請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51558完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡益超 | |
| dc.contributor.author | Hsin-Hung Chen | en |
| dc.contributor.author | 陳信宏 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:38:49Z | - |
| dc.date.available | 2016-02-16 | |
| dc.date.copyright | 2016-02-16 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-01-21 | |
| dc.identifier.citation | ACI-ASCE Committee 326,“Shear and Diagonal Tension,” ACI Journal, Proceedings, Vol. 59, No. 3, Jan., Feb., and Mar, pp. 1-30, 277-344, and 352-396 (1962).
ACI Committee 318, Buildings Code Requirements for Reinforced Concrete, American Concrete Institute, Detroit, USA (1963). ACI Committee 318, Buildings Code Requirements for Reinforced Concrete and Commentary (ACI 318-89), American Concrete Institute, Detroit, USA (1989). American Concrete Institute (ACI). Buildings Code Requirements for Structural Concrete and Commentary (ACI 318M-14). Farmington Hills, MI, USA: American Concrete Institute (2014). ASCE 41-13, Seismic Rehabilitation of Existing Buildings, American Society of Civil Engineers, Reston, Virginia (2013). Bentz, E.C.,“Sectional Analysis of Reinforced Concrete Members,”PhD thesis, Department of Civil Engineering, University of Toronto (2000). Bresler, B., and Pister, K.S.,“Strength of Concrete under Combined Stresses,” ACI Journal, Proceedings, Vol. 55, No. 3, Sept, pp. 321-345 (1958). 中國土木水利工程學會,混凝土工程設計規範與解說 (土木401-100),科技圖書,台北 (2011)。 CEB-FIP, Model Code for Concrete Structures: CEB-FIP International Recommendations, 3rd ed., Comité Euro-International du Béton, Paris (1978). Collins, M.P., and Mitchell, D.,“A Rational Approach to Shear Design-The 1984 Canadian Code Provision,” ACI Journal, Proceedings, Vol. 83, No. 6, Nov.-Dec., pp. 925-933 (1986). Collins, M.P., and Mitchell, D., Prestressed Concrete Basics. Ottawa: Canadia Prestressed Concrete Institute (1987). Collins, M.P., and Mitchell, D., Prestressed Concrete Structures. Englewood Cliffs, NJ: Prentice Hall (1991). Computer and Structures, Inc (CSI), SAP2000 Analysis Reference: Version 7.0, Computer and Structures, Inc, Berkeley, CA, USA (1998). Computer and Structures, Inc (CSI), ETABS User's Manual: Integrated Building Design Software: Version 8.0, Computer and Structures, Inc, Berkeley, CA, USA (2003). CSA Committee A23.3, Design of Concrete Structures for Buildings, CAN3-A23.3-M84, Canadian Standard Association, Rexdale, Canada (1984). Elnashai, A.S., Pilakoutas, K., and Ambraseys, N.N.,“Experimental Behaviour Of Reinforced Concrete Walls under Earthquake Loading,”Earthquake Engineering and Structural Dynamics, Vol. 19, No. 3, pp. 389-407 (1990). Elwood, K.J., and Moehle, J.P.,“Axial Capacity Model for Shear-Damaged Columns,”ACI Structural Journal, Vol. 102, No. 4, pp. 578-587 (2005). Fenwick, R.C., and Paulay, T.,“Mechanisms of Shear Resistance of Concrete Beams,” Journal of the Structural Division, ASCE, Vol. 94, No. ST10, Oct, pp. 2235-2350 (1968). Guralnick, S.A., “Shear Strength of Reinforced Concrete,” Journal of the Structural Division, ASCE, Vol. 85, No. ST1, Jan, pp. 1-42 (1959). 內政部營建署,「建築物耐震設計規範及解說」,(2011)。 內政部建築研究所,鋼筋混凝土建築物耐震能力評估手冊:視窗化輔助分析系統SERCB Win2012,內政部 (2012)。 Hidalgo, P.A., Ledezma, C.A., and Jordan, R.M.,“Seismic Behavior of Squat Reinforced Concrete Shear Walls,”Earthquake Spectra, Vol. 18, No. 2, pp. 287-308 (2002). Hognestad, E.,“What Do We Know about Diagonal Tension and Web Reinforcement in Concrete,” University of illinois Engineering Experiment Station, Circular Series, No. 64 (1952). 蕭輔沛,「鋼筋混凝土剪力牆-構架互制行為之實驗研究與數值模擬」,博士論文,成功大學建築研究所,台南 (2004)。 Hsu, T.T.C., Unified Theory of Reinforced Concrete, CRC Press Inc, Boca Raton, FL (1993). Hsu, T.T.C., and Zhu, R.R.H.,“Softened Membrane Model for RC Element in Shear,” ACI Structural Journal, Vol. 99, No.4, pp. 460-469 (2002). Hsu, T.T.C., and Mo, Y.L., Unified Theory of Concrete Structures, John Wiley & Sons, Ltd, USA (2010). Hwang, S.J., and, Lee, H.J.,“Analytical Model for Predicting Shear Strengths of Exterior Reinforced Concrete Beam-Column Joints for Seismic Resistance,” ACI Structural Journal, Vol. 96, No.5, pp. 846-857 (1999). Hwang, S.J., and, Lee, H.J.,“Analytical Model for Predicting Shear Strengths of Interior Reinforced Concrete Beam-Column Joints for Seismic Resistance,” ACI Structural Journal, Vol. 97, No.1, pp. 35-44 (2000). Hwang, S.J., Fang, W.H., Lee, H.J., and Yu, H.W.,“Analytical Model for Predicting Shear Strengths of Squat Walls,” Journal of Structural Engineering, Vol. 127, No. 1, pp. 43-50 (2001). Hwang, S.J., and, Lee, H.J.,“Strength Prediction for Discontinuity Region by Soften Strut-and-Tie Model,” Journal of Structural Engineering, ASCE, Vol. 128, No. 12, pp. 1519-1526 (2002). Jennewein, M., and Schäfer, K.,“Standardisierte nachweise von häufigen D-Bereichen,” DAfStb. Heft No. 430, Beuth-Verlag, Berlin (1992) (in German). Kazaz, İ. ,“Analytical Study on Plastic Hinge Length of Structural Walls,” Journal of Structural Engineering , Vol. 139, No. 11, pp. 1938-1950 (2013). Kupfer H. ,“Erweiterung der Mörsch’schen Fachwerkanalogie mit Hilfe des Prinzips vom Minimum der Formänderungsarbeit,” CEB-Bulletin, No. 40, Jan, Paris (1964). 