Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51556
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor田維誠(Wei-Cheng Tian)
dc.contributor.authorWei-Hang Leeen
dc.contributor.author李瑋航zh_TW
dc.date.accessioned2021-06-15T13:38:44Z-
dc.date.available2016-02-16
dc.date.copyright2016-02-16
dc.date.issued2016
dc.date.submitted2016-01-22
dc.identifier.citation[1] 放射免疫分析科, 成功大學附設醫院, http://nm.med.ncku.edu.tw
[2] R. F. Schall and H. J. Tenoso, “Alternatives to radioimmunoassay: labels and methods.,” Clinical Chemistry, vol. 27, no. 7, pp. 1157–1164, 1981.
[3] S. Rodriguez-Mozaz, M. J. L. de Alda, and D. Barceló, “Biosensors as useful tools for environmental analysis and monitoring,” Anal Bioanal Chem, vol. 386, no. 4, pp. 1025–1041, 2006.
[4] P. D. Patel, “Overview of affinity biosensors in food analysis,” J AOAC Int, vol. 89, no. 3, pp. 805–818, 2006.
[5] B. Pejcic, R. De Marco, and G. Parkinson, “The role of biosensors in the detection of emerging infectious diseases,” Analyst, vol. 131, no. 10, pp. 1079–1090, 2006.
[6] M.-C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, “Trends and challenges of refractometric nanoplasmonic biosensors: A review,” Analytica Chimica Acta, vol. 806, pp. 55–73, 2014.
[7] S. H. Baek, A. W. Wark, and H. J. Lee, “Dual Nanoparticle Amplified Surface Plasmon Resonance Detection of Thrombin at Subattomolar Concentrations,” Anal. Chem., vol. 86, no. 19, pp. 9824–9829, 2014.
[8] D. Urbonas, M. Gabalis, and R. Petruskevicius, “Numerical simulation of microring resonator biosensor with FDTD algorithm based on GPU and CPU architectures,” in 2013 15th International Conference on Transparent Optical Networks (ICTON), pp. 1–4, 2013.
[9] Hoos and C. Cordon-Cardo, “Tissue Microarray Profiling of Cancer Specimens d Cell Lines: Opportunities and Limitations,” Lab Invest, vol. 81, no. 10, pp. 1331–1338, 2001.
[10] J. C. Mills, K. A. Roth, R. L. Cagan, and J. I. Gordon, “DNA microarrays and beyond: completing the journey from tissue to cell,” Nat Cell Biol, vol. 3, no. 8, pp. E175–E178, 2001.
[11] A. Sassolas, B. D. Leca-Bouvier, and L. J. Blum, “DNA Biosensors and Microarrays,” Chem. Rev., vol. 108, no. 1, pp. 109–139, 2008.
[12] K. I. Chen, B.-R. Li, and Y. T. Chen, “Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation,” Nano Today, vol. 6, no. 2, pp. 131–154, 2011.
[13] M. L. Kovarik, D. M. Ornoff, A. T. Melvin, N. C. Dobes, Y. Wang, A. J. Dickinson, P. C. Gach, P. K. Shah, and N. L. Allbritton, “Micro Total Analysis Systems: Fundamental Advances and Applications in the Laboratory, Clinic, and Field,” Anal Chem, vol. 85, no. 2, pp. 451–472, 2013.
[14] A. Manz, N. Graber, and H. M. Widmer, “Miniaturized total chemical analysis systems: A novel concept for chemical sensing,” Sensors and Actuators B: Chemical, vol. 1, no. 1–6, pp. 244–248, 1990.
[15] A. C. R. Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flynn, Y. Li, M. J. Cima, and R. Langer, “A BioMEMS review: MEMS technology for physiologically integrated devices,” IEEE Proc, pp. 6–21, 2004.
[16] S. J. Trietsch, T. Hankemeier, and H. J. van der Linden, “Lab-on-a-chip technologies for massive parallel data generation in the life sciences: A review,” Chemometrics and Intelligent Laboratory Systems, no. 1, pp. 64–75, 2011.
[17] K. N. Han, C. A. Li, and G. H. Seong, “Microfluidic Chips for Immunoassays,” Annual Review of Analytical Chemistry, vol. 6, no. 1, pp. 119–141, 2013.
[18] D. Dey and T. Goswami, “Optical Biosensors: A Revolution Towards Quantum Nanoscale Electronics Device Fabrication,” BioMed Research International, vol. 2011, p. e348218, 2011.
