請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51614完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖秀娟(Hsiu-Chuan Liao) | |
| dc.contributor.author | Shih-Hung Yang | en |
| dc.contributor.author | 楊士弘 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:41:15Z | - |
| dc.date.available | 2021-02-24 | |
| dc.date.copyright | 2016-02-24 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2016-01-06 | |
| dc.identifier.citation | Abemathy, C.O., Liu, Y.P., Longfellow, D., Aposhian, H.V., Beck, B., Fowler, B., Goyer, R., Menzer, R., Rossman, T., Thompson, C., Waalkes, M., 1999. Arsenic: health effects, mechanisms of actions, and researchissues. Environmental Health Perspectives 107, 593-597.
Akesson, A., Julin, B., Wolk, A., 2008. Long-term dietary cadmium intake and postmenopausal endometrial cancer incidence: a population-based prospective cohort study. Cancer Resarch 68, 6435-6441. Branco, R., Cristovao, A., Morais, P.V., 2013. Highly sensitive, highly specific whole-cell bioreporters for the detection of chromate in environmental samples. PLoS One 8, e54005. Brunker, P., Rother, D., Sedlmeier, R., Klein, J., Mattes, R., Altenbuchner, J., 1996. Regulation of the operon responsible for broad-spectrum mercury resistance in Streptomyces lividans 1326. Molecular and General Genetics 251, 307-315. Cervantes, C., Ji, G., Ramirez, J.L., Silver, S., 1994. Resistance to arsenic compounds in microorganisms. FEMS Microbiol Review 15, 355-367. Chakraborti, D., Rahman, M.M., Paul, K., Chowdhury, U.K., Sengupta, M.K., Lodh, D., Chanda, C.R., Saha, K.C., Mukherjee, S.C., 2002. Arsenic calamity in the Indian subcontinent What lessons have been learned? Talanta 58, 3-22. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., Prasher, D.C., 1994. Green fluorescent protein as a marker for gene expression. Science 263, 802-805. Chen, Y., Rosen, B.P., 1997. Metalloregulatory properties of the ArsD repressor. The Journal of Biological Chemistry 272, 14257-14262. Daunert, S., Barrett, G., Feliciano, J.S., Shetty, R.S., Shrestha, S., Smith-Spencer, W., 2000. Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chemical Review 100, 2705-2738. Delnomdedieu, M., Basti, M.M., Otvos, J.D., Thomas, D.J., 1994. Reduction and binding of arsenate and dimethylarsinate by glutathione: a magnetic resonance study. Chemico-Biological Interactions 90, 139-155. Diorio, C., Cai, J., Marmor, J., Shinder, R., DuBow, M.S., 1995. An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria. Journal of Bacteriology 177, 2050-2056. Dixon, H.B.F., 1997. The biochemical action of arsonic acids especially as phosphate analogues. Advances in Inorganic Chemistry 44, 191-227. Dollard, M.A., Billard, P., 2003. Whole-cell bacterial sensors for the monitoring of phosphate bioavailability. Journal of Microbiological Methods 55, 221-229. Durrieu, C., Tran-Minh, C., 2002. Optical algal biosensor using alkaline phosphatase for determination of heavy metals. Ecotoxicology and Environmental Safety 51, 206-209. Fasanya-Odewumi, C., Latinwo, L.M., Ikediobi, C.O., Gilliard, L., Sponholtz, G., Nwoga, J., Stino, F., Hamilton, N., Erdos, G.W., 