賴慶鴻,「鋼筋混凝土剪力牆強度與剛度之試驗與分析」,碩士論文,成功大學建築研究所,台南 (1999)。 Lefas, I.D., Kotsovos, M.D., and Ambraseys, N.N.,“Behavior of Reinforced Concrete Structural Walls: Strength, Deformation Characteristic, Failure Mechanism,” ACI Structural Journal, Vol. 87, No. 1, pp. 23-31 (1990). Lopes, M.M.P.S.,“Seismic Behavior of Reinforced Concrete Walls with Low Shear Ratio,”PhD thesis, Civil Engineering Department, University of London (1991). Marti, P.,“Basic Tools of Reinforced Concrete Beam Design,” ACI Journal, Proceedings, Vol. 82, No. 1, Jan.-Feb., pp. 46-56 (1985). Mörsch, E., Concrete-Steel Construction, and Masonry Buildings, McGraw-Hill Book Company, New York, USA (1909). (English translation by E.P. Goodrich of 3rd ed. of Der Eusenbetonbau, 1st ed (1902).) Mörsch, E., Der Eusenbetonbau (Reinforced Concrete Construction),Verlag von Konrad Wittwer, Struttgart, West Germany (1922). NACU,“Standard No.4: Standard Building Regulations for Renforced Concrete,” Proceedings, National Association of Cement Users, Vol. 6, Feb, pp. 349-361 (1910). Paulay, T., and Priestley, M.J.N., Seismic Design of Reinforced Concrete and Masonry Buildings, John Wiley & Sons, Inc, USA (1992). Popovics, S.,“A Review of Stress-Strain Relationships for Concrete,” ACI Journal, Proceedings, Vol. 67, No.3, Mar, pp. 243-248 (1970). Ritter, W., Die Bauweise Hennebique (Construction Techniques of Hennebique) Schweizerische Bauzeitung (1899). Schäfer, K., Strut-and-Tie Models for the Design of Structural Concrete, Notes of Workshop, Department of Civil Engineering, National Cheng Kung University, Tainan, Taiwan (1996). Thornfeldt, E., Tomaszewicz, A., and Jenson, J.J.,“Mechanical Properties of High-Strength Concrete and Application in Design,” Proceedings of Symposium “Utilization of High Strength Concrete,” Stavanger, Norway, June, Tapir, Trondheim, pp. 149-159 (1987). Thürlimann, B., Marti, P., Pralong, J., Ritz, P. and Zimmerli, B., Anwendung der Plastizitätstheorie Stahlbeton, Institut für Baustatik und Konstruktion, Εidgenössische Τechnische Ηochschule, Zürich, Autographie zum Fortbildungskurs (1983). Vecchio, F.J., and Collins, M.P.,“The Response of Reinforced Concrete to In -Plane Shear and Normal Stresses,” Publication No. 82-03, Department of Civil Engineering, University of Toronto, Mar (1982). Vecchio, F.J., and Collins, M.P.,“The Modified Compression Field Theory for Reinforced Concrete Elements Subjected to Shear,”ACI Journal, Proceedings, Vol. 83, No. 2, March-April, pp. 219-231 (1986). Wagner, H.,“Ebene Blechwandträger mit Sehr dünnem Stegblech,” Zeitschrift für Flugtechnik und Motorluftschiffahrt, Vol. 20, Nos.8–12 (1929), Walraven, J.C.,“Fundamental Analysis of Aggregate Interlock,” Journal of the Structural Division, ASCE, Vol. 107, No. ST11, Nov, pp. 2245-2270 (1981). Walther, R., “Calculation of the Shear Strength of Reinforced and Prestressed Concrete Beams by the Shear Failure Theory,” Cement and Concrete Association, No. 110 (Translation from Beltonund Stahlbetonbau, Vol. 57, No. 11, Nov, pp. 261-271 (1962)). Yoon, Y., W. D. Cook, and D. Mitchell.,“Minimum Shear Reinforcement in Normal, Medium and High-Strength Concrete Beams.” ACI Structural Journal 93 (5): 576-584 (1996). Zwoyer, E.M., and Siess, C.P.,“ Ultimate Strength in Shear of Simply-Supported Prestressed Concrete Beams without Web Reinforecment,” ACI Journal, Proceedings, Vol. 51, Oct, pp. 181-200 (1954). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51558 | - |
| dc.description.abstract | 瞭解鋼筋混凝土(RC)牆其側向載重-側向位移反應,乃是RC含牆結構物進行非線性靜力分析與耐震能力評估之重要但困難的工作。然而,對於RC牆其非線性行為的模擬,至今仍未有較精確統一的方法。
為深入瞭解RC牆於軸力-剪力-彎矩互制下之非線性行為,本文將研究如何適當地計算軸力-彎矩作用下RC牆之彎矩-彎曲位移反應;以及利用兩迴歸因子Cs(以21組實驗資料迴歸)與Cd(以23組實驗資料迴歸)分別調整修正壓力場理論(MCFT)計算之剪力強度與剪位移,建立起考量RC牆高寬比(Hin/Lw)影響之軸力-剪力作用下RC牆剪力-剪位移反應,經上述兩反應的結合,可以合理地決定RC牆於軸力-剪力-彎矩互制下之側向載重-側向位移反應。 此外,為確認此分析方法的可靠性,本文也另以44組RC牆實驗資料進行盲目測試。經由分析結果與實驗結果之側向極限載重與該載重對應之位移(側向極限位移)間的相互比對,比對結果顯示,本文方法對於預測RC牆側向極限載重具有相當不錯的準確度,而對於預測RC牆側向極限位移則稍微偏向低估。因此,使用Cs及Cd兩迴歸因子分別調整由MCFT計算之剪力與剪位移,來反映RC牆高寬比(Hin/Lw)的影響,是可接受的。 本文也於SAP2000或ETABS程式下,建立6層RC純構架、6層RC含牆構架及6層開氣窗RC含牆構架,說明如何以等值柱模擬RC牆,並設置相關之塑鉸以進行非線性靜力分析,提供給工程師於應用上作為參考。經由三構架之非線性靜力分析結果,本文也探討RC牆對於構架行為之影響與貢獻。 | zh_TW |
| dc.description.abstract | Knowing the lateral load-lateral displacement of an RC (reinforced concrete) wall is an important but difficult work for nonlinear static analysis and seismic capacity evaluation. However, up to now the simulation about nonlinear behavior of an RC wall has not obtained yet an accurate and unified way.
