請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51582
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 顏嗣鈞 | |
dc.contributor.author | Che-Yu Chang | en |
dc.contributor.author | 張哲瑜 | zh_TW |
dc.date.accessioned | 2021-06-15T13:39:51Z | - |
dc.date.available | 2021-02-15 | |
dc.date.copyright | 2016-02-15 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-01-15 | |
dc.identifier.citation | [1] IEEE Std. 802.11. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE, 1999.
[2] G. Bianchi. Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J. Select. Areas Comm., 18(3):535–547, 2000. [3] IEEE Std. 802.11e. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment: Medium Access Control (MAC) Quality of Service Enhancements. IEEE, 2005. [4] A. Grilo, M. Macedo, and M. Nunes. A Scheduling Algorithm for QoS Support in IEEE 802.11e Networks. IEEE Wireless Comm. Magazine, 10(3):36–43, June 2003. [5] D. Skyrianoglou, N. Passas, and A.K. Salkintzis. ARROW: An Efficient Traffic Scheduling Algorithm for IEEE 802.11e HCCA. IEEE Trans. Wireless Comm., 5(12):3558–3567, Dec. 2006. [6] I. Inan, F. Keceli, and E. Ayanoglu. An Adaptive Multimedia QoS Scheduler for 802.11e Wireless LANs. In IEEE Int’,l Conf. Comm. (ICC ’,06), volume 11, pages 5263–5270. IEEE, June 2006. [7] G. Boggia, P. Camarda, L.A. Grieco, and S. Mascolo. Feedback Based Control for Providing Real-Time Services with the 802.11e MAC. IEEE/ACM Trans. Network- ing, 15(2):323–333, Apr. 2007. [8] C. Wang, P.-C. Lin, and T. Lin. A Cross-Layer Adaptation Scheme for Improving IEEE 802.11e QoS by Learning. IEEE Trans. Neural Networks, 17(6):1661–1665, Nov. 2006. [9] B. Makarevitch. Delay Reduction for 802.11e Hybrid Coordinator. Elect. Lett., 40(11):708–709, May 2004. [10] P. Ansel, Q. Ni, and T. Turletti. FHCF: A Simple and Efficient Scheduling Scheme for IEEE 802.11e Wireless LAN. Mobile Netw. Appl., 11(3):391–403, Jun. 2006. [11] H.-W. Ferng and A. Leonovich. Periods Scheduling Under the HCCA Mode of IEEE 802.11e. IEEE Trans. Wireless Comm., 13(12):7037–7049, Dec. 2014. [12] O. Sharon and E. Altman. An Efficient Polling MAC for Wireless LANs. IEEE/ ACM Transactions on Networking, 9(4):439–451, Aug. 2001. [13] B. Kim, S. Kim, Y. Fang, and T. Wong. Two-Step Multi-Polling MAC Protocol for Wireless LANs. IEEE Journal on Selected Areas in Communications, 23(6):1276– 1286, Jun. 2005. [14] Y. He and X. Ma. Deterministic Backoff: Toward Efficient Polling for IEEE 802.11e HCCA in Wireless Home Networks. IEEE Transactions on Mobile Computing, 10(12):1726–1740, Dec. 2011. [15] J. M. Chung, M. Kim, Y. S. Park, M. Choi, S. Lee, and H. S. Oh. Time Coordinated V2I Communications and Handover for WAVE Networks. IEEE Journal on Selected Areas in Communications, 29(3):545–558, March 2011. [16] S. V. Krishnamurthy, A. S. Acampora, and M. Zorzi. Polling-based Media Access Protocols for Use with Smart Adaptive Array Antennas. IEEE/ACM Transactions on Networking, 9(2):148–161, Apr. 2001. [17] A. Papoulis and S. U. Pillai. Probability, Random Variables and Stochastic Pro- cesses. McGraw Hill, 4th edition edition, Jan. 2002. [18] IEEE802.11eHCCASimulationUsingtheNetworkSimulator2.http://info. iet.unipi.it/cng/ns2hcca. [19] Video Traces for Network Performance Evaluation. http://trace.eas.asu. edu. [20] How to Evaluate H.263/H.264/MPEG4 Video Transmission Using the NS2 Simulator. http://140.116.164.80/smallko/ns2/myevalvid2.htm. [21] YUV Video Sequences. http://trace.eas.asu.edu/yuv. [22] IEEE P802.11ac/D1.0. Draft Amendment to Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Enhancements for Very High Throughput for Operation in Bands below 6 GHz. IEEE, May 2011. [23] Join Video Team (JVT) ISO/IEC MPEG & ITU-T VCEG. Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification (ITU-T Rec. H.264/ISO/IEC 14496-10 AVC). JVT-G050, 2003. [24] IEEE 802.11g-2003. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification: Amendment 4: Further Higher Data Rate Ex- tension in the 2.4 GHz Band. IEEE, 2003. [25] IEEE P802.11n-2009. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Enhancements for Higher Throughput. IEEE, Oct. 2009. [26] C.-Y. Chen, T.-Y. Wu, W.-T. Lee, H.-C. Chao, and J.-C. Chiang. QoS-based Active Dropping Mechanism for NGN Video Streaming Optimization. Knowledge Engineering Review, 29(4):484–495, Sept. 2014. [27] D. J. Chiang, C. L. Chen, D. J. Deng, T. K. Shih, and H. H. Hsu. Quality of Service Provision Scheme for Data Dissemination with Time Constraints in Ubiquitous Environments. Journal of Internet Technology, 11(6):777–786, 2010. [28] D. J. Deng, L. W. Chang, T. Y. Wu, and C. C. Hu. Guaranteed QoS Provision Scheduling Mechanism for CBR Traffic in IEEE 802.16 BWA Systems. Journal of Internet Technology, 9(4):403–409, 2008. [29] S. C. Lo, G. Lee, and W. T. Chen. An Efficient Multipolling Mechanism for IEEE 802.11 Wireless LANs. IEEE Transactions on Computers, 52(6):764–778, 2003. [30] Naveen Chilamkurti, Sherali Zeadally, Robin Soni, and Giovanni Giambene. Wire- less Multimedia Delivery over 802.11e with Cross-Layer Optimization Tehniques. Multimedia Tools and Applications - An International Journal, 47(1), 2010. [31] R. Soni, N. Chilamkurti, G. Giambene, and S. Zeadally. A Cross-Layer Design for H.264 Video Stream Over Wireless Local Area Networks. In Proceedings of 2008 IEEE International Symposium on Computer Science and its Applications, pages 387–392. IEEE Press, 2008. [32] NS-3.http://www.nsnam.org. [33] YUV CIF Reference Videos (Lossless H.264 Encoded). http://www2.tkn. tu-berlin.de/research/evalvid/cif.html. [34] X. Xiang, W. Qin, and B. Xiang. Research on A DSRC-Based Rear-End Collision Warning Model. IEEE Trans. Intelligent Transportation Systems, 15(3):1054–1065, June 2014. [35] A Vinel, VM Vishnevsky, and Y Koucheryavy. A Simple Analytical Model for the Periodic Broadcasting in Vehicular Ad-Hoc Networks. In GLOBECOM Workshops, pages 1–5. IEEE, 2008. [36] C Campolo, A Vinel, A Molinaro, and Y Koucheryavy. Modeling Broadcasting in IEEE 802.11 p/WAVE Vehicular Networks. Communications Letters, IEEE, 15(2): 199–201, 2010. [37] A Vinel, D Staehle, and A Turlikov. Study of Beaconing for Car-to-Car Communication in Vehicular Ad-Hoc Networks. In 2009 ICC Workshops Communications Workshops, pages 1–5, 2009. [38] A Vinel. 3GPP LTE versus IEEE 802.11 p/WAVE: which technology is able to sup- port cooperative vehicular safety applications? Wireless Communications Letters, 1(2):125–128, Apr. 2012. [39] A. Vinel, E. Belyaev, K. Egiazarian, and Y. Koucheryavy. AnOvertakingAssistance System based on Joint Beaconing and Real-Time Video Transmission. IEEE Trans. Vehicular Technology, 61(5):2319–2329, June 2012. [40] IEEE P802.11p/D6.01. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications - Amendment 7: Wireless Access in Vehicular Environments. IEEE, Apr. 2009. [41] IEEE Std. 1609.1-2006. IEEE Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE) - Resource Manager. IEEE, Sept. 2006. [42] IEEE Std. 1609.2-2006. IEEE Trial-Use Standard for Wireless Access in Vehicular Environments - Security Services for Applications and Management Messages. IEEE, July 2006. [43] IEEE P1609.3/D1.0. Draft Standard for Wireless Access in Vehicular Environments (WAVE) - Networking Services. IEEE, Dec. 2008. [44] IEEE P1609.4/D1.0. Draft Standard for Wireless Access in Vehicular Environments (WAVE) - Multi-channel Operation. IEEE, Dec. 2008. [45] M. Gerla and J. T.-C. Tsai. Multicluster, Mobile, Multimedia Radio Network. ACM- Baltzer Journal Wireless Networks, 1(3):255–265, Sept. 1995. [46] A. D. Amis, R. Prakash, T. H. P. Vuong, and D. T. Huynh. Max-Min D-Cluster Formation in Wireless Ad Hoc networks. In Proceedings of IEEE INFOCOM, volume 1, pages 32–41, March 2000. [47] S. C. Lo, Y. J. Lin, and J. S. Gao. A Multi-Head Clustering Algorithm in Vehicular Ad Hoc Networks. International Journal of Computer Theory and Engineering, 5(2):242–247, Apr. 2013. [48] C. T. Chou, S. N. Shankar, and K. G. Shin. Achieving Per-Stream QoS with Distributed Airtime Allocation and Admission Control in IEEE 802.11e Wireless LANs. In Proceedings of IEEE INFOCOM, volume 3, pages 1584–1595, Apr 2005. [49] E. W. Knightly. Second Moment Resource Allocation in Multi-Service Networks. In Proceedings of ACM SIGMETRICS, volume 25, pages 181–191, June 1997. [50] E. W. Knightly. Enforceable Quality of Service Guarantees for Bursty Traffic Streams. In Proceedings of IEEE INFOCOM, volume 2, pages 635–642, 1998. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51582 | - |
dc.description.abstract | 因通訊技術進步,在無線網路裡傳送多媒體資料變得日益普及。這些多媒體應用程式,像是影音相關服務,特別注重傳送過程中的服務品質,因為其服務品質的程度大幅影響使用者的體驗。但是,目前既存的 IEEE 802.11 無線網路對於即時性的資料傳輸以及服務品質的保證仍有很大的改善空間。在本論文裡,我們分析多媒體資料在傳輸過程中的行為模式,並且試著去解決在 IEEE 802.11無線網路中提供服務品質保證所遭遇的問題。我們首先整理了各種多媒體資料的傳輸特性,並且指出目前 IEEE 802.11 媒介存取層在處理多媒體和即時資料需改善的部分。而根據網路的拓樸,我們針對典型的基礎架構網 路 (Infrastucture) 提出一個中央管控式的媒介存取機制。接著為了跟上最新的實體傳輸協定 IEEE 802.11ac,我們配合 DL MU-MIMO 技術並 提出一個新穎的、高效能的媒介存取機制。同時我們提出了一個品質調整策略演算法來提升多媒體的使用者體驗。而為了解決在隨意網路 (Ad Hoc)中提供服務品質保證所遭遇的問題,我們挑選了新興的車載隨意網路 (VANET),並根據其網路特性調整所提出之作法,重新建置一具備服務品質保證的分散式媒介存取機制。 | zh_TW |
dc.description.abstract | Nowadays, delivering multimedia traffic in IEEE 802.11 wireless net- works has become more popular than before. Multimedia applications such as voice/video applications need the quality of service (QoS) guaranteed and the user experience in an important metric. However, the existing medium access method of 802.11 wireless networks is not designed for providing real-time services, not to mention to provide guaranteed QoS. In this thesis, we analyze the traffic character of multimedia transferring and try to solve the existing problem of providing QoS in 802.11 wireless networks. We first summarize the types of multimedia traffic and figure out the difficulty of the IEEE 802.11 medium access control (MAC) protocol for delivering multimedia traffic. Ac- cording to the network type, we propose a QoS provision centralized schedul- ing algorithm for the classical infrastructure network. Furthermore, to follow up the innovation of radio technology, we propose a novel and high-efficiency channel access method called multi-polling controlled access (MPCA) for the latest released protocol, IEEE 802.11ac. In addition, we also implement a quality adjustment strategy (QAS) to provide better user-experience. Finally, to solve the problem of providing QoS in ad hoc networks, we consider the IEEE 802.11p vehicular ad hoc network (VANET) and propose a V2V QoS guaranteed channel access to support QoS. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:39:51Z (GMT). No. of bitstreams: 1 ntu-105-D99921030-1.pdf: 6115240 bytes, checksum: 8bd98998f4d7deac15167564c2490304 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii Table of Contents iv List of Figures vi List of Tables viii 1 Introduction 1 1.1 MultimediaDeliveringinComputerNetworks. . . . . . . . . . . . . . . 1 1.2 QualityofService.............................. 3 1.3 QoSSupportinIEEE802.11WirelessNetworks. . . . . . . . . . . . . . 4 1.3.1 DistributedCoordinationFunction. . . . . . . . . . . . . . . . . 5 1.3.2 PointCoordinationFunction.................... 6 1.3.3 IEEE802.11e............................ 8 1.4 Motivation.................................. 10 2 An Efficient Scheduling Algorithm for QoS Support in 802.11e HCCA 12 2.1 HCCAScheduling ............................. 13 2.2 AnImprovedSchedulingMethod ..................... 16 2.2.1 TheAllocationofExactTXOPDuration . . . . . . . . . . . . . 16 2.2.2 The Estimation of Packet Transmitting Time . . . . . . . . . . . 18 2.3 AnalysisofDataTransmissionEfficiency . . . . . . . . . . . . . . . . . 20 2.4 Simulation.................................. 22 2.4.1 Throughput............................. 23 2.4.2 PacketDelay ............................ 24 2.4.3 LossRate.............................. 25 2.4.4 RealVideoSimulation ....................... 26 3 QoS-Enabled Multimedia Transmission based on 802.11ac DL MU-MIMO 28 3.1 SupportQoSinHigh-ThroughputStandards . . . . . . . . . . . . . . . . 28 3.2 H.264Architecture ............................. 30 3.3 QoS-EnabledChannelAccessMechanism................. 31 3.3.1 Multi-pollingControlledAccess(MPCA) . . . . . . . . . . . . . 31 3.3.2 ReliableMPCA........................... 33 3.3.3 MPCAinOverlappingBSS(OBSS)Scenario . . . . . . . . . . . 34 3.3.4 QualityAdjustmentStrategy(QAS)................ 35 3.4 TheoreticalAnalysis ............................ 38 3.5 Simulation.................................. 43 4 V2V QoS Guaranteed Channel Access in IEEE 802.11p VANETs 46 4.1 TheStandardsforV2VCommunication .................. 46 4.2 TheArchitectureofWAVE......................... 49 4.3 EarliestDeadlineFirstbasedCSMA(EDF-CSMA) . . . . . . . . . . . . 50 4.3.1 WAVEServiceGroupConfiguration. . . . . . . . . . . . . . . . 50 4.3.2 Multi-ChannelAccessMechanism................. 53 4.3.3 AdmissionControl ......................... 60 4.4 Simulation.................................. 65 5 Conclusion 68 Bibliography 70 | |
dc.language.iso | en | |
dc.title | 無線網路中具備QoS之多媒體傳輸機制設計與分析 | zh_TW |
dc.title | Design and Analysis of QoS Guaranteed Multimedia Transmission Mechanisms in Wireless Networks | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 郭斯彥,雷欽隆,王勝德,陳俊良,陳英一 | |
dc.subject.keyword | 服務品質,體驗品質,多媒體傳輸,802.11協定,媒介存取層,無線區域網路,車用無線網路, | zh_TW |
dc.subject.keyword | QoS,QoE,Multimedia,802.11,MAC,WLANs,VANETs, | en |
dc.relation.page | 75 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-01-15 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
顯示於系所單位: | 電機工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 5.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。