[19] D. Grieshaber, R. MacKenzie, J. Vörös, and E. Reimhult, “Electrochemical Biosensors - Sensor Principles and Architectures,” Sensors (Basel), vol. 8, no. 3, pp. 1400–1458, 2008.
[20] G. Marrazza, “Piezoelectric Biosensors for Organophosphate and Carbamate Pesticides: A Review,” Biosensors (Basel), vol. 4, no. 3, pp. 301–317, 2014.
[21] R. D. Vaughan, C. K. O’Sullivan, and G. G. Guilbault, “Development of a quartz crystal microbalance (QCM) immunosensor for the detection of Listeria monocytogenes,” Enzyme and Microbial Technology, vol. 29, no. 10, pp. 635–638, 2001.
[22] W. Tan, Y. Huang, T. Nan, C. Xue, Z. Li, Q. Zhang, and B. Wang, “Development of protein A functionalized microcantilever immunosensors for the analyses of small molecules at parts per trillion levels,” Anal. Chem., vol. 82, no. 2, pp. 615–620, 2010.
[23] J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B: Chemical, vol. 54, no. 1–2, pp. 3–15, 1999.
[24] D. R. Shankaran, K. V. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sensors and Actuators B: Chemical, vol. 121, no. 1, pp. 158–177, 2007.
[25] R. W. Wood, “On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum,” Proc. Phys. Soc. London, vol. 18, no. 1, p. 269, 1902.
[26] U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves),” Journal of the Optical Society of America (1917-1983), vol. 31, p. 213, 1941.
[27] A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Applied Optics, vol. 4, p. 1275, 1965.
[28] R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Phys. Rev., vol. 106, no. 5, pp. 874–881, 1957.
[29] E. Kretschmann and H. Raether, “Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light,” Zeitschrift für Naturforschung A, vol. 23, no. 12, pp. 2135–2136,1968.
[30] A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Physik, vol. 216, no. 4, pp. 398–410, 1968.
[31] K. L. Lee and P. K. Wei, “Enhancing surface plasmon detection using ultrasmall nanoslits and a multispectral integration method,” Small, vol. 6, no. 17, pp. 1900–1907, 2010.
[32] Wong, C. L. & Olivo, M. Surface Plasmon Resonance Imaging Sensors: A Review. Plasmonics 9, pp. 809–824,2014.
[33] B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sensors and Actuators, vol. 4, pp. 299–304, 1983.
[34] Homola, J. Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377, 528–539 (2003).
[35] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, vol. 391, no. 6668, pp. 667–669, 1998.
[36] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, no. 6950, pp. 824–830, 2003.
[37] A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films,” Langmuir, vol. 20, no. 12, pp. 4813–4815, 2004.
[38] P. S. Chung, Y.-J. Fan, H. J. Sheen, and W. C. Tian, “Real-time dual-loop electric current measurement for label-free nanofluidic preconcentration chip,” Lab Chip, vol. 15, no. 1, pp. 319–330, 2015.
[39] Y. C. Wang, A. L. Stevens, and J. Han, “Million-fold Preconcentration of Proteins and Peptides by Nanofluidic Filter,” Anal. Chem., vol. 77, no. 14, pp. 4293–4299, 2005.
[40] C. X. Zhang and W. Thormann, “Head-Column Field-Amplified Sample Stacking in Binary System Capillary Electrophoresis:  A Robust Approach Providing over 1000-Fold Sensitivity Enhancement,” Anal. Chem., vol. 68, no. 15, pp. 2523–2532, 1996.
[41] P. Smejkal, D. Bottenus, M. C. Breadmore, R. M. Guijt, C. F. Ivory, F. Foret, and M. Macka, “Microfluidic isotachophoresis: A review,” ELECTROPHORESIS, vol. 34, no. 11, pp. 1493–1509, 2013.
[42] J. Miura, S. Arima, and M. Satake, “Column chromatographic pre-concentration of iron(III) in alloys and biological samples with 1-nitroso-2-naphthol-3,6-disulphonate and benzyldimethyltetradecylammonium-perchlorate adsorbent supported on naphthalene using atomic absorption spectrometry,” Analyst, vol. 115, no. 9, pp. 1191–1195, 1990.
[43] R. S. Foote, J. Khandurina, S. C. Jacobson, and J. M. Ramsey, “Preconcentration of Proteins on Microfluidic Devices Using Porous Silica Membranes,” Anal. Chem., vol. 77, no. 1, pp. 57–63, 2005.