In this research, the moment–bending displacement response of an RC wall under an axial load and moment is obtained from moment–curvature analysis using the wall’s proper plastic hinge length. Furthermore, the shear-shear displacement response of the RC wall under axial load and shear with considering the effect of the height-depth ratio of the RC wall (Hin/Lw) was established by means of two regressed factor Cs(regressed by 21 tests' data) and Cd(regressed by 23 tests' data) to modify the shear force and the shear displacement respectively calculated by the modified compression-field theory (MCFT). By integrating the moment–bending displacement and the shear–shear displacement responses, the lateral load–lateral displacement response of the RC wall under axial load–moment–shear interaction can be reasonably determined. To confirm the reliability of the proposed method, the analysis results of a further 44 tests along with a blind test, and are then compared with the experimental results. From the statistical results of the 67 tests, it was shown that the proposed method provides a good prediction of the lateral ultimate load but somewhat underestimates the lateral ultimate displacement. Thus, using Cs and Cd to adjust the shear and shear displacement obtained from the modified compression-field theory, respectively, to reflect the influence of Hin/Lw is acceptable. In addition, to provide an application illustration for engineers, this article establishes a 6 floor RC structure (pure RC frame), a 6 floor RC structure with walls and a 6 floor RC structure with walls containing windows to explain how to use an equivalent column model and set plastic hinges to simulate an RC wall in SAP2000 or ETABS nonlinear static analysis. Through the nonlinear static analysis result of the above three RC structures, the influence and contribution of RC walls on the RC structures are discussed in this article. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:38:49Z (GMT). No. of bitstreams: 1 ntu-105-F93521217-1.pdf: 18148283 bytes, checksum: 4557bb60543fc9c1e69897fdb44f38ca (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 目 錄
口試委員會審定書...i 誌謝...ii 中文摘要...iii 英文摘要...iv 第一章 緒論...1 1.1 研究背景與動機...1 1.2 研究內容...2 第二章 文獻回顧...5 2.1 斜向開裂...5 2.2 斜向開裂後的行為...6 2.3 45度桁架模型(45。Truss Model)...7 2.4 ACI方法...7 2.5 可變角度桁架模型(Variable-Angle Truss Model)...8 2.6 壓力場理論(Compression Field Theory,CFT)...9 2.7 修正壓力場理論(Modified Compression Field Theory MCFT)...11 2.8 莫爾諧和桁架模型(Mohr Compatibility Truss Model,MCTM)...12 2.9 旋轉角軟化桁架模型(Rotating Angle Softened Truss Model, RA-STM) 13 2.10 固定角軟化桁架模型(Fixed Angle Softened Truss Model, FA-STM)14 2.11 軟化薄膜模型(Softened Membrane Model,SMM)...16 2.12 壓拉桿模式(Strut and Tie Model)...17 2.13 軟化壓拉桿模型(Softened Strut and Tie Model,SST)...18 2.14 ACI 318-14規範計算RC牆剪力容量之方法...19 2.15 ASCE 41-13...19 2.16 小結...20 第三章 分析方法...35 3.1 計算RC牆之彎矩-彎曲位移反應,M-Δb...36 3.2 修正壓力場理論(MCFT)...37 3.2.1 幾何諧和條件...38 3.2.2 平衡條件...38 3.2.3 材料組成律...40 3.2.3.1 開裂混凝土受壓組成律...40 3.2.3.2 開裂混凝土受拉組成律...41 3.2.3.3 鋼筋組成律...41 3.2.4 裂縫間計算平均應力與裂縫上實際局部應力關係...42 3.2.5 以MCFT計算RC元素之平均剪應力-平均剪應變反應(υxy-γxy)...43 3.3 計算RC牆之剪力-剪位移反應...44 3.3.1 考慮RC牆高寬比(Hin/Lw)於其剪力-剪位移反應的影響...45 3.4 計算RC牆之側向載重-側向位移反應...46 3.4.1 剪力破壞模式(S-Type)...47 3.4.2 彎剪破壞模式(MS-Type)...47 3.4.3 彎矩破壞模式(M-Type)...48 3.5 決定迴歸因子Cs及Cd...48 3.5.1 23組RC牆實驗資料介紹...48 3.5.2 迴歸因子Cs...49 3.5.3 迴歸因子Cd...50 3.6 與實驗資料比對...51 3.6.1 44組試體介紹...51 3.6.2 比對結果...52 3.7 小結...53 第四章 應用與分析結果...131 4.1 RC牆之模擬...131 4.1.1 彎矩塑鉸的設置...132 4.1.2 剪力塑鉸的設置...132 4.1.3 驗證塑鉸設定方式的可行性...133 4.2 範例構架基本資料...133 4.3 進行非線性靜力分析...135 4.4 小結...138 第五章 結論與建議...207 第六章 參考文獻..211 圖 目 錄 圖2.1 腹剪裂縫、撓曲裂縫與撓剪裂縫...23 圖2.2(a) 混凝土元素受純剪時其應力狀態:純剪狀態...23 圖2.2(b) 混凝土元素受純剪時其應力狀態:開裂前主應力狀態...23 圖2.2(c) 混凝土元素受純剪時其應力狀態:開裂後主應力狀態...23 圖2.3 混凝土開裂時,縱向與水平向鋼筋分別以其拉力平衡混凝土斜向壓力場...23 圖2.4 以桁架模型模擬開裂RC梁受力行為...23 圖2.5(a) 桁架模型...24 圖2.5(b) 均勻分佈的斜向壓力場...24 圖2.6 RC梁預測結果與實驗結果下腹筋應力與剪力容量的關係...24 圖2.7(a) 可變角度桁架模型 ...24 圖2.7(b) 均勻分佈的斜向壓力...24 圖2.8 薄板金屬梁於腹板發生挫屈後形成之拉力場...25 圖2.9(a) RC元素平均應力狀態...25 圖2.9(b) 混凝土元素平均應力莫爾圓...25 圖2.10(a) 開裂RC元素平均應變...25 圖2.10(b) RC元素平均應變莫爾圓...25 圖2.11(a) 混凝土材料組成律:受壓混凝土組成律(拋物線)...26 圖2.11(b) 混凝土材料組成律:軟化混凝土最大主壓力強度...26 圖2.12 鋼筋完全彈塑性模型...26 圖2.13 RC元素平均剪應力-平均剪應變反應...26 圖2.14 混凝土元素裂縫中央與裂縫上混凝土的主拉應力...27 圖2.15 受拉混凝土組成律...27 圖2.16(a) RC元素之應力狀態...28 圖2.16(b) 裂縫間平均應力狀態...28 圖2.16(c) 裂縫上局部應力狀態...28 圖2.16(d) 裂縫上因骨材互鎖產生之局部剪應力...28 圖2.17(a) RC元素上之平均應力...29 圖2.17(b) 混凝土元素之應力莫耳圓...29 圖2.17(c) RC元素之剪力-剪應變反應(υxy-γxy)(由MCFT計算)...29 圖2.18 RA-STM之受壓混凝土組成律...29 圖2.19 RA-STM之受壓混凝土軟化係數ζ...30 圖2.20 FA-STM中裂縫方向混凝土元素支應力狀態...30 圖2.21 FA-STM之受拉混凝土組成律...30 圖2.22 FA-STM之受壓混凝土組成律...31 圖2.23 FA-STM之鋼筋雙線性組成律...31 圖2.24 以壓拉桿模型模擬RC深梁...31 圖2.25 以軟化壓拉桿模型模擬低矮型RC牆...32 圖2.26 撓曲破壞控制時RC牆塑鉸設置準則...32 圖2.27 剪力破壞控制時RC牆塑鉸設置準則...32 圖3.1(a) M-φ...55 圖3.1(b) Vb-Δb...55 圖3.1(c) RC牆圖例...55 圖3.1(d) 彎矩造成之彎曲位移(Δb)...55 圖3.1(e) 剪應變造成之剪位移(Vs*)...55 圖3.2(a) RC元素上之平均應力...55 圖3.2(b) 混凝土元素之應力莫耳圓...55 圖3.2(c) RC元素之剪力-剪應變反應(υxy-γxy)(由MCFT計算)...55 圖3.3(a) 開裂RC元素平均應變...55 圖3.3(b) RC元素平均應變莫爾圓...55 圖3.4(a) 混凝土材料組成律:受壓混凝土組成律 ...56 圖3.4(b) 混凝土材料組成律:軟化混凝土最大主壓力強度...56 圖3.5 受拉混凝土組成律...56 圖3.6 鋼筋完全彈塑性模型...56 圖3.7(a) RC元素之應力狀態 57 圖3.7(b) 裂縫間平均應力狀態 57 圖3.7(c) 裂縫上局部應力狀態...57 圖3.7(d) 裂縫上因骨材互鎖產生之局部剪應力...57 圖3.8 MCFT之流程圖...58 圖3.8 MCFT之流程圖...58 圖3.9(a) RC牆圖例...59 圖3.9(b) RC元素...59 圖3.9(c) RC牆橫斷面...59 圖3.10(a) 迴歸因子Cs及Cd...59 圖3.10(b) 