請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51597
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭守夏(Shou-Hsia Cheng) | |
dc.contributor.author | Yu-Chun Kuo | en |
dc.contributor.author | 郭昱君 | zh_TW |
dc.date.accessioned | 2021-06-15T13:40:30Z | - |
dc.date.available | 2021-02-24 | |
dc.date.copyright | 2016-02-24 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-01-12 | |
dc.identifier.citation | 中文文獻
中央健康保險局 (2003).全民健康保險醫院總額支付制度品質確保方案.取自http://www.nhi.gov.tw/Resource/webdata/20004_4_100%E5%B9%B4%E9%86%AB%E9%99%A2%E7%B8%BD%E9%A1%8D%E6%94%AF%E4%BB%98%E5%88%B6%E5%BA%A6%E5%93%81%E8%B3%AA%E7%A2%BA%E4%BF%9D%E6%96%B9%E6%A1%88.pdf 中央健康保險局 (2005).醫院總額專業醫療服務品質報告.取自 www.nhi.gov.tw/Resource/webdata/24810_1_Attach_1282_1_94Q1-h.doc 全民健康保險署 (2015a).全民健康保險檔案分析審查異常不予支付指標.取自 http://www.nhi.gov.tw/webdata/webdata.aspx?menu=20&menu_id=710&webdata_id=1788 全民健康保險署 (2015b).全民健康保險醫事服務機構醫療服務審查辦法.取自http://www.nhi.gov.tw/Resource/bulletin/367_a08.pdf 何蘊芳 (2004).老人用藥與藥品交互作用.長期照護雜誌,8(4),391-397。 吳惠美、施李碧玉 (2004).藥物交互作用之發生率及發生機轉.北市醫學雜誌, 1(3),372-379。 李嘉龍 (2012).醫院建置電子化住院醫囑系統的影響因素-以北台灣某醫療網為例 (碩士論文).取自華藝線上圖書館。 林子銘、彭振興、連俊瑋 (2003).全國醫療院所病歷電子化現況調查作業.台北: 行政院衛生署。 林健合 (2009).現行健保制度藥品相關的醫療費用給付指標探討.藥學雜誌,100(83),79-83。 取自http://www.taiwan-pharma.org.tw/JTP/100/079-083.html 林梅芳、陳宛君、張秀玲、賴怡薇 (2014).藥品交互作用臨床分級資料庫之建置.醫療品質雜誌,8(3),48-56。 邱千慈 (2010).某醫學中心臨床決策支援系統對重複用藥之影響 (碩士論文).取自華藝線上圖書館。 唐菁華 (2004).某地區教學醫院異常處方之分析與探討.藥學雜誌, 19, 109-115。 高孟崇 (2001).藥物交互作用資料庫對於臨床醫療行為之影響 (碩士論文).取自華藝獻上圖書館。 高淑真、李玉春、黃文鴻、李龍騰 (2006).全民健保糖尿病門診問題處方之分析-以北台灣為中心之研究.臺灣公共衛生雜誌,25(1),58-64。 莊美華、林俊龍、王昱豐、曹汶龍、梁育彰 (2003).醫療機構用藥疏失之探討. 慈濟醫學雜誌,15(4),247-258。 許郁笙、沈玫秋、李春璟、蘇淑薰 (2011).電腦醫囑系統中藥物交互作用之篩選與用藥品質之相關性評估.台灣臨床藥學雜誌,19(1),1-10。 陳世欽、蔡文正、黃昱瞳、謝儀靜、黃光華 (2012).台灣高血壓用藥之問題處方及其影響因素的研究.臺灣公共衛生雜誌,31(1),31-42。 陳惠玉、許茜甯 (2013).電子化整合處方系統對門診重複處方之改善.台灣醫學雜誌,17(2),111-124。 黃興進、張怡秋、高正雄、吳彬安、黃穗秋 (2005).行政院衛生署九十四年度醫療院所病歷電子化現況調查.台北: 行政院衛生署。 楊明隆、林鴻鑫、王亮欽 (2004).建立 [藥品交互作用資料庫管理系統] 之研究.取自http://libir.tmu.edu.tw/handle/987654321/21467 楊瑛碧、鮑柏穎、鮑俊蓓 (2014).高齡者門診用藥之藥物交互作用.北市醫學雜誌, 11(2),135-145。 廖學志、吳騰彥、簡鈺玫 (2005).我國醫院病歷電子化程度的影響關鍵因素:次級資料分析.資訊管理學報,12(S),45-65。 蔡文正、游秋華、黃光華、謝淑惠、陳慧珊、廖家慧…龔佩珍 (2009).健保 IC 卡對醫師診療之助益及其相關因素.臺灣公共衛生雜誌,28(3),205-217。 衛生福利部中央健康保險署 (2013).全民健康保險.取自 http://www.nhi.gov.tw/webdata/webdata.aspx?menu=17&menu_id=661&webdata_id=4492 衛生福利部醫事司 (2013).醫院評鑑基準.取自 http://www.mohw.gov.tw/cht/DOMA/DM1.aspx?f_list_no=608&fod_list_no=895 羅好芸 (2007).健保 IC 卡實施對病人不同處方之同類藥物用藥日數重複之影響(未發表之碩士論文) .台中:亞洲大學健康管理研究所。 蘇群堯、李俊賢 (2009).急診小兒科常用藥物劑量計算輔助系統.取自http://libir.tmu.edu.tw/handle/987654321/22288 英文文獻 Aarts, J., & Koppel, R. (2009). Implementation of computerized physician order entry in seven countries. Health Affairs, 28(2), 404-414. Ahn, E. K., Cho, S. Y., Shin, D., Jang, C., & Park, R. W. (2014). Differences of Reasons for Alert Overrides on Contraindicated Co-prescriptions by Admitting Department. Healthcare Informatics Research, 20(4), 280-287. Anderson, G. F., Frogner, B. K., Johns, R. A., & Reinhardt, U. E. (2006). Health care spending and use of information technology in OECD countries. Health Affairs, 25(3), 819-831. Ash, J. S., Gorman, P. N., Seshadri, V., & Hersh, W. R. (2004). Computerized physician order entry in US hospitals: results of a 2002 survey. Journal of the American Medical Informatics Association, 11(2), 95-99. Åstrand, B., Åstrand, E., Antonov, K., & Petersson, G. (2006). Detection of potential drug interactions–a model for a national pharmacy register. European Journal of Clinical Pharmacology, 62(9), 749-756. Austin, C. J., & Harvey, W. J. (1988). Information Systems for Health Services Administration: Health Administration Press. Baldridge, J. V., & Burnham, R. A. (1975). Organizational innovation: Individual, organizational, and environmental impacts. Administrative Science Quarterly, 20(2). Barber, N., Rawlins, M., & Franklin, B. D. (2003). Reducing prescribing error: competence, control, and culture. Quality and Safety in Health Care, 12(suppl 1), i29-i32. Bates, D. W. (2010). CPOE