[44] J. P. Quirino and S. Terabe, “Exceeding 5000-Fold Concentration of Dilute Analytes in Micellar Electrokinetic Chromatography,” Science, vol. 282, no. 5388, pp. 465–468, 1998.
[45] T. Hahn, C. K. O’Sullivan, and K. S. Drese, “Microsystem for Field-Amplified Electrokinetic Trapping Preconcentration of DNA at Poly(ethylene terephthalate) Membranes,” Anal. Chem., vol. 81, no. 8, pp. 2904–2911, 2009.
[46] Y. C. Wang and J. Han, “Pre-binding dynamic range and sensitivity enhancement for immuno-sensors using nanofluidic preconcentrator,” Lab Chip, vol. 8, no. 3, pp. 392–394, 2008.
[47] Q. Pu, J. Yun, H. Temkin, and S. Liu, “Ion-Enrichment and Ion-Depletion Effect of Nanochannel Structures,” Nano Lett., vol. 4, no. 6, pp. 1099–1103, 2004.
[48] J. H. Lee, Y.-A. Song, and J. Han, “Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane,” Lab Chip, vol. 8, no. 4, pp. 596–601, 2008.
[49] P. S. Dittrich, K. Tachikawa, and A. Manz, “Micro total analysis systems. Latest advancements and trends,” Anal. Chem., vol. 78, no. 12, pp. 3887–3908, 2006.
[50] N. A. Mishchuk and P. V. Takhistov, “Electroosmosis of the second kind,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 95, no. 2–3, pp. 119–131, 1995.
[51] E. Gongadze, U. Van Rienen, and A. Iglič, “Generalized stern models of the electric double layer considering the spatial variation of permittvity and finite size of ions in saturation regime,” Cell. Mol. Biol. Lett., vol. 16, no. 4, pp. 576–594, 2011.
[52] A. Plecis, R. B. Schoch, and P. Renaud, “Ionic Transport Phenomena in Nanofluidics:  Experimental and Theoretical Study of the Exclusion-Enrichment Effect on a Chip,” Nano Lett., vol. 5, no. 6, pp. 1147–1155, 2005.
[53] F. C. Leinweber and U. Tallarek, “Nonequilibrium electrokinetic effects in beds of ion-permselective particles,” Langmuir, vol. 20, no. 26, pp. 11637–11648, 2004.
[54] Dukhin, S.S., Electrokinetic phenomena of the second kind and their applications. Advances in Colloid and Interface Science, pp. 173-196, 1991.
[55] F. C. Chien, C. Y. Lin, J. N. Yih, K. L. Lee, C. W. Chang, P.-K. Wei, C.-C. Sun, and S.-J. Chen, “Coupled waveguide–surface plasmon resonance biosensor with subwavelength grating,” Biosensors and Bioelectronics, vol. 22, no. 11, pp. 2737–2742, 2007.
[56] J. Homola, Surface Plasmon Resonance Based Sensors. Springer Science & Business Media, 2006..
[57] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev., vol. 105, no. 4, pp. 1103–1169, 2005.
[58] Stites, D.P., et al., Medical Immunology. 10th Revised edition ed. 2001: Appleton & Lange.
[59] V. M. Mirsky, M. Riepl, and O. S. Wolfbeis, “Capacitive monitoring of protein immobilization and antigen-antibody reactions on monomolecular alkylthiol films on gold electrodes,” Biosens Bioelectron, vol. 12, no. 9–10, pp. 977–989, 1997.
[60] K. L. Lee, S. H. Wu, C. W. Lee, and P. K. Wei, “Sensitive biosensors using Fano resonance in single gold nanoslit with periodic grooves,” Optics Express, vol. 19, no. 24, p. 24530, Nov. 2011.
[61] MicroChem, www.microchem.com/pdf/PMMA_Data_Sheet.pdf
[62] ESPACER, Showa Denko, http://www.showa-denko.com/wp-content/uploads/2014/05/Espacer_20090511.pdf
[63] SU-8 Data Sheet, MicroChem, http://www.microchem.com/pdf/SU-82000DataSheet2025thru2075Ver4.pdf
[64] S. H. Ko, Y.-A. Song, S. J. Kim, M. Kim, J. Han, and K. H. Kang, “Nanofluidic preconcentration device in a straight microchannel using ion concentration polarization,” Lab on a Chip, vol. 12, no. 21, pp. 4472, 2012.