1998. The genotoxicity and cytotoxicity of dermally-administered cadmium: effects of dermal cadmium administration. International Journal of Molecular Medicine 1, 1001-1006. Fu, Y.J., Chen, W.L., Huang, Q.Y., 2008. Construction of two lux-tagged Hg2+-specific biosensors and their luminescence performance. Applied Microbiology and Biotechnology 79, 363-370. Gatti, D., Mitra, B., Rosen, B.P., 2000. Escherichia coli soft metal ion-translocating ATPases. The Journal of Biological Chemistry 275, 34009-34012. Gladysheva, T., Rosen, B.P., 1994. The ArsC arsenate reductase of plasmid-R773 is coupled to glutaredoxin. Faseb Journal 8, A1346-A1346. Griffin, H.G., Foster, T.J., Falkiner, F.R., Carr, M.E., Coleman, D.C., 1985. Molecular analysis of multiple-resistance plasmids transferred from gram-negative bacteria isolated in a urological unit. Antimicrobial Agents and Chemotherapy 28, 413-418. Griffin, H.G., Foster, T.J., Silver, S., Misra, T.K., 1987. Cloning and DNA sequence of the mercuric- and organomercurial-resistance determinants of plasmid pDU1358. Proceeding of the National Academy Sciences of the United States of America 84, 3112-3116. Gu, M.B., Mitchell, R.J., Kim, B.C., 2004. Whole-cell-based biosensors for environmental biomonitoring and application. Advances in Biochemical Engineering/Biotechnology 87, 269-305. Guha Mazumder, D.N., 2008. Chronic arsenic toxicity & human health. The Indian Journal of Medical Research 128, 436-447. Hakkila, K., Maksimow, M., Karp, M., Virta, M., 2002. Reporter genes lucFF, luxCDABE, gfp, and dsred have different characteristics in whole-cell bacterial sensors. Analytical Biochemistry 301, 235-242. Hallberg, K.B., Gonzalez-Toril, E., Johnson, D.B., 2010. Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles 14, 9-19. Hallberg, K.B., Lindstrom, E.B., 1994. Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile. Microbiology 140 ( Pt 12), 3451-3456. Harada, M., 1995. Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Critical Review in Toxicology 25, 1-24. Hassan, S.H., Van Ginkel, S.W., Kim, S.M., Yoon, S.H., Joo, J.H., Shin, B.S., Jeon, B.H., Bae, W., Oh, S.E., 2010. Isolation and characterization of Acidithiobacillus caldus from a sulfur-oxidizing bacterial biosensor and its role in detection of toxic chemicals. Journal of Microbiological Methods 82, 151-155. Hong, Y.S., Kim, Y.M., Lee, K.E., 2012. Methylmercury exposure and health effects. Journal of Preventive Medicine and Public Health 45, 353-363. Huang, C.W., Yang, S.H., Sun, M.W., Liao, V.H., 2015. Development of a set of bacterial biosensors for simultaneously detecting arsenic and mercury in groundwater. Environmental Science and Pollution Research International 22, 10206-10213. Ishaque, A.B., Johnson, L., Gerald, T., Boucaud, D., Okoh, J., Tchounwou, P.B., 2006. Assessment of individual and combined toxicities of four non-essential metals (As, Cd, Hg and Pb) in the microtox assay. International Journal of Environmental Research and Public Health 3, 118-120. Jarup, L., 2003. Hazards of heavy metal contamination. British Medical Bulletin 68, 167-182. Kajikawa, K., Kitagawa, M., Nakanishi, I., Ueshima, H., Katsuda, S., Kuroda, K., 1974. A pathological study of itai-itai disease. Journal of the Juzen Medical Society 83, 309-347. Johnson, D.B., Okibe, N., Roberto, F.F., 2003. Novel thermo-acidophilic bacteria isolated from geothermal sites in Yellowstone National Park: physiological and phylogenetic characteristics. Archives of Microbiology 180, 60-68. Kara, H., Cevik, A., Konar, V., Dayangac, A., Yilmaz, M., 2007. Protective effects of antioxidants against cadmium-induced oxidative damage in rat testes. Biological Trace Element Research 120, 205-211. Khan, S., Cao, Q., Zheng, Y.M., Huang, Y.Z., Zhu, Y.G., 2008. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmetal Pollution 152, 686-692. Khesin, R.B., Karasyova, E.V., 1984. Mercury-resistant plasmids in bacteria from a mercury and antimony deposit area. Molecular and General Genetics 197, 280-285. Kim, S., Dayani, L., Rosenberg, P.A., Li, J., 2010. RIP1 kinase mediates arachidonic acid-induced oxidative death of oligodendrocyte precursors. International Journal of Physiology Pathophysiology and Pharmacology 2, 137-147. Kishimoto, T., Oguri, T., Yamabe, S., Tada, M., 1996. Effect of cadmium injury on growth and migration of cultured human vascular endothelial cells. Human Cell 9, 43-48. Kriegel, A.M., Soliman, A.S., Zhang, Q., El-Ghawalby, N., Ezzat, F., Soltan, A., Abdel-Wahab, M., Fathy, O., Ebdi, G., Bassiouni, N., Hamilton, S.R., Abbruzzese, J.L., Lacey, M.R., Blake, D.A., 2006. Serum cadmium levels in pancreatic cancer patients from the East Nile Delta region of Egypt. Environmental Health Perspectives 114, 113-119. Lee, H.J., Gu, M.B., 2003. Construction of a sodA::luxCDABE fusion Escherichia coli: comparison with a katG fusion strain through their responses to oxidative stresses. Applied Microbiology and Biotechnology 60, 577-580. Li, Y.F., Li, F.Y., Ho, C.L., Liao, V.H., 2008. Construction and comparison of fluorescence and bioluminescence bacterial biosensors for the detection of bioavailable toluene and related compounds. Environmental Pollution 152, 123-129. Liao, V.H., Chien, M.T., Tseng, Y.Y., Ou, K.L., 2006. Assessment of heavy metal bioavailability in contaminated sediments and soils using green fluorescent protein-based bacterial biosensors. Environmental Pollution 142, 17-23. Liao, V.H., Ou, K.L., 2005. Development and testing of a green fluorescent protein-based bacterial biosensor for measuring bioavailable arsenic in contaminated groundwater samples. Environmetal Toxicology and Chemistry 24, 1624-1631. Liu, H.S., Jan, M.S., Chou, C.K., Chen, P.H., Ke, N.J., 1999. Is green fluorescent protein toxic to the living cells? Biochemical and Biophysical Research Communications 260, 712-717. Lokeshwari, H., Chandrappa, G.T., 2006. Impact of heavy metal contamination of Bellandur Lake on soil and cultivated vegetation. Current Science 91, 622-627. Mathema, V.B., Thakuri, B.C., Sillanpaa, M., 2011. Bacterial mer operon-mediated detoxification of mercurial compounds: a short review. Archives Microbiology 193, 837-844. McLaughlin, M.J., Whatmuff, M., Warne, M., Heemsbergen, D., Barry, G., Bell, M., Nash, D., Pritchard, D., 2006. A field investigation of solubility and food chain accumulation of biosolid-cadmium across diverse soil types. Environmental Chemistry 3, 428-432. Min, J., Kim, E.J., LaRossa, R.A., Gu, M.B., 1999. Distinct responses of a recA::luxCDABE Escherichia coli strain to direct and indirect DNA damaging agents. Mutation Research 442, 61-68. Mukhopadhyay, D., Yu, H.R., Nucifora, G., Misra, T.K., 1991. Purification and functional characterization of MerD. A coregulator of the mercury resistance operon in gram-negative bacteria. The Journal of Biological Chemistry 266, 18538-18542. Newman, M.C., McCloskey, J.T., 1996. Predicting relative toxicity and interactions of divalent metal ions: Microtox bioluminescence assay. Environmental Toxicology and Chemistry 15, 275-281. Novick, R.P., Murphy, E., Gryczan, T.J., Baron, E., Edelman, I., 1979. Penicillinase Plasmids of Staphylococcus aureus: Restriction-Deletion Maps. Plasmid 2, 109-129. Novick, R.P., Roth, C., 1968. Plasmid-linked resistance to inorganic salts in Staphylococcus aureus. Journal of Bacteriology 95, 1335-1342. Nucifora, G., Chu, L., Misra, T.K., Silver, S., 1989. Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proceedings of National Academy of Sciences of the United States of America 86, 3544-3548. Oremland, R.S., Stolz, J.F., 2003. The ecology of arsenic. Science 300, 939-944. Osborn, A.M., Bruce, K.D., Strike, P., Ritchie, D.A., 1997. Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiology Review 19, 239-262. Owolabi, J.B., Rosen, B.P., 1990. Differential messenger-RNA stability controls relative gene-expression within the plasmid-encoded arsenical resistance operon. Journal of Bacteriology 172, 2367-2371. Pathak, A., Dastidar, M.G., Sreekrishnan, T.R., 2009. Bioleaching of heavy metals from sewage sludge by indigenous iron-oxidizing microorganisms using ammonium ferrous sulfate and ferrous sulfate as energy sources: A comparative study. Journal of Hazardous Materials 171, 273-278. Peca, L., Kos, P.B., Mate, Z., Farsang, A., Vass, I., 2008. Construction of bioluminescent cyanobacterial reporter strains for detection of nickel, cobalt and zinc. FEMS Microbiology Letters 289, 258-264. Perry, R.D., Silver, S., 1982. Cadmium and manganese transport in Staphylococcus aureus membrane vesicles. Journal of Bacteriology 150, 973-976. Pesch, B., Haerting, J., Ranft, U., Klimpel, A., Oelschlagel, B., Schill, W., 2000. Occupational risk factors for renal cell carcinoma: agent-specific results from a case-control study in Germany. MURC Study Group. Multicenter urothelial and renal cancer study. International Journal of Epidemiology 29, 1014-1024. Petrick, J.S., Ayala-Fierro, F., Cullen, W.R., Carter, D.E., Vasken Aposhian, H., 2000. Monomethylarsonous acid (MMA(III)) is more toxic than arsenite in Chang human hepatocytes. Toxicology and Applied Pharmacology 163, 203-207. Priyadarshi, H., Alam, A., Gireesh-Babu, P., Das, R., Kishore, P., Kumar, S., Chaudhari, A., 2012. A GFP-based bacterial biosensor with chromosomally integrated sensing cassette for quantitative detection of Hg(II) in environment. Journal of Environmetal Science 24, 963-968. Ramanathan, S., Ensor, M., Daunert, S., 1997. Bacterial biosensors for monitoring toxic metals. Trends in Biotechnology 15, 500-506. Ratnaike, R.N., 2003. Acute and chronic arsenic toxicity. Postgraduate Medical Journal 79, 391-396. Riether, K.B., Dollard, M.A., Billard, P., 2001. Assessment of heavy metal bioavailability using Escherichia coli zntAp::lux and copAp::lux-based biosensors. Applied Microbiology and Biotechnology 57, 712-716. Rogowsky, P.M., Close, T.J., Chimera, J.A., Shaw, J.J., Kado, C.I., 1987. Regulation of the vir Genes of Agrobacterium Tumefaciens Plasmid pTiC58. Journal of Bacteriology 169, 5101-5112. Scott, D.L., Ramanathan, S., Shi, W., Rosen, B.P., Daunert, S., 1997. Genetically engineered bacteria: electrochemical sensing systems for antimonite and arsenite. Analyticla Chemistry 69, 16-20. Scott, N., Hatlelid, K.M., MacKenzie, N.E., Carter, D.E., 1993. Reactions of arsenic(III) and arsenic(V) species with glutathione. Chemical Research in Toxicology 6, 102-106. Selifonova, O., Burlage, R., Barkay, T., 1993. Bioluminescent sensors for detection of bioavailable Hg(II) in the environment. Applied and Environmental Microbiology 59, 3083-3090. SenGupta, R., Kim, J., Gomes, C., Oh, S., Park, J., Im, W.B., Seong, J.Y., Ahn, R.S., Kwon, H.B., Soh, J., 2004. Effect of ascorbic acid supplementation on testicular steroidogenesis and germ cell death in cadmium-treated male rats. Molecular and Cellular Endocrinology 221, 57-66. Sharma, P., Asad, S., Ali, A., 2013. Bioluminescent bioreporter for assessment of arsenic contamination in water samples of India. Journal of Biosciences 38, 251-258. Sharma, R.K., Agrawal, M., Marshall, F.M., 2008. Heavy metal (Cu, Zn, Cd and Pb) contamination of vegetables in urban India: a case study in Varanasi. Environmental Pollution 154, 254-263. Shetty, R.S., Deo, S.K., Shah, P., Sun, Y., Rosen, B.P., Daunert, S., 2003. Luminescence-based whole-cell-sensing systems for cadmium and lead using genetically engineered bacteria. Analytical and Bioanalytical Chemistry 376, 11-17. Smith, E., Naidu, R., Alston, A.M., 1998. Arsenic in the soil environment: A review. Advances in Agronomy 64, 149-195. Stookey, L.L., 1970. Ferrozine - a new spectrophotometric reagent for Iron. Analytical Chemistry 42, 779-781. Summers, A.O., 1992. Untwist and shout: a heavy metal-responsive transcriptional regulator. Journal of Bacteriology 174, 3097-3101. Summers, A.O., Sugarman, L.I., 1974. Cell-free mercury(II)-reducing activity in a plasmid-bearing strain of Escherichia coli. Journal of Bacteriology 119, 242-249. Tamaki, S., Frankenberger, W.T., Jr., 1992. Environmental biochemistry of arsenic. Reviews of Environmental Contamination and Toxicology 124, 79-110. Tauriainen, S., Karp, M., Chang, W., Virta, M., 1998. Luminescent bacterial sensor for cadmium and lead. Biosensor and Bioelectronics 13, 931-938. Tauriainen, S., Karp, M., Chang, W., Virta, M., 1997. Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite. Applied and Environmental Microbiology 63, 4456-4461. Tchounwou, P.B., Ayensu, W.K., Ninashvili, N., Sutton, D., 2003. Environmental exposure to mercury and its toxicopathologic implications for public health. Environmental Toxicology 18, 149-175. Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J., 2012. Heavy metal toxicity and the environment. Experientia Supplementum 101, 133-164. Templeton, D.M., Liu, Y., 2010. Multiple roles of cadmium in cell death and survival. Chemico Biological Interactions 188, 267-275. Thompson, J., Bannigan, J., 2008. Cadmium: toxic effects on the reproductive system and the embryo. Reproductive Toxicology 25, 304-315. Tsai, K.J., Hsu, C.M., Rosen, B.P., 1997. Efflux mechanisms of resistance to cadmium, arsenic and antimony in prokaryotes and eukaryotes. Zoological Studies 36, 1-16. Tseng, W.P., 1977. Effects and dose--response relationships of skin cancer and blackfoot disease with arsenic. Environmental Health Perspectives 19, 109-119. Valko, M., Rhodes, C.J., Moncol, J., Izakovic, M., Mazur, M., 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico Biological Interactions 160, 1-40. Van Dyk, T.K., Reed, T.R., Vollmer, A.C., LaRossa, R.A., 1995. Synergistic induction of the heat shock response in Escherichia coli by simultaneous treatment with chemical inducers. Journal of Bacteriology 177, 6001-6004. Van Ginkel, S.W., Hassan, S.H., Oh, S.E., 2010. Detecting endocrine disrupting compounds in water using sulfur-oxidizing bacteria. Chemosphere 81, 294-297. Waalkes, M.P., Klaassen, C.D., 1985. Concentration of metallothionein in major organs of rats after administration of various metals. Fundamental and Applied Toxicology 5, 473-477. Weiss, A.A., Murphy, S.D., Silver, S., 1977. Mercury and organomercurial resistances determined by plasmids in Staphylococcus aureus. Journal of Bacteriology 132, 197-208. World Health Organization, 1981. Environmental Health Criteira 18; Arsenic. World Health Organization Geneva. Wu, J., Tisa, L.S., Rosen, B.P., 1992. Membrane topology of the ArsB protein, the membrane subunit of an anion-translocating ATPase.The Journal of Biological Chemistry 267, 12570-12576. Yang, Y., Qian, L., Shi, W.Y., Peng, H., Qiu, G.Z., 2008. Isolation and characterization of acidophilic bacterium from Gaofeng Mine in China. Transactions of Nonferrous Metals Society of China 18, 1253-1257. Yoon, K.P., Misra, T.K., Silver, S., 1991. Regulation of the cadA cadmium resistance determinant of Staphylococcus aureus plasmid pI258. Journal of Bacteriology 173, 7643-7649. Yoon, K.P., Silver, S., 1991. A second gene in the Staphylococcus aureus cadA cadmium resistance determinant of plasmid pI258. Journal of Bacteriology 173, 7636-7642. Zhou, Q.G., Bo, F., Bo, Z.H., Xi, L., Jian, G., Fei, L.F., Hua, C.X., 2007. Isolation of a strain of Acidithiobacillus caldus and its role in bioleaching of chalcopyrite. World Journal of Microbiology and Biotechnology 23, 1217-1225. Zhu, Y.G., Williams, P.N., Meharg, A.A., 2008. Exposure to inorganic arsenic from rice: a global health issue? Environmetal Pollution 154, 169-171. 行政院環境保護署(2012)。重金屬檢測方法總則,NIEA M103.02C。 行政院環境保護署(2014)。利用細菌生物感測器快速篩測底泥及地下水現場污染物,期末報告。 行政院環境保護署(2015)。建立專一性、廣效性及耐酸性細菌生物感測器快速篩測環境底泥中的汙染物,期中報告。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51614 | - |
| dc.description.abstract | 近年來,高度的工業發展導致許多重金屬排放到環境中,由於重金屬不可被分解及易累積於生物體內之特性,目前已影響世界眾多人口的健康。化學檢測法雖然具有高靈敏度及準確度,然而其價格高以及檢測耗時,難以應用於大規模的樣品篩測,因此本研究欲利用生物方法檢測環境中的重金屬(砷、鎘、汞),期能和化學方法互補。本研究分為2個目標,建構專一型及廣效型生物感測器用以檢測重金屬(砷、鎘、汞)。目標1為使用Escherichia. coli DH5α為宿主細胞,以arsR、cadC、merR與luxCDABE之基因組合,建構以生物冷光為訊號,分別可檢測砷、鎘、汞之專一型生物感測器,並應用於多重金屬之地下水檢測。結果顯示,本研究建構之專一型生物感測器,最低檢測極限分別為: 砷7.5 μg/l、鎘1 μg/l、汞5 μg/l,檢測時間皆為2-3小時之間即有偵測,於含多重金屬之地下水樣品的檢測上,砷以及汞之專一型生物感測器於地下水樣品中皆可準確的辨識砷(500 μg/l)與汞(20 μg/l)的含量。目標2為建構廣效型生物感測器,從陽明山小油坑土壤篩選現地嗜酸性鐵氧化菌,並利用重金屬干擾鐵氧化菌之鐵氧化原理,建構以顏色差異為訊號,可目測或是使用光度計法檢測水中重金屬之廣效型生物感測器,本研究篩選出之現地細菌Y10,經由16S rDNA片段定序及比對後,與Gram-positive iron-oxidizing acidophile Y0010具有100%相似,Y10之最佳生長環境為同時添加四硫磺酸根與葡萄糖之Thiobacillus caldus medium 中生長,最佳生長條件為溫度45℃、pH值2.5。菌株Y10能檢測出超過10倍環保署放流水濃度之混合重金屬,檢測時間為45分鐘,顯示其可做於廣效型生物感測器之應用。本研究所建構之專一型與廣效型生物感測器,具有成本低且檢測時間快速之優勢,可與化學分析方法進行互補,提升重金屬檢測效率。 | zh_TW |
| dc.description.abstract | In recent years, growing industry causes heavy metals releasing into the environment. Because of its non-degradable and high accumulation in living organisms, heavy metals have threaten human health in many countries. Despite chemical analysis has high sensitive and accuracy, it has limitation for large scale screening due to the high cost and time consuming. The goal of this study is to develop biological methods to detect heavy metals (arsenic, cadmium, mercury) in the environment in order to comprise current chemical methods. There are two specific aims in this study, including development of (i) specific and (ii) non-specific biosensors for the detection of heavy metals (arsenic, cadmium, mercury). In specific aim 1, three luminescent-based specific biosensors were constructed by transforming the arsR-luxCDABE, cadC-luxCDABE, merR-luxCDABE recombinant gene cassette into E. coli DH5 for detection of arsenic, cadmium, and mercury, respectively. These specific biosensors were also used for detecting multiple heavy metals in ground water. The results showed that the specific biosensor can detect arsenic 7.5 μg/l, cadmium 1 μg/l, mercury 5 μg/l in 2-3 hours. In addition, the arsenic and mercury biosensor can distinguish As3+ and Hg2+ accurately in ground water spiked with multiple heavy metals. In specific aim 2, one acidic bacterium Y10 was isolated and characterized from the soil collected from Yangmingshan. The non-specific biosensor was also examined based on the inhibition of the heavy metals to iron-oxidizing ability of this bacterium. Based on the 16S rDNA sequence analysis, the bacterium Y10 has 100% sequence similarity to Gram-positive iron-oxidizing acidophile Y0010. The results showed that Thiobacillus caldus medium supplymented with both S4O62- and glucose is the best growing medium for Y10 and the optimum temperature and pH is 45℃ and pH 2.5, respectively. In addition, Y10 can detect 10 x EPA effluent standard concentration of multiple heavy metals in 45 minute, suggesting that this bacterium can be used as non-specific biosensors to detect heavy metals. In conclusion, the low cost and rapid screening of specific and non-specific heavy metal biosensor (As, Cd, Hg) can not only compromise the current chemical analysis but also increase the efficiency of large scale screening. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:41:15Z (GMT). No. of bitstreams: 1 ntu-104-R02622013-1.pdf: 2131172 bytes, checksum: c13683e9c79071f7fca2b3cfa1d01c11 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II ABSTRACT III 目錄 V 圖次 IX 表次 X 縮寫表 XI 一、研究動機 1 二、文獻回顧 2 2.1 重金屬 2 2.1.1 砷 2 2.1.2 鎘 3 2.1.3 汞 4 2.2 細菌體內重金屬的調控機制 5 2.2.1 ars operon 5 2.2.2 mer operon 6 2.2.3 cad operon 6 2.3 重金屬的檢測方法 7 2.3.1化學分析法 7 2.3.2生物感測方法 7 2.3.2.1報告基因 8 2.3.2.2廣效型重金屬生物感測器 10 2.3.2.3專一型重金屬生物感測器 11 三、研究目的 13 四、材料與方法 14 4.1實驗架構流程圖 14 4.2實驗藥品 15 4.3 Specific Aim 1 15 4.3.1生物感測器之建構 15 4.3.1.1菌種與質體 15 4.3.1.2勝任細胞(competent cell)製備 15 4.3.1.3重組質體的建構 16 4.3.1.4質體轉型(plasmid transformation) 16 4.3.2生物感測器時間與反應及劑量與反應關係測試 16 4.3.3生物感測器應用於含多重金屬之地下水樣品檢測 17 4.3.3.1地下水採樣及成分分析 17 4.3.3.2多重金屬混入於地下水樣品 17 4.3.3.3生物感測器之檢測 18 4.4 Specific Aim 2 18 4.4.1土壤採樣與現地菌株之分離 18 4.4.1.1 陽明山土壤採樣 18 4.4.1.2 生長條件與培養基之組成 18 4.4.1.3 嗜酸菌富化培養與分離純化 18 4.4.1.4 嗜酸菌之菌種鑑定 19 4.4.2嗜酸性鐵氧化菌Y10之基本特性分析 19 4.4.2.1生長曲線試驗 19 4.4.2.2二價鐵氧化試驗 19 4.4.2.3生長溫度容許範圍 20 4.4.2.4生長酸鹼度容許範圍 20 4.4.2.5碳源與硫源之利用情形 20 4.4.3嗜酸性鐵氧化菌Y10於廣效型生物感測器之應用 21 4.5統計分析 21 五、結果 22 5.1 Specific Aim 1 22 5.1.1 專一型生物感測器質體架構 22 5.1.2專一型生物感測器劑量反應與時間反應關係 22 5.1.2.1砷之專一型生物感測器劑量反應與時間反應關係 22 5.1.2.2鎘之專一型生物感測器劑量反應與時間反應關係 22 5.1.2.3汞之專一型生物感測器劑量反應與時間反應關係 23 5.1.3生物感測器應用於地下水多重金屬之檢測 28 5.2 Specific Aim 2 31 5.2.1鑑定與分離嗜酸菌 31 5.2.2菌株Y10之特性分析 31 5.2.2.1生長曲線 31 5.2.2.2二價鐵氧化試驗 31 5.2.2.3生長溫度與酸鹼值容許範圍 31 5.2.2.4碳源及硫源的利用情形 32 5.2.3菌株Y10於廣效型生物感測器之應用 32 六、討論 45 6.1 Specific Aim 1 45 6.1.1專一型生物感測器 45 6.1.2專一型生物感測器靈敏度與檢測時間之比較 45 6.1.2.1砷之專一型生物感測器之比較 46 6.1.2.2鎘之專一型生物感測器之比較 47 6.1.2.3汞之專一型生物感測器之比較 47 6.1.3專一型生物感測器成本分析 48 6.2 Specific Aim 2 54 6.2.1菌株Y10與其他研究之比較 54 6.2.2菌株Y10於廣效型生物感測器與其他研究之比較 55 七、結論 59 八、建議 60 九、參考文獻 61 十、附錄 73 | |
| dc.language.iso | zh-TW | |
| dc.subject | 砷 | zh_TW |
| dc.subject | 鎘 | zh_TW |
| dc.subject | 重金屬 | zh_TW |
| dc.subject | 汞 | zh_TW |
| dc.subject | 鐵氧化細菌 | zh_TW |
| dc.subject | 生物感測器 | zh_TW |
| dc.subject | iron-oxidizing bacteria | en |
| dc.subject | biosensor | en |
| dc.subject | heavy | en |
| dc.subject | metal | en |
| dc.subject | arsenic | en |
| dc.subject | cadmium | en |
| dc.subject | mercury | en |
| dc.title | 利用生物方法檢測環境中的重金屬砷、鎘、汞 | zh_TW |
| dc.title | Biological methods to detect heavy metals arsenic, cadmium, and mercury in the environment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 廖中明(Chung-Min Liao) | |
| dc.contributor.oralexamcommittee | 沈偉強(Wei-Chiang Shen),童心欣(Hsin-hsin Tung),陳昭瑩(Chao-Ying Chen) | |
| dc.subject.keyword | 生物感測器,重金屬,砷,鎘,汞,鐵氧化細菌, | zh_TW |
| dc.subject.keyword | biosensor,heavy,metal,arsenic,cadmium,mercury,iron-oxidizing bacteria, | en |
| dc.relation.page | 83 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-01-07 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