極限點之比較...59 圖3.10(c) Vs-Δs與Vs*-Δs*反應...59 圖3.10(d) 21組實驗其極限點Vmax,t/Vmax之比較...59 圖3.10(e) 23組實驗其極限點Δmax,t/Δmax之比較...59 圖3.11(a) 破壞模式:剪力破壞模式(S-type)...60 圖3.11(b) 破壞模式:彎剪破壞模式(MS-type)...60 圖3.11(c) 破壞模式:彎矩破壞模式(M-type)...60 圖3.12(a) 與實驗結果比較之分析結果:H2試體(S-type)...60 圖3.12(b) 與實驗結果比較之分析結果:SW7試體(MS-type)...60 圖3.12(c) 與實驗結果比較之分析結果:LE6試體(M-type)...60 圖3.13 本文方法之流程圖...61 圖3.14 H1實驗之實驗結果與分析結果...61 圖3.15 H2實驗之實驗結果與分析結果...62 圖3.16 H3實驗之實驗結果與分析結果...62 圖3.17 H4實驗之實驗結果與分析結果...63 圖3.18 H5實驗之實驗結果與分析結果...63 圖3.19 H6實驗之實驗結果與分析結果...64 圖3.20 H7實驗之實驗結果與分析結果...64 圖3.21 H8實驗之實驗結果與分析結果...65 圖3.22 H9實驗之實驗結果與分析結果...65 圖3.23 H10實驗之實驗結果與分析結果...66 圖3.24 H11實驗之實驗結果與分析結果...66 圖3.25 H12實驗之實驗結果與分析結果...67 圖3.26 H13實驗之實驗結果與分析結果...67 圖3.27 H14實驗之實驗結果與分析結果...68 圖3.28 H17實驗之實驗結果與分析結果...68 圖3.29 H21實驗之實驗結果與分析結果...69 圖3.30 H25實驗之實驗結果與分析結果...69 圖3.31 SW4實驗之實驗結果與分析結果...70 圖3.32 SW5實驗之實驗結果與分析結果...70 圖3.33 SW6實驗之實驗結果與分析結果...71 圖3.34 SW7實驗之實驗結果與分析結果...71 圖3.35 SW8實驗之實驗結果與分析結果...72 圖3.36 SW9實驗之實驗結果與分析結果...72 圖3.37 L1實驗之實驗結果與分析結果...73 圖3.38 L2實驗之實驗結果與分析結果...73 圖3.39 L3實驗之實驗結果與分析結果...74 圖3.40 L4實驗之實驗結果與分析結果...74 圖3.41 L5實驗之實驗結果與分析結果...75 圖3.42 L6實驗之實驗結果與分析結果...75 圖3.43 L7實驗之實驗結果與分析結果...76 圖3.44 L8實驗之實驗結果與分析結果...76 圖3.45 LE1實驗之實驗結果與分析結果...77 圖3.46 LE2實驗之實驗結果與分析結果...77 圖3.47 LE3實驗之實驗結果與分析結果...78 圖3.48 LE4實驗之實驗結果與分析結果...78 圖3.49 LE5實驗之實驗結果與分析結果...79 圖3.50 LE6實驗之實驗結果與分析結果...79 圖3.51 LE7實驗之實驗結果與分析結果...80 圖3.52 LE8實驗之實驗結果與分析結果...80 圖3.53 LE9實驗之實驗結果與分析結果...81 圖3.54 LE10實驗之實驗結果與分析結果...81 圖3.55 LE11實驗之實驗結果與分析結果...82 圖3.56 LE12實驗之實驗結果與分析結果...82 圖3.57 LE13實驗之實驗結果與分析結果...83 圖3.58 RCW01實驗之實驗結果與分析結果...83 圖3.59 RCW02實驗之實驗結果與分析結果...84 圖3.60 RCW04實驗之實驗結果與分析結果...84 圖3.61 RCW05實驗之實驗結果與分析結果...85 圖3.62 RCW06實驗之實驗結果與分析結果...85 圖3.63 RCW07實驗之實驗結果與分析結果...86 圖3.64 RCW08實驗之實驗結果與分析結果...86 圖3.65 RCW09實驗之實驗結果與分析結果...87 圖3.66 RCW12實驗之實驗結果與分析結果...87 圖3.67 RCW13實驗之實驗結果與分析結果...88 圖3.68 RCW14實驗之實驗結果與分析結果...88 圖3.69 RCW15實驗之實驗結果與分析結果...89 圖3.70 HWFL1實驗之實驗結果與分析結果...89 圖3.71 HWFL2實驗之實驗結果與分析結果...90 圖3.72 HWFH1實驗之實驗結果與分析結果...90 圖3.73 HWFH2實驗之實驗結果與分析結果...91 圖3.74 MWF1實驗之實驗結果與分析結果...91 圖3.75 MWF2實驗之實驗結果與分析結果...92 圖3.76 LWF1實驗之實驗結果與分析結果...92 圖3.77 LWF2實驗之實驗結果與分析結果...93 圖3.78 PWL實驗之實驗結果與分析結果...93 圖3.79 PWH實驗之實驗結果與分析結果...94 圖4.1(a) ETABS中構架之3D模型:6層樓RC純構架...141 圖4.1(b) ETABS中構架之3D模型:6層樓RC含牆構架...141 圖4.1(c) ETABS中構架之3D模型:6層樓開氣窗RC含牆構架...141 圖4.2(a) RC含牆結構物示意圖...141 圖4.2(b) 由等值柱模擬RC牆...141 圖4.3 彎矩塑鉸特徵...141 圖4.4 彎矩剛性塑鉸特徵...142 圖4.5 剪力塑鉸特徵...142 圖4.6 剪力剛性塑鉸特徵...142 圖4.7(a) RCW08試體於SAP2000之剛性塑鉸特徵:剪力剛性塑鉸特徵...143 圖4.7(b) RCW08試體於SAP2000之剛性塑鉸特徵:彎矩剛性塑鉸特徵...143 圖4.8(a) RCW08試體之非線性靜力分析結果...143 圖4.8(b) RCW08試體於SAP2000中剪力剛性塑鉸之分析結果...143 圖4.8(c) RCW08試體於SAP2000中彎矩剛性塑鉸之分析結果...143 圖4.9 6層樓RC純構架於ETABS之3D模型...144 圖4.10 