[65] Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon Resonant Enhancement of Photocatalytic Water Splitting Under Visible Illumination,” Nano Lett., vol. 11, no. 3, pp. 1111–1116, 2011.
[66] J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic Photoanodes for Solar Water Splitting with Visible Light,” Nano Lett., vol. 12, no. 9, pp. 5014–5019, 2012.
[67] T. Špringer, M. L. Ermini, B. Špačková, J. Jabloňků, and J. Homola, “Enhancing Sensitivity of Surface Plasmon Resonance Biosensors by Functionalized Gold Nanoparticles: Size Matters,” Anal. Chem., vol. 86, no. 20, pp. 10350–10356, 2014.
[68] O. R. Bolduc, J. N. Pelletier, and J.-F. Masson, “SPR Biosensing in Crude Serum Using Ultralow Fouling Binary Patterned Peptide SAM,” Anal. Chem., vol. 82, no. 9, pp. 3699–3706, 2010.
[69] S. J. Kim and J. Han, “Self-Sealed Vertical Polymeric Nanoporous-Junctions for High-Throughput Nanofluidic Applications,” Anal Chem, vol. 80, no. 9, pp. 3507–3511, 2008.
[70] Y.-H. Jin, T. Kim, and Y.-H. Cho, “A disposable nano grating SPR sensor chip for detection of biomolecule concentration,” in 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2008. NEMS 2008,
 pp. 978–981, 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51556-
dc.description.abstract在現今免疫分析方法中,要做到免標定的超低濃度檢測是目前多數生物感測平台所面臨的一大困難。雖然預濃縮方法可以有效地降低檢測濃度,但現今搭配預濃縮的免疫分析方法皆需要以螢光標記。螢光標記方法不僅使檢測流程較為繁複,且分析上較為困難。我們團隊於 2013 年成功地提出了以迴路電流表現觀察微奈米濃縮現象的方法,藉由此方法我們可以從電流圖表現分辨濃縮是否發生以及發生的位置。因為這個電流檢測技術讓我們離免標定免疫分析和預濃縮的結合更加接近。在本文中,我們進一步成功地結合了微奈米預濃縮機制與奈米金屬週期性表面電漿共振的光學免疫分析到一個微小化平台上,進而實現了全程免標定的可濃縮免疫分析平台。
免標定的奈米金屬週期性表面電漿共振檢測有許多優點,例如:整體元件體積小、不需特定入射光角度以及更高的表面靈敏度。然而,現今免標定的奈米金屬週期性表面電漿共振檢測的檢測極限,僅有到 ng/ml 的大小而已。因此,我們將免標定的奈米金屬週期性表面電漿共振檢測技術結合微奈米預濃縮機制,以讓檢測極限可以到達更低的水平(pg/ml)。
本研究使用導電性光阻在玻璃基板上以電子束微影方式製作出奈米金屬週期性結構 ( 週期 ~ 550 nm ),藉由傳統黃光製程以及軟微影製程做出以聚二甲基矽氧烷 ( Polydimethylsiloxane, PDMS ) 為基材的微流道,以奈米多孔性材料Nafion 實現奈米流道並對準於玻璃基板上之表面電漿檢測晶片旁,以完成微奈米預濃縮的結構。最後藉由氧電漿結合,將玻璃基板和 PDMS 基板結合( 共價鍵 ),以完成全程免標定的可濃縮免疫分析平台。
文中將討論,在整合兩項技術時所遇到的困難,以及對應不同檢測需求
時,可以改變的晶片設計參數。進而提出整個免疫分析平台在製作時整合的條件以及相對應的解決辦法。文末也分析了在使用此免疫分析平台時,所遇到的異常現象及可能原因。
在可濃縮的免疫分析平台的驗證上,我們使用牛血清 (Bovine Serum
Albumin, BSA) 蛋白來做免疫分析,藉由通入 20 ng/ml 的牛血清抗體於濃縮流道中(10 min),觀察有濃縮與沒有濃縮的共振光譜紅移現象。我們得到在沒有濃縮的晶片上,共振波長的紅移量僅有 0.42 nm,而有濃縮晶片共振波長的紅移量為5.33 nm。考慮量測好的牛血清抗體之參考光譜特性,我們發現濃縮區塊的濃度約為 200 µg/ml,進而推得濃縮倍率約為 10000 倍,且推出理論最低可以檢測濃度為 2 pg/ml。
總的來說,本論文表述了首次成功結合兩個技術於一個平台上並且成功運作的成果。在此之前,增強表面電漿共振感測器訊號的方法皆需要耗時的前處理,如金奈米粒子修飾。除此之外,本實驗也是首次利用表面電漿共振的訊號來驗證預濃縮技術的濃縮倍率,並且驗證奈米預濃縮的濃縮倍率可達一萬倍。在此可預濃縮的光學免疫分析平台上,我們搭配一自組的配電系統與光學系統即可以完成全程免標定的超低濃度目標生化物質檢測。
zh_TW
