Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51553
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭憶中(I-Chung Cheng)
dc.contributor.authorTung-Hua Wuen
dc.contributor.author吳東樺zh_TW
dc.date.accessioned2021-06-15T13:38:36Z-
dc.date.available2021-02-20
dc.date.copyright2021-02-20
dc.date.issued2021
dc.date.submitted2021-02-13
dc.identifier.citation1. K.T. Lee, J.C.L., N.S. Ergang, S.M. Oh, and A. Stein, Synthesis and Rate Performance of Monolithic Macroporous Carbon Electrodes for Lithium-Ion Secondary Batteries. Adv. Funct. Mater, 2005. 15: p. 547-556.
2. L. Liu, B.G.C., S.O. Tung, T. Hu, Y. Liu, T. Li, T. Zhao, and N.A. Kotov, Low-Current Field-Assisted Assembly of Copper Nanoparticles for Current Collectors. Faraday Discuss, 2015. 18: p. 383-401.
3. Lu-Yang Chen, J.-S.Y., Takeshi Fujita, and Ming-Wei Chen, Nanoporous Copper with Tunable Nanoporosity for SERS Applications. Adv. Funct. Mater, 2009. 19: p. 1221-1226.
4. Majid Mirzaee, C.D., Synthesis of nanoporous copper foam-applied current collector electrode for supercapacitor. Iranian Chemical Society, 2018.
5. Sun, S., et al., Solderless bonding with nanoporous copper as interlayer for high-temperature applications. 2018. 80: p. 198-204.
6. Forty, A.J., Corrosion micromorphology of noble metal alloys and depletion gilding. Nature, 1979. 282.
7. Jonah Erlebacher, R.S., Hard Materials with Tunable Porosity. MRS BULLETIN, 2009. 34: p. 561-569.
8. Zhen Qi, C.Z., Xiaoguang Wang, Jikui Lin, Wei Shao, Zhonghua Zhang, and and X. Bian, Formation and Characterization of Monolithic Nanoporous Copper by Chemical Dealloying of Al-Cu Alloys. American Chemical Society, 2008.
9. Song, T., et al., Creation of bimodal porous copper materials by an annealing-electrochemical dealloying approach. Electrochimica Acta, 2015. 164: p. 288-296.
10. Hori, Y., et al., Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. 2002. 106(1): p. 15-17.
11. M.Gattrell, N.G.C., A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. Journal of Electroanalytical Chemistry, 2006. 594(1): p. 1-19.
12. Smith, A. and D.J.A.R.M.R. Trimm, The preparation of skeletal catalysts. 2005. 35: p. 127-142.
13. Sujat Sena, D.L.a.G.T.R.P., Electrochemical reduction of CO2 at Copper Nanofoams. ACS Catalysis, 2014: p. 3091-3095.
14. Yoshihara, J. and C.T.J.J.o.C. Campbell, Methanol synthesis and reverse water–gas shift kinetics over Cu (110) model catalysts: structural sensitivity. 1996. 161(2): p. 776-782.
15. Ding, Y. and J.J.J.o.t.A.C.S. Erlebacher, Nanoporous metals with controlled multimodal pore size distribution. Journal of the American Chemical Society, 2003. 125(26): p. 7772-7773.
16. Li, X., et al., Hierarchical nested-network porous copper fabricated by one-step dealloying for glucose sensing. Journal of Alloys Compounds, 2016. 681: p. 109-114.
17. Lechtman, H., Pre-Columbian Surface Metallurgy. SCIENTIFIC AMERICAN, 1984.
18. Bray, W., Gold-working in ancient America. Gold Bulletin, 1978. 11(4): p. 136-143.
19. Tammann, G., Zum Gedächtnis der Entdeckung des Isomorphismus vor 100 Jahren. Die chemischen und galvanischen Eigenschaften von Mischkristallreihen und ihre Atomverteilung. Zeitschrift für anorganische und allgemeine Chemie, 1919. 107(1): p. 1-239.
20. Masing, G., Zur Theorie der Resistenzgrenzen in Mischkristallen. Zeitschrift für anorganische und allgemeine Chemie, 1921. 118(1): p. 293-308.
21. Jonah Erlebacher, M.J.A., Alain Karma, Nikolay Dimitrov Karl Sieradzki Evolution of nanoporosity in dealloying. Nature, 2001. 410: p. 450-453.
22. Erlebacher, J., An Atomistic Description of Dealloying Porosity Evolution, the Critical Potential, and Rate-Limiting Behavior. Journal of The Electrochemical Society, 2004. 151: p. 614-626.
23. Smith, A. and D. Trimm, The preparation of skeletal catalysts. Annu. Rev. Mater. Res., 2005. 35: p. 127-142.
24. Sieradzki, K., et al., Computer simulations of corrosion: selective dissolution of binary alloys. Philosophical Magazine A, 1989. 59(4): p. 713-746.
25. Artymowicz, D., J. Erlebacher, and R. Newman, Relationship between the parting limit for de-alloying and a particular geometric high-density site percolation threshold. Philosophical Magazine, 2009. 89(21): p. 1663-1693.