and clinical decision support in hospitals: getting the benefits: comment on “Unintended effects of a computerized physician order entry nearly hard-stop alert to prevent a drug interaction”. Archives of Internal Medicine, 170(17), 1583-1584. Bates, D. W., Leape, L. L., Cullen, D. J., Laird, N., Petersen, L. A., Teich, J. M., . . . Shea, B. (1998). Effect of computerized physician order entry and a team intervention on prevention of serious medication errors. The Journal of the American Medical Association, 280(15), 1311-1316. Bates, D. W., Teich, J. M., Lee, J., Seger, D., Kuperman, G. J., Ma'Luf, N., . . . Leape, L. (1999). The impact of computerized physician order entry on medication error prevention. Journal of the American Medical Informatics Association, 6(4), 313-321. Bjerrum, L., Andersen, M., Petersen, G., & Kragstrup, J. (2003). Exposure to potential drug interactions in primary health care. Scandinavian Journal of Primary Health Care, 21(3), 153-158. Blumenthal, D. (2009). Stimulating the adoption of health information technology. New England Journal of Medicine, 360(15), 1477-1479. Bogucki, B., Jacobs, B. R., Hingle, J., & Group, C. I. O. R. (2004). Computerized reminders reduce the use of medications during shortages. Journal of the American Medical Informatics Association, 11(4), 278-280. Bowes III, W. A. (2010). Assessing readiness for meeting meaningful use: identifying electronic health record functionality and measuring levels of adoption. Paper presented at the AMIA Annual Symposium Proceedings. Buurma, H., De Smet, P. A., & Egberts, A. C. (2006). Clinical Risk Management in Dutch Community Pharmacies. Drug Safety, 29(8), 723-732. Cain, M., & Mittman, R. (2002). Diffusion of innovation in health care: California HealthCare Foundation Oakland CA. Chen, C., Chen, K., Hsu, C. Y., Chiu, W. T., & Li, Y. C. J. (2010). A guideline-based decision support for pharmacological treatment can improve the quality of hyperlipidemia management. Computer Methods and Programs in Biomedicine, 97(3), 280-285. Cheng, S.H., & Chen, C.C. (2014). Effect of Continuity of Care on Medication Duplication Among the Elderly. Medical Care, 52, 149-156. Chertow, G. M., Lee, J., Kuperman, G. J., Burdick, E., Horsky, J., Seger, D. L., . . . Komaroff, A. L. (2001). Guided medication dosing for inpatients with renal insufficiency. The Journal of the American Medical Association, 286(22), 2839-2844. Chu, H.Y., Chen, C.C., & Cheng, S.H. (2012). Continuity of care, potentially inappropriate medication, and health care outcomes among the elderly: evidence from a longitudinal analysis in Taiwan. Medical Care, 50(11), 1002-1009. Cutler, D. M., Feldman, N. E., & Horwitz, J. R. (2005). US adoption of computerized physician order entry systems. Health Affairs, 24(6), 1654-1663. Doolan, D. F., & Bates, D. W. (2002). Computerized physician order entry systems in hospitals: mandates and incentives. Health Affairs, 21(4), 180-188. Doubova, S. V., Reyes-Morales, H., del Pilar Torres-Arreola, L., & Suárez-Ortega, M. (2007). Potential drug-drug and drug-disease interactions in prescriptions for ambulatory patients over 50 years of age in family medicine clinics in Mexico City. BMC Health Services Research, 7(1), 147. Ducharme, M., & Boothby, L. (2007). Analysis of adverse drug reactions for preventability. International Journal of Clinical Practice, 61(1), 157-161. Duke, J. D., Li, X., & Dexter, P. (2013). Adherence to drug–drug interaction alerts in high-risk patients: a trial of context-enhanced alerting. Journal of the American Medical Informatics Association, 20(3), 494-498. Ernst, F. R., & Grizzle, A. J. (2001). Drug-related morbidity and mortality: updating the cost-of-illness model. Journal of American Pharmacists Association , 41(2), 192-199. Evans, R. S., Pestotnik, S. L., Classen, D. C., Clemmer, T. P., Weaver, L. K., Orme Jr, J. F., . . . Burke, J. P. (1998). A computer-assisted management program for antibiotics and other