dc.description.abstractIn the field of bio microelectromechanical systems (bio MEMS), detection of the low-abundance analytes without labelling is challenging because of difficulties of integration of preconcentration and label free sensing. Previously, an electrokinetic trapping (EKT)-based nanofluidic preconcentrator had been reported for providing a million-fold concentration factors that enable the validation of concentration process and the detection of trace and fluorescence-labelled analytes. However, the use of fluorescence-labelled analytes has suffered several disadvantages, e.g., additional sample preparation in an experimental workflow, high cost of labeling reagents, and difficulty in analyzing trace analytes. To monitor the concentration process without labelling, our group has presented a real-time dual loop electric current measurement system for label-free EKT-based nanofluidic preconcentrator. In this work, we further demonstrated a label-free biosensing platform by integrating a label-free nanofluidic preconcentrator with label-free surface plasma resonance(SPR) sensors.
Bio molecular sample preconcentration was realized by a preconcentrator consisted of two microchannels, a concentration channel and a buffer channel, cast in Polydimethylsiloxane (PDMS) and a porous membrane (Nafion). The nanograting SPR sensor was fabricated by e-beam lithography, e-gun evaporation followed by the lift-off process. After glass-based SPR sensors and PDMS microchannels were fabricated, we patterned Nafion membrane at a specific position adjacent to the SPR sensor by using a microflow patterning method. Finally, PDMS-based microchannels were bonded to a glass patterned with Nafion and two square SPR sensors via bonding technique with oxygen plasma treatment.
Recently, a 20 ng/ml Bovine serum albumin (BSA) in PBS was pumped into the platform, and was detected by SPR sensor with a red-shifted value of 0.42 nm. After ten minutes of preconcentration, 20 ng/ml BSA in PBS was detected with a red-shifted value of 5.33 nm. Comparing the references of the red-shifted values at different concentrations of BSA established in advance, the red-shifted value (5 nm) of 20 ng/ml BSA in PBS after preconcentration is the same as the red-shifted value of 200 μg/ml BSA in PBS. Hence, the preconcentration factor in this label-free platform was then determined to be approximately 10000 fold.
In summary, a label-free immunoassay platform combining a preconcentrator which can improve the sensitivity limit by about 10000 fold with highly sensitive SPR sensors is realized. With a simple electrical and optical, low abundance analytes can be preconcentrated and sensed by this label-free platform.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:38:44Z (GMT). No. of bitstreams: 1
ntu-105-R02945033-1.pdf: 10936696 bytes, checksum: 973feb9fe8adfb32df314d64ea410ea7 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員審定書 …………………………………………….. I
致謝 …………………………………………………………. II
中文摘要 …………………………………………………… III
ABSTRACT …………………………………………………. V
目錄 ……………………………………………………..…VIII
圖目錄 …………………………………………………….. XII
表格目錄…………………………………………………… XV
第一章 導論
1.1 研究目的…………………………………………………………… 1
1.2 生物晶片簡介……………………………………………………… 2