6層樓RC純構架之2F平面...144 圖4.11 6層樓RC純構架之2F平面梁斷面尺寸配置圖...145 圖4.12 6層樓RC純構架之1構架立面(1~5與A~E構架均相同)...145 圖4.13 6層樓RC純構架之1構架立面梁與柱斷面尺寸(1~5與A~E構架均相同)...146 圖4.14 6層樓RC純構架之1構架立面梁預設M3塑鉸與柱預設PMM塑鉸配置圖(1~5與A~E構架均相同)...146 圖4.15 6層樓RC含牆構架於ETABS之3D模型...147 圖4.16 6層樓RC含牆構架之2F平面...147 圖4.17 6層樓RC含牆構架之2F平面梁斷面尺寸配置圖...148 圖4.18 6層樓RC含牆構架之1構架立面(1與5構架均相同)...148 圖4.19 6層樓RC含牆構架之1構架立面梁、柱與等值柱斷面尺寸配置圖(1與5構架均相同)...149 圖4.20 6層樓RC含牆構架之1構架立面梁預設M3塑鉸、柱預設PMM塑鉸、等值柱彎矩與剪力塑鉸配置圖(1與5構架均相同)...149 圖4.21 6層樓RC含牆構架之2構架立面(2~4構架與A~E構架均相同)...150 圖4.22 6層樓RC含牆構架之2構架立面梁與柱斷面尺寸(2~4構架與A~E構架均相同)...150 圖4.23 6層樓RC含牆構架之2構架立面梁預設M3塑鉸與柱預設PMM塑鉸配置圖(2~4構架與A~E構架均相同)...151 圖4.24 6層樓開氣窗RC含牆構架於ETABS之3D模型...151 圖4.25 6層樓開氣窗RC含牆構架之2F平面...152 圖4.26 6層樓開氣窗RC含牆構架之2F平面梁斷面尺寸配置圖...152 圖4.27 6層樓開氣窗RC含牆構架之1構架立面(1與5構架均相同)...153 圖4.28 6層樓開氣窗RC含牆構架之1構架立面梁、柱與等值柱斷面尺寸配置圖(1與5構架均相同)...153 圖4.29 6層樓開氣窗RC含牆構架之1構架立面梁預設M3塑鉸、柱預設PMM塑鉸、等值柱彎矩與剪力塑鉸配置圖(1與5構架均相同)...154 圖4.30 6層樓開氣窗RC含牆構架之2構架立面(2~4構架與A~E構架均相同)...154 圖4.31 6層樓開氣窗RC含牆構架之2構架立面梁與柱斷面尺寸(2~4構架與A~E構架均相同)...155 圖4.32 6層樓開氣窗RC含牆構架之2構架立面梁預設M3塑鉸與柱預設PMM塑鉸配置圖(2~4構架與A~E構架均相同)...155 圖4.33 1F~3F RC柱配筋圖...156 圖4.34 4F RC柱配筋圖...156 圖4.35 5F RC柱配筋圖...156 圖4.36 6F RC柱配筋圖...157 圖4.37 1F RC梁配筋圖...157 圖4.38 2F與4F RC梁配筋圖...157 圖4.39 3F RC梁配筋圖...158 圖4.40 5F RC梁配筋圖...158 圖4.41 6F RC梁配筋圖...158 圖4.42 RC牆配筋圖...158 圖4.43(a) ETABS中剛性塑鉸特徵:梁M3塑鉸...159 圖4.43(b) ETABS中剛性塑鉸特徵:柱PMM塑鉸...159 圖4.43(c) ETABS中剛性塑鉸特徵:2F RC牆M3彎矩塑鉸...159 圖4.43(d) ETABS中剛性塑鉸特徵:2F RC牆V2剪力塑鉸..159 圖4.44 反曲點落於牆內時之Vs*-Δs*...160 圖4.45 構架承受載重組合(1.0DL+0.5LL+1.0E)...160 圖4.46 RC純構架之塑鉸配置圖...161 圖4.47 RC含牆構架之塑鉸配置圖...161 圖4.48 開氣窗RC含牆構架之塑鉸配置圖161 圖4.49 RC純構架、RC含牆構架及開氣窗RC含牆構架於ETABS或SAP2000之側推分析結果...162 圖4.50 RC純構架、RC含牆構架及開氣窗RC含牆構架之頂層側位移比(Drift Ratio)與峰值地表加速度(PGA)反應...162 圖4.51 RC純構架受1.0DL+0.5LL時之狀態(ETABS)...163 圖4.52 RC純構架於頂層側位移角0.55%狀態(ETABS)...163 圖4.53 RC純構架於頂層側位移角0.61%狀態(ETABS)...164 圖4.54 RC純構架於頂層側位移角1.49%狀態(ETABS)...164 圖4.55 RC純構架於頂層側位移角2.31%狀態(性能點於最大目標位移)(ETABS)...165 圖4.56 RC含牆構架受1.0DL+0.5LL時之狀態(ETABS)...165 圖4.57 RC含牆構架於頂層側位移角0.08%狀態(ETABS)...166 圖4.58 RC含牆構架於頂層側位移角0.09%狀態(ETABS)...166 圖4.59 RC含牆構架於頂層側位移角0.11%狀態(ETABS)...167 圖4.60 RC含牆構架於頂層側位移角0.22%狀態(ETABS)...167 圖4.61 RC含牆構架於頂層側位移角0.43%狀態(ETABS)...168 圖4.62 RC含牆構架於頂層側位移角0.49%狀態(ETABS)...168 圖4.63 RC含牆構架於頂層側位移角0.5%狀態(ETABS)...169 圖4.64 RC含牆構架於頂層側位移角0.52%狀態(ETABS)...169 圖4.65 RC含牆構架於頂層側位移角0.54%狀態(ETABS)...170 圖4.66 RC含牆構架於頂層側位移角0.62%狀態(ETABS)...170 圖4.67 RC含牆構架於頂層側位移角0.83%狀態(ETABS)...171 圖4.68 RC含牆構架於頂層側位移角1.03%狀態(ETABS)..171 圖4.69 RC含牆構架於頂層側位移角1.76%狀態(ETABS)...172 圖4.70 RC含牆構架於頂層側位移角1.8%狀態(性能點於最大目標位移)(ETABS)...172 圖4.71 開氣窗RC含牆構架受1.0DL+0.5LL時之狀態(ETABS)...173 圖4.72 開氣窗RC含牆構架於頂層側位移角0.05%狀態(ETABS)...173 圖4.73 開氣窗RC含牆構架於頂層側位移角0.13%狀態(ETABS)...174 圖4.74 開氣窗RC含牆構架於頂層側位移角0.2%狀態(ETABS)...174 圖4.75 開氣窗RC含牆構架於頂層側位移角0.28%狀態(ETABS)...175 圖4.76 開氣窗RC含牆構架於頂層側位移角0.31%狀態(ETABS)...175 圖4.77 開氣窗RC含牆構架於頂層側位移角0.4%狀態(ETABS)...176 圖4.78 開氣窗RC含牆構架於頂層側位移角0.42%狀態(ETABS)...176 圖4.79 開氣窗RC含牆構架於頂層側位移角0.42%狀態(ETABS)...177 圖4.80 開氣窗RC含牆構架於頂層側位移角0.45%狀態(ETABS)...177 圖4.81 開氣窗RC含牆構架於頂層側位移角0.49%狀態(ETABS)...178 圖4.82 開氣窗RC含牆構架於頂層側位移角0.52%狀態(ETABS)...178 圖4.83 開氣窗RC含牆構架於頂層側位移角0.53%狀態(性能點於最大目標位移)(ETABS)...179 圖4.84 RC純構架受1.0DL+0.5LL時之狀態(3構架)(SAP2000)...179 圖4.85 RC純構架於頂層側位移角0.53%狀態(3構架)(SAP2000)...180 圖4.86 RC純構架於頂層側位移角0.56%狀態(3構架)(SAP2000)...180 圖4.87 RC純構架於頂層側位移角0.68%狀態(3構架)(SAP2000)...181 圖4.88 RC純構架於頂層側位移角1.40%狀態(5構架)(SAP2000)...181 圖4.89 RC純構架於頂層側位移角2.07%狀態(3構架)(性能點於最大目標位移) (SAP2000)...182 圖4.90 RC含牆構架受1.0DL+0.5LL時之狀態(1構架)(SAP2000)...182 圖4.91 RC含牆構架於頂層側位移角0.09%狀態(1構架)(SAP2000)...183 圖4.92 RC含牆構架於頂層側位移角0.12%狀態(1構架)(SAP2000)...183 圖4.93 RC含牆構架於頂層側位移角0.20%狀態(1構架)(SAP2000)...184 圖4.94 RC含牆構架於頂層側位移角0.23%狀態(1構架)(SAP2000)...184 圖4.95 RC含牆構架於頂層側位移角0.43%狀態(1構架)(SAP2000)...185 圖4.96 RC含牆構架於頂層側位移角0.45%狀態(1構架)(SAP2000)...185 圖4.97 RC含牆構架於頂層側位移角0.64%狀態(1構架)(SAP2000)...186 圖4.98 RC含牆構架於頂層側位移角0.96%狀態(1構架)(SAP2000)...186 圖4.99 RC含牆構架於頂層側位移角1.64%狀態(1構架)(SAP2000)...187 圖4.100 RC含牆構架於頂層側位移角1.82%狀態(1構架) (性能點於最大目標位移)(SAP2000)...187 圖4.101 開氣窗RC含牆構架受1.0DL+0.5LL時之狀態(1構架)(SAP2000)(SAP2000)...188 圖4.102 開氣窗RC含牆構架於頂層側位移角0.05%狀態(1構架)(SAP2000)...188 圖4.103 開氣窗RC含牆構架於頂層側位移角0.13%狀態(1構架)(SAP2000)...189 圖4.104 開氣窗RC含牆構架於頂層側位移角0.20%狀態(1構架)(SAP2000)...189 圖4.105 開氣窗RC含牆構架於頂層側位移角0.25%狀態(1構架)(SAP2000)...190 圖4.106 開氣窗RC含牆構架於頂層側位移角0.28%狀態(1構架)(SAP2000)...190 圖4.107 開氣窗RC含牆構架於頂層側位移角0.33%狀態(1構架)(SAP2000)...191 圖4.108 開氣窗RC含牆構架於頂層側位移角0.36%狀態(1構架)(SAP2000)...191 圖4.109 開氣窗RC含牆構架於頂層側位移角0.41%狀態(1構架)(SAP2000)...192 圖4.110 開氣窗RC含牆構架於頂層側位移角0.44%狀態(1構架)(SAP2000)...192 圖4.111 開氣窗RC含牆構架於頂層側位移角0.47%狀態(1構架)(SAP2000)...193 圖4.112 開氣窗RC含牆構架於頂層側位移角0.50%狀態(1構架)(SAP2000)...193 圖4.113 開氣窗RC含牆構架於頂層側位移角0.54%狀態(1構架) (性能點於最大目標位移)(SAP2000)...194 表 目 錄 表2.1 撓曲破壞控制時RC牆塑鉸設置準則...33 表2.2 剪力破壞控制時RC牆塑鉸設置準則...33 表3.1 67組RC牆試體資料及分析結果...95 表3.1 67組RC牆試體資料及分析結果(續)...96 表3.2 67組RC牆試體之統計資料...97 表3.3 H1實驗之結果...97 表3.4 H2實驗之結果...98 表3.5 H3實驗之結果...98 表3.6 H4實驗之結果...99 表3.7 H5實驗之結果...99 表3.8 H6實驗之結果...100 表3.9 H7實驗之結果...100 表3.10 H8實驗之結果...101 表3.11 H9實驗之結果...101 表3.12 H10實驗之結果...102 表3.13 H11實驗之結果...102 表3.14 H12實驗之結果...103 表3.15 H13實驗之結果...103 表3.16 H14實驗之結果...104 表3.17 H17實驗之結果...104 表3.18 H21實驗之結果...105 表3.19 H25實驗之結果...105 表3.20 SW4實驗之結果...106 表3.21 SW5實驗之結果...107 表3.22 SW6實驗之結果...108 表3.23 SW7實驗之結果...109 表3.24 SW8實驗之結果...110 表3.25 SW9實驗之結果...111 表3.26 L1實驗之結果...112 表3.27 L2實驗之結果...112 表3.28 L3實驗之結果...112 表3.29 L4實驗之結果...113 表3.30 L5實驗之結果...113 表3.31 L6實驗之結果...113 表3.32 L7實驗之結果...114 表3.33 L8實驗之結果...114 表3.34 LE1實驗之結果...115 表3.35 LE2實驗之結果...116 表3.37 LE4實驗之結果...116 表3.38 LE5實驗之結果...117 表3.39 LE6實驗之結果...118 表3.40 LE7實驗之結果...118 表3.41 LE8實驗之結果...119 表3.42 LE9實驗之結果...119 表3.43 LE10實驗之結果...120 表3.44 LE11實驗之結果...120 表3.45 LE12實驗之結果...121 表3.46 LE13實驗之結果...121 表3.47 RCW01實驗之結果...122 表3.48 RCW02實驗之結果...122 表3.49 RCW04實驗之結果...123 表3.50 RCW05實驗之結果...123 表3.51 RCW06實驗之結果...124 表3.52 RCW07實驗之結果...124 表3.53 RCW08實驗之結果...125 表3.54 RCW09實驗之結果...125 表3.55 RCW12實驗之結果...126 表3.56 RCW13實驗之結果...126 表3.57 RCW14實驗之結果...127 表3.58 RCW15實驗之結果...127 表3.59 HWFL1實驗之結果...127 表3.60 HWFL2實驗之結果...128 表3.61 HWFH1實驗之結果...128 表3.62 HWFH2實驗之結果...128 表3.63 MWF1實驗之結果...128 表3.64 MWF2實驗之結果...129 表3.65 LWF1實驗之結果...129 表3.66 LWF2實驗之結果...129 表3.67 PWL實驗之結果...129 表3.68 PWH實驗之結果...130 表4.1 構架中柱斷面尺寸及鋼筋配置...195 表4.2 構架中梁斷面尺寸及鋼筋配置...195 表4.3 構架中牆斷面尺寸及鋼筋配置...195 表4.4 RC含牆構架於1.0DL+0.5LL+1.0E彈性分析後之RC牆相關參數...195 表4.5 開氣窗RC含牆構架於1.0DL+0.5LL+1.0E彈性分析後之RC牆相關參數...196 表4.6 開氣窗RC含牆構架於1.0DL+0.5LL+1.0E彈性分析後氣窗旁RC牆(受拉側,B構架)相關參數...196 表4.7 開氣窗RC含牆構架於1.0DL+0.5LL+1.0E彈性分析後氣窗旁RC牆(受壓側,C構架)相關參數...197 表4.8 RC含牆構架其等值柱彎矩剛性塑鉸特徵(SAP2000或ETABS中之設定的參數)...198 表4.9 RC含牆構架其等值柱剪力剛性塑鉸特徵(SAP2000或ETABS中之設定的參數)...199 表4.10 開氣窗RC含牆構架其等值柱彎矩剛性塑鉸特徵(SAP2000或ETABS中之設定的參數)...200 表4.11 開氣窗RC含牆構架其等值柱剪力剛性塑鉸特徵(SAP2000或ETABS中之設定的參數)...201 表4.12 開氣窗RC含牆構架其氣窗旁RC牆(受拉側,B構架)剪力剛性塑鉸特徵(SAP2000或ETABS中之設定的參數)...202 表4.13 開氣窗RC含牆構架其氣窗旁RC牆(受壓側,C構架)剪力剛性塑鉸特徵(SAP2000或ETABS中之設定的參數)...203 表4.14 ETABS下之側推分析結果...204 表4.15 SAP2000下之側推分析結果...205 | |
| dc.language.iso | zh-TW | |
| dc.subject | 耐震能力評估 | zh_TW |
| dc.subject | 等值柱 | zh_TW |
| dc.subject | 非線性靜力分析 | zh_TW |
| dc.subject | 高寬比 | zh_TW |
| dc.subject | 側向載重-側向位移反應 | zh_TW |
| dc.subject | 鋼筋混凝土牆 | zh_TW |
| dc.subject | equivalent column | en |
| dc.subject | reinforced concrete wall | en |
| dc.subject | lateral load-lateral displacement | en |
| dc.subject | nonlinear static analysis | en |
| dc.subject | seismic capacity evaluation | en |
| dc.subject | height-depth ratio | en |
| dc.title | 鋼筋混凝土含牆結構物非線性靜力分析之研究 | zh_TW |
| dc.title | A NONLINEAR STATIC ANALYSIS STUDY OF AN RC STRUCTURE WITH WALLS | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 張國鎮,黃震興,黃世建,宋裕祺,呂良正 | |
| dc.subject.keyword | 鋼筋混凝土牆,側向載重-側向位移反應,非線性靜力分析,耐震能力評估,高寬比,等值柱, | zh_TW |
| dc.subject.keyword | reinforced concrete wall,lateral load-lateral displacement,nonlinear static analysis,seismic capacity evaluation,height-depth ratio,equivalent column, | en |
| dc.relation.page | 216 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-01-22 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 17.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