antiinfective agents. New England Journal of Medicine, 338(4), 232-238. Fick, D. M., Mion, L. C., Beers, M. H., & L Waller, J. (2008). Health outcomes associated with potentially inappropriate medication use in older adults. Research in Nursing & Health, 31(1), 42-51. Ford, E. W., McAlearney, A. S., Phillips, M. T., Menachemi, N., & Rudolph, B. (2008). Predicting computerized physician order entry system adoption in US hospitals: Can the federal mandate be met? International Journal of Medical Informatics, 77(8), 539-545. Galanter, W. L., Didomenico, R. J., & Polikaitis, A. (2005). A trial of automated decision support alerts for contraindicated medications using computerized physician order entry. Journal of the American Medical Informatics Association, 12(3), 269-274. Gandhi, T. K., Weingart, S. N., Seger, A. C., Borus, J., Burdick, E., Poon, E. G., . . . Bates, D. W. (2005). Outpatient prescribing errors and the impact of computerized prescribing. Journal of General Internal Medicine, 20(9), 837-841. Goldberg, R. M., Mabee, J., Chan, L., & Wong, S. (1996). Drug-drug and drug-disease interactions in the ED: analysis of a high-risk population. The American Journal of Emergency Medicine, 14(5), 447-450. Han, Y. Y., Carcillo, J. A., Venkataraman, S. T., Clark, R. S., Watson, R. S., Nguyen, T. C., . . . Orr, R. A. (2005). Unexpected increased mortality after implementation of a commercially sold computerized physician order entry system. Pediatrics, 116(6), 1506-1512. Thomson Healthcare Micromedex (2009). Micromedex. Retrieved from http://www.stm.org.tw/STM_library/ebm/modules/mydownloads/%e6%93%8d%e4%bd%9c%e6%89%8b%e5%86%8a/MDX2010.pdf Hsu, M. H., Yeh, Y. T., Chen, C. Y., Liu, C. H., & Liu, C. T. (2011). Online detection of potential duplicate medications and changes of physician behavior for outpatients visiting multiple hospitals using national health insurance smart cards in Taiwan. International Journal of Medical Informatics, 80(3), 181-189. Jha, A. K., Doolan, D., Grandt, D., Scott, T., & Bates, D. W. (2008). The use of health information technology in seven nations. International Journal of Medical Informatics, 77(12), 848-854. Johnson, J. A., & Bootman, J. L. (1995). Drug-related morbidity and mortality: a cost-of-illness model. Archives of Internal Medicine, 155(18), 1949-1956. Jung, M., Hoerbst, A., Hackl, W., Kirrane, F., Borbolla, D., Jaspers, M., . . . Massari10, P. (2013). Attitude of Physicians Towards Automatic Alerting in Computerized Physician Order Entry Systems. Methods of Information in Medicine, 52, 99-108. Kaushal, R., Shojania, K. G., & Bates, D. W. (2003). Effects of computerized physician order entry and clinical decision support systems on medication safety: a systematic review. Archives of Internal Medicine, 163(12), 1409. Kimberly, J. R., & Evanisko, M. J. (1981). Organizational innovation: The influence of individual, organizational, and contextual factors on hospital adoption of technological and administrative innovations. Academy of Management Journal, 24(4), 689-713. King, W. J., Paice, N., Rangrej, J., Forestell, G. J., & Swartz, R. (2003). The effect of computerized physician order entry on medication errors and adverse drug events in pediatric inpatients. Pediatrics, 112(3), 506-509. Kinoshita, H., Kobayashi, Y., & Fukuda, T. (2008). Duplicative medications in patients who visit multiple medical institutions among the insured of a corporate health insurance society in Japan. Health Policy, 85(1), 114-123. Kohn, L. T., Corrigan, J. M., & Donaldson, M. S. (2000). To err is human: building a Safer Health System (Vol. 6): National Academies Press. Koppel, R., Metlay, J. P., Cohen, A., Abaluck, B., Localio, A. R., Kimmel, S. E., & Strom, B. L. (2005). Role of computerized physician order entry systems in facilitating medication errors. the Journal of the American Medical Association, 293(10), 1197-1203. Kuperman, G. J., Bobb, A., Payne, T. H., Avery, A. J., Gandhi, T. K., Burns, G., . . . Bates, D. W. (2007). Medication-related