1.2.1 微全程分析系統技術(Micro Total Analysis System)……….3
1.2.2 免疫分析原理……………………………………………….. 4
1.2.3 現有免疫分析方法之優劣探討…………………………….. 5
1.3 表面電漿共振之發展背景………………………………………… 6
1.3.1 表面電漿共振用於免疫分析方法………………………….. 7
1.4 預濃縮技術之發展背景…………………………………………… 9
1.4.1 電驅動微奈米流體預濃縮晶片之發展…………………….. 9
1.4.2 電驅動微奈米流體預濃縮晶片用於免疫分析…………… 12
第二章 微奈米預濃縮晶片之原理與系統架設
2.1 電驅動微奈米流體預濃縮原理………………………………….. 13
2.1.1 電驅動微奈米流體預濃縮方法…………………………… 13
2.1.2 電雙層效應………………………………………………… 14
2.1.3 產生離子空乏區與預濃縮現象…………………………… 17
2.1.4 預濃縮機制………………………………………………… 21
2.2 電驅動微奈米流體預濃縮之系統架設………………………….. 23
2.2.1 倒立式螢光顯微鏡量測系統……………………………… 24
2.2.2 電壓控制與濃縮檢測系統………………………………… 24
第三章 表面電漿共振用於免疫分析晶片之原理與系統架設
3.1 表面電漿共振簡介……………………………………………….. 27
3.1.1 表面電漿共振原理………………………………………… 27
3.1.2 表面電漿共振激發………………………………………… 31
3.1.3 週期性奈米金屬表面電漿子激發與共振模態…………… 32
3.2 週期性奈米金屬表面電漿共振用於免疫分析之原理………….. 34
3.2.1 週期性奈米金屬表面折射率與蛋白質之關係…………… 34
3.2.2 免疫分析中金表面處理方法……………………………… 37
3.3 週期性奈米金屬表面電漿共振用於免疫分析之系統架設…….. 40
第四章 整合微奈米預濃縮晶片與週期性奈米金屬結構表面
電漿感測器之製程結果
4.1 週期性奈米金屬結構之設計…………………………………….. 41
4.1.1 週期性奈米金屬結構之設計方法………………………… 41
4.1.2 於不導電基材上使用不導電光阻之電子束微影方法…… 43
4.2 微奈米預濃縮晶片之設計……………………………………….. 44
4.2.1 微奈米預濃縮晶片之設計方法…………………………… 44
4.3 可預濃縮的免標定免疫分析晶片製程結果…………………….. 45
4.3.1 週期性奈米金屬結構製程………………………………… 45
4.3.2 Nafion 奈米流道製程……………………………………… 50
4.3.3 PDMS 微米流道製程……………………………………… 52
4.3.4 氧電漿接合製程…………………………………………… 56
第五章 可預濃縮的免標定免疫分析晶片之量測結果與探討
5.1 預濃縮機制的量測結果………………………………………….. 58
5.1.1 螢光粒子用於預濃縮機制之測試方法…………………… 58
5.1.2 螢光粒子於微流道中之濃縮現象………………………… 59
5.2 表面電漿共振晶片用於免標定免疫分析之量測結果………….. 61
5.2.1 不同流道寬度用於免疫分析平台之訊號優劣…………… 61
5.2.2 甘油水用於表面電漿共振晶片測試靈敏度之結果……… 62
5.3 可預濃縮的免標定免疫分析平台之量測結果與探討………….. 64
5.3.1 牛血清蛋白用於免疫分析平台之實驗流程……………… 65
5.3.2 牛血清蛋白用於免疫分析平台之量測結果……………… 66
5.3.3 免疫分析平台於濃縮時產生氣泡之異常現象討論……… 70
第六章 可預濃縮的免標定免疫分析平台之應用
6.1 總結……………………………………………………………….. 71
6.2 未來展望………………………………………………………….. 72
參考文獻………………………………………………………………………………74
dc.language.isozh-TW
dc.subject實驗室晶片zh_TW
dc.subject電驅動奈米預濃縮zh_TW
dc.subject奈米金屬週期性表面電漿共振zh_TW
dc.subject生物感測器zh_TW
dc.subject免標定免疫分析zh_TW
dc.subjectPeriodic Metallic Nanograting Surface Plasma Resonance (SPR)en
dc.subjectLab on a Chipen
dc.subjectLabel-free Immunoassayen
dc.subjectBiosensoren
dc.subjectElectrokinetic-based Nanofluidic Preconcentrationen
dc.title開發奈米預濃縮與週期性奈米金屬閘表面電漿共振感測器結合於免標定光學免疫分析平台zh_TW
dc.titleDevelopment of Label-Free Optical Immunoassay Platform Integrating a Nanofluidic Preconcentrator with a Periodic
Metallic Nanograting Surface Plasmon Resonance Sensor
en
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee魏培坤(Pei-Kuen Wei),呂家榮(Chia-Jung Lu)
dc.subject.keyword電驅動奈米預濃縮,奈米金屬週期性表面電漿共振,生物感測器,免標定免疫分析,實驗室晶片,zh_TW
dc.subject.keywordElectrokinetic-based Nanofluidic Preconcentration,Periodic Metallic Nanograting Surface Plasma Resonance (SPR),Biosensor,Label-free Immunoassay,Lab on a Chip,en
dc.relation.page81
dc.rights.note有償授權
dc.date.accepted2016-01-22
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
10.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved