguanylic acid-dependent cellulose synthase and the occurrence of immunologically crossreacting proteins in higher plants. Proceedings of the National Academy of Sciences U.S.A 88:5472-5476. McClure, F. A. (1966) The bamboos, a fresh perspective. Harvard University Press, Cambridge, 347 pp. Mizrachi, E.; Mansfield, S. D.; Myburg, A. A. (2012) Cellulose factories: advancing bioenergy production from forest trees. New Phytologist 194:54-62. Morgan, J. L.; Strumillo, J.; Zimmer, J. (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493:181-186. Mouille, G.; Robin, S.; Lecomte, M.; Pagant, S.; Höfte, H. (2003) Classification and identification of Arabidopsis cell wall mutants using Fourier‐Transform InfraRed (FT‐IR) microspectroscopy. Plant Journal 35:393-404. Newman, R. H.; Hill, S. J.; Harris, P. J. (2013) Wide-angle x-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls. Plant Physiology 163:1558-1567. Nieminen, K.; Robischon, M.; Immanen, J.; Helariutta, Y. (2012) Towards optimizing wood development in bioenergy trees. New Phytologist 194:46-53. Ohlsson, A. B.; Djerbi, S.; Winzell, A.; Bessueille, L.; Ståldal, V.; Li, X.; Blomqvist, K.; Bulone, V.; Teeri, T. T.; Berglund, T. (2006) Cell suspension cultures of Populus tremula× P. tremuloides exhibit a high level of cellulose synthase gene expression that coincides with increased in vitro cellulose synthase activity. Protoplasma 228:221-229. Olek, A. T.; Rayon, C.; Makowski, L.; Kim, H. R.; Ciesielski, P.; Badger, J.; Paul, L. N.; Ghosh, S.; Kihara, D.; Crowley, M. (2014) The structure of the catalytic domain of a plant cellulose synthase and its assembly into dimers. Plant Cell 26:2996-3009. Park, S.; Baker, J. O.; Himmel, M. E.; Parilla, P. A.; Johnson, D. K. (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels 3:1-10. Pear, J. R.; Kawagoe, Y.; Schreckengost, W. E.; Delmer, D. P.; Stalker, D. M. (1996) Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proceedings of the National Academy of Sciences U.S.A 93:12637-12642. Peng, Z.; Lu, Y.; Li, L.; Zhao, Q.; Feng, Q.; Gao, Z.; Lu, H.; Hu, T.; Yao, N.; Liu, K. (2013) The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nature Genetics 45:456-461. Persson, S.; Paredez, A.; Carroll, A.; Palsdottir, H.; Doblin, M.; Poindexter, P.; Khitrov, N.; Auer, M.; Somerville, C. R. (2007) Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proceedings of the National Academy of Sciences U.S.A 104:15566-15571. Qiao, G.; Li, H.; Liu, M.; Jiang, J.; Yin, Y.; Zhang, L.; Zhuo, R. (2013) Callus induction and plant regeneration from anthers of Dendrocalamus latiflorus Munro. In Vitro Cellular and Developmental Biology-Plant 49:375-382. Ray, A. K.; Das, S. K.; Mondal, S.; Ramachandrarao, P. (2004) Microstructural characterization of bamboo. Journal of Materials Science 39:1055-1060. Rivero-Lepinckas, L.; Crist, D.; Scholl, R. (2006) Growth of plants and preservation of seeds. In Arabidopsis protocols, J. Salinas and J. J. Sanchez-Serrano, Eds. Humana Press. Totowa.pp. 3-12. Robert, S.; Mouille, G.; Höfte, H. (2004) The mechanism and regulation of cellulose synthesis in primary walls: lessons from cellulose-deficient Arabidopsis mutants. Cellulose 11:351-364. Saxena, I. M.; Brown Jr, R. M.; Fevre, M.; Geremia, R. A.; Henrissat, B. (1995) Multidomain architecture of beta-glycosyl transferases: implications for mechanism of action. Journal of Bacteriology 177:1419-1424. Saxena, I. M.; Brown, R. (1995) Identification of a second cellulose synthase gene (acsAII) in Acetobacter xylinum. Journal of Bacteriology 177:5276-5283. Saxena, I. M.; Lin, F. C.; Brown, R. M. (1990) Cloning and sequencing of the cellulose synthase catalytic subunit gene of Acetobacter xylinum. Plant Molecular Biology 15:673-683. Scheible, W. R.; Eshed, R.; Richmond, T.; Delmer, D.; Somerville, C. (2001) Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixr1 mutants. Proceedings of the National Academy of Sciences U.S.A 98:10079-10084. Schmittgen, T. D.; Livak, K. J. (2008) Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3:1101-1108. Scurlock, J.; Dayton, D.; Hames, B. (2000) Bamboo: an overlooked biomass resource? Biomass and Bioenergy 19:229-244. Searchinger, T.; Heimlich, R.; Houghton, R. A.; Dong, F.; Elobeid, A.; Fabiosa, J.; Tokgoz, S.; Hayes, D.; Yu, T.-H. (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238-1240. Seki, M.; Carninci, P.; Nishiyama, Y.; Hayashizaki, Y.; Shinozaki, K. (1998) High‐efficiency cloning of Arabidopsis full‐length cDNA by biotinylated CAP trapper. Plant Journal 15:707-720. Seki, M.; Narusaka, M.; Kamiya, A.; Ishida, J.; Satou, M.; Sakurai, T.; Nakajima, M.; Enju, A.; Akiyama, K.; Oono, Y. (2002) Functional annotation of a full-length Arabidopsis cDNA collection. Science 296:141-145. Sethaphong, L.; Haigler, C. H.; Kubicki, J. D.; Zimmer, J.; Bonetta, D.; DeBolt, S.; Yingling, Y. G. (2013) Tertiary model of a plant cellulose synthase. Proceedings of the National Academy of Sciences U.S.A 110:7512-7517. Slabaugh, E.; Davis, J. K.; Haigler, C. H.; Yingling, Y. G.; Zimmer, J. (2014) Cellulose synthases: new insights from crystallography and modeling. Trends in Plant Science 19:99-106. Tan, H.-T.; Shirley, N. J.; Singh, R. R.; Henderson, M.; Dhugga, K. S.; Mayo, G. M.; Fincher, G. B.; Burton, R. A. (2015) Powerful regulatory systems and post-transcriptional gene silencing resist increases in cellulose content in cell walls of barley. BMC Plant Biology 15:62. Taylor, N. G.; Howells, R. M.; Huttly, A. K.; Vickers, K.; Turner, S. R. (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis. Proceedings of the National Academy of Sciences U.S.A 100:1450-1455. Taylor, N. G.; Laurie, S.; Turner, S. R. (2000) Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 12:2529-2540. Taylor, N. G.; Scheible, W. R.; Cutler, S.; Somerville, C. R.; Turner, S. R. (1999) The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11:769-780. Thompson, J. D.; Higgins, D. G.; Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22:4673-4680. Tormo, J.; Lamed, R.; Chirino, A. J.; Morag, E.; Bayer, E. A.; Shoham, Y.; Steitz, T. A. (1996) Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO Journal 15:5739-5751. Turner, S. R.; Somerville, C. R. (1997) Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9:689-701. Valvekens, D.; Montagu, M. V.; Lijsebettens, M. V. (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proceedings of the National Academy of Sciences U.S.A 85:5536-5540. Vergara, C. E.; Carpita, N. C. (2001) β-D-Glycan synthases and the CesA gene family: lessons to be learned from the mixed-linkage (1→3),(1→4) β-D-glucan synthase. Plant Molecular Biology 47:145-160. Vermerris, W. (2008) Composition and biosynthesis of lignocellulosic biomass. In Genetic improvement of bioenergy crops, W. Vermerris, Eds. Springer. New York.pp. 89-142. Wang, J.; Howles, P. A.; Cork, A. H.; Birch, R. J.; Williamson, R. E. (2006) Chimeric proteins suggest that the catalytic and/or C-terminal domains give CesA1 and CesA3 access to their specific sites in the cellulose synthase of primary walls. Plant Physiology 142:685-695. Wang, L.; Guo, K.; Li, Y.; Tu, Y.; Hu, H.; Wang, B.; Cui, X.; Peng, L. (2010) Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biology 10:282. Wang, Y.; Wang, G.; Cheng, H.; Tian, G.; Liu, Z.; Xiao, Q.; Zhou, X.; Han, X.; Gao, X. (2009) Structures of natural bamboo fiber for textiles. Textile Research Journal 80:334-343. Weigel, D.; Glazebrook, J. (2002) Arabidopsis: A Laboratory Manual. Cold Spring Harbor, New York, 354 pp. Wise, H. Z.; Saxena, I. M.; Brown Jr, R. M. (2011) Isolation and characterization of the cellulose synthase genes PpCesA6 and PpCesA7 in Physcomitrella patens. Cellulose 18:371-384. Wong, H. C.; Fear, A. L.; Calhoon, R. D.; Eichinger, G. H.; Mayer, R.; Amikam, D.; Benziman, M.; Gelfand, D. H.; Meade, J. H.; Emerick, A. W. (1990) Genetic organization of the cellulose synthase operon in Acetobacter xylinum. Proceedings of the National Academy of Sciences U.S.A 87:8130-8134. Xiao, X.; Bian, J.; Li, M.-F.; Xu, H.; Xiao, B.; Sun, R.-C. (2014) Enhanced enzymatic hydrolysis of bamboo (Dendrocalamus giganteus Munro) culm by hydrothermal pretreatment. Bioresource Technology 159:41-47. Xie, L.; Yang, C.; Wang, X. (2011) Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis. Journal of Experimental Botany 62:4495-4506. Yeh, T. F.; Yamada, T.; Capanema, E.; Chang, H. M.; Chiang, V.; Kadla, J. F. (2005) Rapid screening of wood chemical component variations using transmittance near-infrared spectroscopy. Journal of Agricultural and Food Chemistry 53:3328-3332. Yokoyama, T.; Kadla, J.; Chang, H. (2002) Microanalytical method for the characterization of fiber components and morphology of woody plants. Journal of Agricultural and Food Chemistry 50:1040-1044. Zhang, Q.; Cheetamun, R.; Dhugga, K. S.; Rafalski, J. A.; Tingey, S. V.; Shirley, N. J.; Taylor, J.; Hayes, K.; Beatty, M.; Bacic, A. (2014) Spatial gradients in cell wall composition and transcriptional profiles along elongating maize internodes. BMC Plant Biology 14:27. Zhang, X.-M.; Zhao, L.; Larson-Rabin, Z.; Li, D.-Z.; Guo, Z.-H. (2012) De novo sequencing and characterization of the floral transcriptome of Dendrocalamus latiflorus (Poaceae: Bambusoideae). Plos One 7:e42082. Zhou, D.; Zhang, L.; Guo, S. (2005) Mechanisms of lead biosorption on cellulose/chitin beads. Water Research 39:3755-3762. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51621 | - |
dc.description.abstract | 麻竹(Dendrocalamus latiflorus)為臺灣分布最廣且數量最多的竹類,其生長快速,又竹筍階段便能累積多量的結晶型纖維素,使得麻竹有潛力成為木質纖維材料的來源。本試驗先測定麻竹筍及竹稈之結晶度,得知麻竹筍基部即具有相當高的結晶度。
從麻竹筍中選殖出5個DlaCESAs,並與負責初生壁生合成的CESAs親源性較接近。5個CESAs可分成3個群組,分別代表負責初生壁纖維素合成酶的3個蛋白質異構物(isoform):DlaCESA1、DlaCESA3及 DlaCESA6。而完整DlaCESAs皆具有CESAs的特殊蛋白結構。再透過組織表現差異分析可以確認所選殖到3個完整的DlaCESAs於竹筍及竹籜表現量最高,證實3個完整的DlaCESAs為主要參與初生壁生合成相關。 將DlaCESAs轉殖到相對應的阿拉伯芥突變株中,並比較野生型、各互補轉殖株與突變株小苗表型的不同。外源DlaCESAs改變互補轉殖株小苗的外表型趨近於野生型,證實所選殖的DlaCESAs具有初生壁纖維素生合成的功能性。接著探討外源DlaCESAs是否對次生壁加厚的花序莖有所影響。結果顯示僅在rsw1-2組別中, DlaCESA1互補轉殖株的結晶度及結晶型纖維素含量與野生型相同並高於突變株。在ixr1-1及prc1-1組別中,突變株與DlaCESAs互補轉殖株無差異。而野生型、突變株及DlaCESAs互補轉殖株的α-纖維素含量彼此並無差異。至於細胞壁的醣類含量,野生型、突變株及DlaCESAs互補轉殖株在一些成分上有差異,而主要生成纖維素的glucan含量則差異不大。 由以上的試驗結果,顯示所選殖出之DlaCESA1、3及6有發揮其功能,皆能補足初生壁AtCESAs突變株的缺失。而在次生壁加厚的組織中影響有限,推測初生壁纖維素合成酶於次生壁加厚的組織中作用較不明顯。 | zh_TW |
dc.description.abstract | Ma bamboo (Dendrocalamus latiflorus) is the most widely distributed and abundant bamboo in Taiwan. Ma bamboo can growth rapidly and accumulate large amount of crystalline cellulose during bamboo shoot phase. And hence, ma bamboo has the potential to become a large source of lignocellulosic materials. In this study, the crystallinities of ma bamboo shoot and culm were determined, and the results indicated that there were higher crystallinities in base shoots.
5 CESAs were further cloned from ma bamboo shoot. These 5 DlaCESAs are related to primary cell wall biosynthesis. These 5 DlaCESAs were divided into three groups, corresponding to 3 major primary wall CESA isoforms: DlaCESA1, DlaCESA3, and DlaCESA6. All 3 complete DlaCESA sequences contain special protein structures of CESAs. Expression analysis showed that the relative expression level of these 3 DlaCESAs were highest in the bamboo shoot and bamboo sheath. This result supported that these 3 DlaCESAs might participate in the primary cell wall biosynthesis. DlaCESAs were complemented into the corresponding CESAs mutants of Arabidopsis, and the phenotypic traits of wild-type, the mutants, and complemented mutants were compared. DlaCESAs successfully rescued mutants in its seedling phenotypes, and the phenotypes of the complemented mutants were similar with that of wild-type. Overall, the cloned DlaCESAs in this study are functional in cellulose biosynthesis of primary cell walls. To further understand whether the cloned DlaCESAs had impacts on Arabidopsis inflorescence stems which were abundant with thickened secondary cell walls, the cell wall characteristics of inflorescence stems were analyzed. Only in rsw1-2 group, the degree of crystallinity and the content of crystallinity cellulose of DlaCESA1 complemented mutants were similar with that of wild-type and higher than that of rsw1-2. There were no differences in the the degree of crystallinity and the content of crystallinity cellulose within mutants and complemented mutants of ixr1-1 and prc1-1 groups. The α-cellulose content of wild-type was the same as that of mutants and DlaCESAs complemented mutants. There were some polysaccharide composition differences in the cell walls between wild-types, mutants, and DlaCESAs complemented mutants. However, the glucan content, the major composition of cellulose, was not different in wild-types, mutants, and DlaCESAs complemented mutants. Overall, our cloned DlaCESA1, 3, and 6 all are functional and can rescue corresponding primary cell wall CESA mutants but there is less effect in secondary thickened tissue. It is speculated that the functional roles of primary cell wall CESA were less significant in the secondary thickened tissues. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:41:34Z (GMT). No. of bitstreams: 1 ntu-104-R00625043-1.pdf: 6779413 bytes, checksum: 16b627e5357f76f553266e16b280d540 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 謝誌 I
摘要 II Abstract III 目錄 V 圖目錄 IX 表目錄 XIII 附錄 XV I. 前言 1 II. 文獻回顧 3 2.1 竹類簡介 3 2.2 纖維素合成酶 4 2.2.1 纖維素合成酶相關研究 5 2.2.2 阿拉伯芥初生壁纖維素合成酶 10 2.2.2.1. AtCESA1 11 2.2.2.2. AtCESA3 13 2.2.2.3. AtCESA6 14 2.3 研究目的 15 III. 材料與方法 17 3.1 試驗材料及生長條件 17 3.1.1 麻竹 17 3.1.2 阿拉伯芥 18 3.2 載體(vector) 18 3.3 菌株 19 3.4 麻竹纖維素合成酶選殖 19 3.4.1 麻竹纖維素合成酶保守區位選殖 20 3.4.2 以RACE取得麻竹纖維素合成酶全長 22 3.4.3 麻竹纖維素合成酶全長選殖 22 3.5 親緣關係(phylogenetic)分析 23 3.6 麻竹纖維素合成酶結構分析 23 3.7 即時定量聚合酶鏈鎖反應(quantitative real time polymerase chain reaction, qRT-PCR) 24 3.8 表現質體之建構 25 3.8.1 選殖AtCESAs啟動子及AtCESAs 25 3.8.2 選殖質體(cloning vector)的建構 27 3.8.2.1. pAt1At1cHA 27 3.8.2.2. pAt1Dla1cHA 27 3.8.2.3. pAt3At3cHA 27 3.8.2.4. pAt3Dla3cHA 28 3.8.2.5. pAt6At6cHA 28 3.8.2.6. pAt6Dla6cHA 28 3.8.3 表現質體的建構 28 3.9 阿拉伯芥轉型 30 3.10 阿拉伯芥轉植株之確立 31 3.11 野生型、突變株與互補轉殖株小苗外表型比較 33 3.11.1 rsw1-2(AtCESA1突變株)組別 33 3.11.2 ixr1-1(AtCESA3突變株)組別 33 3.11.3 prc1-1(AtCESA6突變株)組別 34 3.12 纖維素結晶度分析 34 3.13 免疫螢光標定分析結晶度變化 35 3.13.1 莖部組織包埋與切片 35 3.13.2 免疫螢光標定 35 3.14 阿拉伯芥細胞壁組成分析 36 3.14.1 阿拉伯芥細胞壁組織醇苯萃取 36 3.14.2 全纖維素含量測定 36 3.14.3 α-纖維素含量測定 36 3.14.4 木質素含量分析 37 3.14.5 醣類含量分析 37 3.14.6 醣醛酸含量分析 38 3.15 統計分析 38 IV. 結果與討論 39 4.1 麻竹筍及竹稈纖維素的結晶度 39 4.2 麻竹纖維素合成酶選殖與親源關係 41 4.3 麻竹纖維素合成酶不同組織表現特異性分析 46 4.4 麻竹纖維素合成酶轉殖及互補轉殖株外表型及細胞壁組成分析 48 4.4.1 轉殖載體的建構及阿拉伯芥轉型及確認 48 4.4.2 rsw1-2組別根部直徑差異分析 53 4.4.3 ixr1-1 isoxaben試驗 54 4.4.4 prc1-1小苗下胚軸伸長試驗 57 4.4.5 阿拉伯芥互補轉殖株花序莖外表型觀察 58 4.4.6 阿拉伯芥花序莖橫斷面觀察 60 4.4.7 阿拉伯芥互補轉殖株花序莖纖維素結晶度性質分析 62 4.4.8 阿拉伯芥互補轉殖株花序莖免疫螢光標定結晶型纖維素 63 4.4.9 阿拉伯芥互補轉殖株花序莖細胞壁組成分析 66 V. 結論 76 VI. 參考文獻 78 VII. 附錄 87 | |
dc.language.iso | zh-TW | |
dc.title | 麻竹初生壁纖維素合成酶選殖及特性分析 | zh_TW |
dc.title | Cloning and characterization of the primary cell wall cellulose synthase genes in Dendrocalamus latiflorus | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張上鎮(Shang-Tzen Chang),王愛玉(Ai-Yu Wang),何政坤(Cheng-Kuen Ho),孫英玄(Ying-Hsuan Sun) | |
dc.subject.keyword | 細胞壁成分分析,纖維素合成?,互補試驗,結晶度,麻竹, | zh_TW |
dc.subject.keyword | cell wall composition analysis,cellulose synthase,complement experiment,crystallinity,Dendrocalamus latiflorus, | en |
dc.relation.page | 93 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-01-06 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
顯示於系所單位: | 森林環境暨資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 6.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。