clinical decision support in computerized provider order entry systems: a review. Journal of the American Medical Informatics Association, 14(1), 29-40. Kuperman, G. J., & Gibson, R. F. (2003). Computer physician order entry: benefits, costs, and issues. Annals of Internal Medicine, 139(1), 31-39. LeapfrogGroup. (2013). Retrieved from https://leapfroghospitalsurvey.org/cpoe-evaluation-tool/ Lehmann, C. U., & Kim, G. R. (2006). Computerized provider order entry and patient safety. Pediatric Clinics of North America, 53(6), 1169-1184. Leone, R., Magro, L., Moretti, U., Cutroneo, P., Moschini, M., Motola, D., . . . Conforti, A. (2010). Identifying adverse drug reactions associated with drug-drug interactions. Drug safety, 33(8), 667-675. Lim, C. M., Yusof, F. A. M., Selvarajah, S., & Lim, T. O. (2011). Use of ATC to describe duplicate medications in primary care prescriptions. European Journal of Clinical Pharmacology, 67(10), 1035-1044. Lin, C.-F., Wang, C.-Y., & Bai, C.-H. (2011). Polypharmacy, aging and potential drug-drug interactions in outpatients in Taiwan. Drugs & Aging, 28(3), 219-225. Long, A. J., Chang, P., Li, Y. C., & Chiu, W. T. (2008). The use of a CPOE log for the analysis of physicians' behavior when responding to drug-duplication reminders. International Journal of Medical Informatics, 77(8), 499. Magnus, D., Rodgers, S., & Avery, A. (2002). GPs' views on computerized drug interaction alerts: questionnaire survey. Journal of Clinical Pharmacy and Therapeutics, 27(5), 377-382. Magro, L., Moretti, U., & Leone, R. (2012). Epidemiology and characteristics of adverse drug reactions caused by drug-drug interactions. Expert Opinion on Drug Safety, 11(1), 83-94. Martens, J. D., van der Weijden, T., Severens, J. L., de Clercq, P. A., De Bruijn, D., Kester, A. D., & Winkens, R. A. (2007). The effect of computer reminders on GPs’ prescribing behaviour: a cluster-randomised trial. International Journal of Medical Informatics, 76, S403-S416. Mattison, M. L., Afonso, K. A., Ngo, L. H., & Mukamal, K. J. (2010). Preventing potentially inappropriate medication use in hospitalized older patients with a computerized provider order entry warning system. Archives of Internal Medicine, 170(15), 1331-1336. McCullough, J. S., Casey, M., Moscovice, I., & Prasad, S. (2010). The effect of health information technology on quality in US hospitals. Health Affairs, 29(4), 647-654. McDonnell, P. J., & Jacobs, M. R. (2002). Hospital admissions resulting from preventable adverse drug reactions. Annals of Pharmacotherapy, 36(9), 1331-1336. Micromedex2.0. (2015). Retrieved from http://www.micromedexsolutions.com/micromedex2/librarian/PFDefaultActionId/evidencexpert.ShowDrugInteractionsResults Mukherin, D. P., Zimmerman, C. R., & Chaffee, B. W. (2013). National standards for computeriazed prescriber order entry and clinical decision support: The case of drug interaction. American Journal of Health Ststem Pharmacy, 70, 59-64. Murer, C. G. (2010). Meaningful Use Rules Proposed for Electronic Health Record Incentives Under HITECH Act By. The Interdisciplinary Journal of Rehabilitation, 23(3), 32-33. Musen, M. A., Middleton, B., & Greenes, R. A. (2013). Clinical decision-support systems. In E. H. Shortliffe & J. J. Cimino (Ed.), Biomedical informatics: computer applications in health care and biomedicine (pp. 643-674). New York, USA: Springer. Nicholson, D., Hersh, W., Gandhi, T. K., Weingart, S. N., & Bates, D. W. (2006). Medication errors: not just a few “bad apples”. Journal of Clinical Outcomes Management, 13(2), 114. Park, R. W., Shin, S. S., Choi, Y. I., Ahn, J. O., & Hwang, S. C. (2005). Computerized physician order entry and electronic medical record systems in Korean teaching and general hospitals: results of a 2004 survey. Journal of the American Medical Informatics Association, 12(6), 642-647. Payne, T. H., Hines, L. E., Chan, R. C., Hartman, S., Kapusnik-Uner, J., Russ, A. L., . . . Galbreth, B. (2015). Recommendations to Improve the Usability of Drug-Drug Interaction Clinical Decision Support Alerts. Journal of the American Medical Informatics Association. Retrieved from http://jamia.oxfordjournals.org/content/22/6/1243 Payne, T. H., Nichol, W. P., Hoey, P., & Savarino, J. (2002). Characteristics and override rates of order checks in a practitioner order entry system. Paper presented at the Proceedings of the AMIA Symposium. Peterson, J., Kuperman, G., Shek, C., & Bates, D. (2001). Physician responses to life-threatening drug-drug interaction alerts. Journal of General Internal Medicine, 16(Suppl 1), 212. Phansalkar, S., Van der Sijs, H., Tucker, A. D., Desai, A. A., Bell, D. S., Teich, J. M., . . . Bates, D. W. (2013). Drug-drug interactions that should be non-interruptive in order to reduce alert fatigue in electronic health records. Journal of the American Medical Informatics Association, 20(3), 489-493. Phillips, D. P., Christenfeld, N., & Glynn, L. M. (1998). Increase in US medication-error deaths between 1983 and 1993. The Lancet, 351(9103), 643-644. Poon, E. G., Blumenthal, D., Jaggi, T., Honour, M. M., Bates, D. W., & Kaushal, R. (2004). Overcoming barriers to adopting and implementing computerized physician order entry systems in US hospitals. Health Affairs, 23(4), 184-190. Reimche, L., Forster, A. J., & Walraven, C. (2011). Incidence and Contributors to Potential Drug‐Drug Interactions in Hospitalized Patients. The Journal of Clinical Pharmacology, 51(7), 1043-1050. Rogers, E. M. (1995). Diffusion of innovations. New York: Free Press. Rogers, E. M. (2010). Diffusion of innovations. New York: Free Press. Rudin, R. S., Tang, P. C., & Bates, D. W. (2013). Health Information Technology Policy. In E. H. Shortliffe & J. J. Cimino (Ed.), Biomedical informatics: computer applications in health care and biomedicine (pp. 781-795). New York, USA: Springer. Schedlbauer, A., Prasad, V., Mulvaney, C., Phansalkar, S., Stanton, W., Bates, D. W., & Avery, A. J. (2009). What evidence supports the use of computerized alerts and prompts to improve clinicians' prescribing behavior? Journal of the American Medical Informatics Association, 16(4), 531-538. Shulman, R., Singer, M., Goldstone, J., & Bellingan, G. (2005). Medication errors: a prospective cohort study of hand-written and computerised physician order entry in the intensive care unit. Critical Care, 9(5), R516. Simon, S. R., Smith, D. H., Feldstein, A. C., Perrin, N., Yang, X., Zhou, Y., . . . Soumerai, S. B. (2006). Computerized prescribing alerts and group academic detailing to reduce the use of potentially inappropriate medications in older people. Journal of the American Geriatrics Society, 54(6), 963-968. Sintchenko, V., Iredell, J. R., Gilbert, G. L., & Coiera, E. (2005). Handheld computer-based decision support reduces patient length of stay and antibiotic prescribing in critical care. Journal of the American Medical Informatics Association, 12(4), 398-402. Straubhaar, B., Krähenbühl, S., & Schlienger, R. G. (2006). The prevalence of potential drug-drug interactions in patients with heart failure at hospital discharge. Drug Safety, 29(1), 79-90. Strom, B. L., Schinnar, R., Aberra, F., Bilker, W., Hennessy, S., Leonard, C. E., & Pifer, E. (2010). Unintended effects of a computerized physician order entry nearly hard-stop alert to prevent a drug interaction: a randomized controlled trial. Archives of Internal Medicine, 170(17), 1578-1583. Strom, B. L., Schinnar, R., Bilker, W., Hennessy, S., Leonard, C. E., & Pifer, E. (2010). Randomized clinical trial of a customized electronic alert requiring an affirmative response compared to a control group receiving a commercial passive CPOE alert: NSAID—warfarin co-prescribing as a test case. Journal of the American Medical Informatics Association, 17(4), 411-415. Tamblyn, R., Huang, A., Perreault, R., Jacques, A., Roy, D., Hanley, J., . . . Laprise, R. (2003). The medical office of the 21st century (MOXXI): effectiveness of computerized decision-making support in reducing inappropriate prescribing in primary care. Canadian Medical Association Journal, 169(6), 549-556. Teich, J. M., Merchia, P. R., Schmiz, J. L., Kuperman, G. J., Spurr, C. D., & Bates, D. W. (2000). Effects of computerized physician order entry on prescribing practices. Archives of Internal Medicine, 160(18), 2741-2747. Van Der Sijs, H., Aarts, J., Vulto, A., & Berg, M. (2006). Overriding of drug safety alerts in computerized physician order entry. Journal of the American Medical Informatics Association, 13(2), 138-147. van Doormaal, J. E., van den Bemt, P. M., Zaal, R. J., Egberts, A. C., Lenderink, B. W., Kosterink, J. G., . . . Mol, P. G. (2009). The influence that electronic prescribing has on medication errors and preventable adverse drug events: an interrupted time-series study. Journal of the American Medical Informatics Association, 16(6), 816-825. Vonbach, P., Dubied, A., Krähenbühl, S., & Beer, J. H. (2008). Prevalence of drug–drug interactions at hospital entry and during hospital stay of patients in internal medicine. European Journal of Internal Medicine, 19(6), 413-420. Wang, H., Lu, C., Wu, M., Huang, M., & Huang, Y. (2012). Effectiveness of an integrated CPOE decisionsupporting system with clinical pharmacist monitoring practice in preventing antibiotic dosing errors. International Journal of Clinical Pharmacology and Therapeutics, 50(6), 375-382. Weingart, S. N., Toth, M., Sands, D. Z., Aronson, M. D., Davis, R. B., & Phillips, R. S. (2003). Physicians' decisions to override computerized drug alerts in primary care. Archives of Internal Medicine, 163(21), 2625-2631. Wetterneck, T. B., Walker, J. M., Blosky, M. A., Cartmill, R. S., Hoonakker, P., Johnson, M. A., . . . Carayon, P. (2011). Factors contributing to an increase in duplicate medication order errors after CPOE implementation. Journal of the American Medical Informatics Association, 18(6), 774-782. World Health Organization. (2003). The anatomical therapeutic chemical classification system. Retrieved from http://www.who.int/classifications/atcddd/en/ Williams, D. (2007). Medication errors. Journal-Royal College of Physician of Edinburgh, 37(4), 343. Yasunaga, H., Imamura, T., Yamaki, S., & Endo, H. (2008). Computerizing medical records in Japan. International journal of medical informatics, 77(10), 708-713. Yeh, M. L., Chang, Y. J., Wang, P. Y., Li, Y. C. J., & Hsu, C. Y. (2013). Physicians’ responses to computerized drug–drug interaction alerts for outpatients. Computer Methods and Programs in Biomedicine, 111(1), 17-25. Yoon, D., Chang, B.-C., Kang, S. W., Bae, H., & Park, R. W. (2012). Adoption of electronic health records in Korean tertiary teaching and general hospitals. International Journal of Medical Informatics, 81(3), 196-203. Yoshida, Y., Imai, T., & Ohe, K. (2013). The trends in EMR and CPOE adoption in Japan under the national strategy. International Journal of Medical Informatics, 82(10), 1004-1011. Yui, B. H., Jim, W. T., Chen, M., Hsu, J. M., Liu, C. Y., & Lee, T. T. Evaluation of Computerized Physician Order Entry System- A Satisfaction Survey in Taiwan. Journal of Medical Systems,36(6), 3817-3824. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51597 | - |
dc.description.abstract | 用藥安全是醫療照護的重要環節,美國IOM (Institute of Medicine)報告提出醫療組織運用健康資訊系統有助於提升照護品質和改善病人安全,其中電腦醫令系統(Computerized Physician Oreder Entry, CPOE)結合臨床決策支持系統(Clinical decision support system, CDS)而成的處方警示系統(medication alert system;CPOE/CDS)則可協助醫事人員避免開立不適當處方。根據相關文獻,各國醫院採用CPOE/CDS的差異性很大,針對特定系統的調查研究甚少,也很少研究從宏觀面探討醫院門診採用系統對不適當處方的影響。台灣2005年調查醫療院所電子病歷使用狀況,區域級以上醫院使用CPOE的比例超過90%,地區醫院也有達75%以上;同年,新制醫院評鑑用藥安全規範增列「處方警示系統」項目,相比於國外的系統發展趨勢,台灣有相當程度的優勢可以深入探討處方警示系統的使用及影響,因此本研究的第一個目的是採用問卷調查台灣地區級以上醫院門診使用處方警示系統項目及警示內容與設定條件;第二個目的則是探討處方警示系統採用趨勢和不適當用藥(重複用藥以及藥物交互作用)變化的相關性。
研究材料與方法分為兩個部份,先是利用橫斷式問卷調查地區級以上醫院採用CPOE/CDS的情況,郵寄問卷380家,調查期間2013年7月至9月,最後以216家回覆問卷之醫院為研究樣本,重要觀察變項包含醫院門診處方警示系統的採用趨勢、各類警示系統的警示內容與條件、醫院創新特性(早期採用者或晚期)、系統採用狀態(採用類別、穩定度、設計維護)等。接著檢測重複用藥警示系統與藥物交互作用警示系統的採用趨勢和醫院門診不適當用藥(重複用藥、口服糖尿病藥物交互作用、高血壓藥物交互作用)的相關性,以醫院為分析單位,且根據不同依變項,有不同研究樣本。資料來源是全民健康保險學術研究資料庫2005年百萬歸人檔(1997-2011年)、藥品代碼與ATC對照表、以及研究者整理之藥物交互作用配對檔。重複用藥率的計算方式有兩種:1.醫院門診同張處方內含兩種ATC前五碼相同之藥品的處方箋比例(研究樣本259家醫院);2.醫院內同一位門診病人在重疊日期於不同醫師處方含兩種以上ATC前五碼相同藥品之處方箋比例(研究樣本236家醫院)。口服糖尿病藥物與高血壓用藥之一級藥物交互作用定義係參考Mircormedex2.0 (嚴重度Major且文獻等級good),藥物交互作用處方率計算方式是醫院門診一級交互作用處方箋佔標的藥物處方箋的比例(研究樣本208家醫院)。自變項為時間,有六個觀察時期(1997年、1998-2000、2001-2003、2004-2006、2007-2009、以及2010-2012年);控制變項為醫院特性,包含層級別、權屬別、分局別、醫院處方平均用藥數、醫院門診病人平均年齡。統計分析採用SAS 9.3包含描述性統計(平均數和百分比)以及推論性統計(卡方檢定和廣義估計方程式)。 研究結果發現醫院門診處方警示系統的採用率隨時間增加(1997年小於10%,到2010-2012年是95.83%),規模較大以及組織部門多元化的醫院(醫學中心、教學醫院、500床以上、財/社團法人醫院),顯著為早期採用者,傾向應用技術性高的系統,且多數是由醫院自行設計維護。同處方重複用藥相關因素分析當中,相比於1997年,1998-2000年b值-2.3830(P<0.0001),2010-2011年的b值-5.5333 (P<0.0001);同院跨處方重複用藥分析結果則顯示1998-2000年b值-5.58164 (P<0.0001),2010-2011年b 值-22.5398 (P<0.0001)。然而藥物交互作用處方相關因素分析卻發現口服糖尿病藥物交互作用處方率和高血壓藥物交互作用處方率在2004-2006年b值分別是1.0217 (P<0.0001)和0.7288 (P=0.0032),到2010-2011年則是2.0035(P<0.0001)以及1.7863 (P<0.0001)。歸納來說,重複用藥警示系統採用率增加,重複用藥發生情形隨時間顯著減少,但藥物交互作用警示系統卻沒有顯著效果。 | zh_TW |
dc.description.abstract | Background
Drug safety is an important issue in health care delivery system nowadays. The Institute of Medicine (IOM) has indicated that health information technology (HIT), especially computerized physician order entry system (CPOE) embedded with clinical decision support system (CDS), can assist physicians to avoid inappropriate prescribing, reduce medication errors, and improve care quality. However, the adoption of CPOE/CDS seemed to be different among countries. Many of the previous studies which have conducted surveys on the usage of CPOE/CDS for specific alert items were limited, and only a few reports have assessed the impact or performance of CPOE/CDS. Therefore, this study aimed to understand the adoption of CPOE/CDS among hospitals, and to examine the association of CPOE/CDS adoption and inappropriate prescriptions (include medication duplication and drug-drug interaction) comprehensively in Taiwan. Material & methods In the first part of this study, a cross-sectional questionnaire was developed and mailed to 380 hospitals nationwide between July and September, 2009. The variables listed included: (1) time of adopting CPOE/CDS in the hospitals' outpatient departments (with 6 time periods: before year 1997, 1998-2000, 2001-2003, 2004-2006, 2007-2009, 2010-2012) , (2) alert conditions and items in the CPOE/CDS, and (3) the operation status of CPOE/CDS (complexity, stability, and maintenance). In the second part, a longitudinal NHI dataset was applied to examine the association between the adoption of the CPOE/CDS system and inappropriate medication at hospital level. We evaluated two kinds of medication duplication and drug-drug interaction alert functions. The first duplicated medication was within a single prescription and was identified as 'a patient received drugs with the same therapeutic effect (as defined by level 4th of Anatomical Therapeutic Chemical system) in one prescription', and the medication duplication rate (1) was calculated as (cases of medication duplication) / (total number of prescriptions in a hospital) x 100%. The second duplicated medication was across prescriptions and was defined as ' a patient received drugs with the same therapeutic effect in different prescriptions provided by different physicians at the same hospital within one treatment period', and the medication duplication rate (2) was calculated as (the cases of medication duplication) / (total number of prescriptions provided in a hospital within same treatment period) x 100%. Concerning the drug-drug interaction, we only focused on the drugs for diabetes and hypertension treatment in 208 hospitals. We defined the drug-drug interaction (DDI) based on the severity level (contraindicated/major) and evidence level (excellent/good), and the DDI rate was calculated as (the cases of target DDI / total number of target prescriptions provided in a hospital). In the GEE regression models, the adoption time was classified into 6 periods: years before 1997, 1998-2000, 2001-2003, 2004-2006, 2007-2009, and 2010-2011. Hospital's characteristics were considered in the analysis which included accreditation level, ownership, branch of NHI, the average number of drugs within one prescription, and the average age of patients in outpatient departments. Results A total of 208 hospitals completed and returned the questionnaires with a response rate of 56.8%. Adoption rate of CPOE/CDS increased from less than 10% before year 1997 to 95.83% after 2010. Most of the large-scale hospitals were early adopters and tended to implement advanced systems designed by themselves. After adjusting for related variables, medication duplication rate (1) decreased alone the time significantly (b=-2.3830 for years 1998-2000 and b=-5.5333 for years 2010-2011 with P<0.0001repectively; reference year was 1997), and medication duplication rate (2) also decreased alone the time (b=-5.58164 for 1998-2000 and b=-22.5398 for 2010-2011 with P<0.0001 respectively). However, both of diabetes and hypertension DDI rates were increased after years 2004-2006 (for DM, b=1.0271 for years 2004-2006 and b=2.0035 for 2010-2011 with P<0.0001 respectively; for hypertension, b=0.7288 for years 2004-2006 , P=0.0032 and b=1.7863 for 2010-2011, P<0.0001). Discussion and conclusion In Taiwan, hospitals introduced CPOE/CDS during 1997and 2010 and have reached 95% adoption rate. We found that medication duplication in hospitals has decreased significantly along with the development of hospital's medication alert system. However, the drug-drug interaction was not decreasing which might be owing to the increased prevalence of chronic conditions and the NHI drug payment design. More detailed evaluation of the impact of medication alert system is needed in the future. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:40:30Z (GMT). No. of bitstreams: 1 ntu-105-D98845004-1.pdf: 941400 bytes, checksum: 6c70300992cf345eaaf77985475c987b (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 目錄
目錄 1 表目錄 3 圖目錄 5 第一章 緒論 6 第一節 研究背景 6 第二節 研究目的 9 第三節 研究重要性 10 第二章 文獻探討 11 第一節 健康資訊技術之處方警示系統 11 壹、處方警示系統的介紹 11 貳、創新擴散理論的基本介紹 15 叁、處方警示系統的創新擴散 19 第二節 不適當用藥 23 壹、重複用藥 23 一、名詞解釋與定義 23 二、重複用藥的盛行率與相關因素 24 貳、藥物交互作用 27 一、名詞解釋與定義 27 二、藥物交互作用的盛行率與相關因素 30 叁、改善不適當用藥的方案與策略 33 第三節 處方警示系統的應用結果 35 第四節 綜合討論 46 第三章 研究材料與方法 47 第一節 研究架構與研究假說 47 壹、研究架構 47 一、研究概念 48 二、研究問題與研究架構 49 貳、研究假說 51 第二節 研究對象與研究工具 52 壹、處方警示系統的採用現況調查 52 貳、處方警示系統採用趨勢和不適當用藥處方率的相關性 54 一、重複用藥警示系統採用趨勢和門診重複用藥率的相關性 55 二、藥物交互作用警示系統採用趨勢和門診藥物交互作用處方率的相關性 56 第三節 研究變項 58 壹、處方警示系統的採用現況 58 貳、處方警示系統採用趨勢和不適當用藥處方率的相關性 61 第四節 資料處理與資料分析 64 壹、資料處理 64 貳、資料分析 66 第四章 研究結果 67 第一節 處方警示系統的採用現況 67 第二節 處方警示系統採用趨勢和不適當用藥處方率的相關性 79 壹、重複用藥警示系統採用趨勢和單處方重複用藥率的相關性 82 貳、重複用藥警示系統採用趨勢和院內跨處方重複用藥的相關性 91 叁、藥物交互作用警示系統採用趨勢和特定藥物交互作用的相關性 100 第三節 小結 115 第五章 討論 117 第一節 處方警示系統採用現況 117 第二節 處方警示系統採用趨勢和不適當用藥處方的關係 119 壹、處方警示系統的效果 119 貳、影響處方警示系統效果的因素 121 第三節 研究限制 126 第六章 結論與建議 128 參考文獻 130 附件一 142 附件二 150 附件三 151 附件四 152 | |
dc.language.iso | zh-TW | |
dc.title | 醫院門診處方警示系統採用情形與不適當處方之相關探討 | zh_TW |
dc.title | Association of adoption of medication alert systems and inappropriate prescriptions in hospital outpatient departments | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 楊銘欽(Ming-Chin Yang),蔡憶文(Yi-Wen Tsai),周月卿(Yueh-Ching Chou),劉德明(Der-Ming Liou) | |
dc.subject.keyword | 處方警示系統,電腦醫令系統,重複用藥,藥物交互作用, | zh_TW |
dc.subject.keyword | medication alert system,computerized physician order entry,clinical decision support system,medication duplication,drug-drug interaction, | en |
dc.relation.page | 152 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-01-12 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 健康政策與管理研究所 | zh_TW |
顯示於系所單位: | 健康政策與管理研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 919.34 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。