26. Chen, L., et al., A Three‐Dimensional Gold‐Decorated Nanoporous Copper Core–Shell Composite for Electrocatalysis and Nonenzymatic Biosensing. Advanced Functional Materials, 2010. 20(14): p. 2279-2285.
27. Wang, S., Corrosion resistance and electrocatalytic properties of metallic glasses. Metallic Glasses-Formation and Properties, 2016.
28. Bard, A.J. and L.R. Faulkner, Fundamentals and applications. Electrochemical Methods, 2001. 2(482): p. 580-632.
29. Chi, B., et al., Comparison of three preparation methods of NiCo2O4 electrodes. 2006. 31(9): p. 1210-1214.
30. Reichman, B., et al. Modified VTiZrNiCrMn metal hydride alloys for improved power and rate capability. in Selected Battery Topics: Proceedings of the Symposia on Aqueous Batteries; Battery Applications; Batteries for the 21st Century; Corrosion in Batteries and Fuel Cells; Exploratory Research and Development of Batteries Supercapacitors for Electric and Hybrid Vehicles II. 1999. The Electrochemical Society.
31. Sabhapathy, P., et al., Highly efficient nitrogen and carbon coordinated N–Co–C electrocatalysts on reduced graphene oxide derived from vitamin-B12 for the hydrogen evolution reaction. 2019. 7(12): p. 7179-7185.
32. Sekretaryova, A.N., et al., Evaluation of the electrochemically active surface area of microelectrodes by capacitive and faradaic currents. 2019. 6(17): p. 4411-4417.
33. Kuhl, K.P., et al., Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. Journal of the American Chemical Society, 2014. 136(40): p. 14107-14113.
34. Angamuthu, R., et al., Electrocatalytic CO2 conversion to oxalate by a copper complex. 2010. 327(5963): p. 313-315.
35. Gattrell, M., N. Gupta, and A. Co, A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. Journal of Electroanalytical Chemistry, 2006. 594(1): p. 1-19.
36. Hori, Y., K. Kikuchi, and S. Suzuki, Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chemistry Letters, 1985. 14(11): p. 1695-1698.
37. Hori, Y., A. Murata, and R. Takahashi, Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1989. 85(8): p. 2309-2326.
38. Hori, Y., et al., Electrochemical reduction of CO at a copper electrode. The Journal of Physical Chemistry B, 1997. 101(36): p. 7075-7081.
39. Hori, Y., et al., Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochimica Acta, 1994. 39(11-12): p. 1833-1839.
40. Kuhl, K.P., et al., New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environmental Science, 2012. 5(5): p. 7050-7059.
41. Hori, Y., et al., Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. Journal of Molecular Catalysis A: Chemical, 2003. 199(1-2): p. 39-47.
42. Sujat Sen, D.L.a.G.T.R.P., Electrochemical Reduction of CO2 at Copper Nanofoams. ACS Catalysis, 2014. 4: p. 3091-3095.
43. Association), M.M.L. Electromagnetic Induction Heat. (2017). In ScienceAid. 2017.
44. Gigap Han, J.H.U., Hyeji Park, Kicheol Hong,Won-Sub Yoon, Heeman Choe, Hierarchically structured nanoporous copper for use as lithium-ion battery anode. Scripta Materialia, 2019. 163: p. 9-13.
45. Zhen Qi, C.Z., Xiaoguang Wang, Jikui Lin, Wei Shao, Zhonghua Zhang, and Xiufang Bian, Formation and Characterization of Monolithic Nanoporous Copper by Chemical Dealloying of Al-Cu Alloys. Journal of Physical Chemistry C, 2009. 113: p. 6694-6698.
46. Lian, L., et al., A segmental dealloying for fabricating the gradient nanoporous metal materials. Journal of Porous Materials, 2017. 24(1): p. 211-215.
47. Murray, J.L., The aluminium-copper system. International Metals Reviews, 1985. 30: p. 211-236.
48. Ourdjini, A., J. Liu, and R. Elliott, Eutectic spacing selection in Al–Cu system. Materials science and technology, 1994. 10(4): p. 312-318.
49. Zhang, Q., et al., A benign route to fabricate nanoporous gold through electrochemical dealloying of Al–Au alloys in a neutral solution. Electrochimica Acta, 2009. 54(26): p. 6190-6198.
50. Vargas-Martínez, J., et al., Fabrication of a Porous Metal via Selective Phase Dissolution in Al-Cu Alloys. 2018. 8(6): p. 378.
51. Alonso, C., et al., The surface diffusion of gold atoms on gold electrodes in acid solution and its dependence on the presence of foreign adsorbates. Electrochimica Acta, 1990. 35(9): p. 1331-1336.
52. Zhao, C., et al., On the electrochemical dealloying of Mg–Cu alloys in a NaCl aqueous solution. Corrosion science, 2010. 52(12): p. 3962-3972.
53. Zhang, Z., et al., Influence of anion species on electrochemical dealloying of single-phase Al 2 Au alloy in sodium halide solutions. RSC advances, 2012. 2(10): p. 4481-4489.
54. Liu, W., et al., A facile one-pot dealloying strategy to synthesize monolithic asymmetry-patterned nanoporous copper ribbons with tunable microstructure and nanoporosity. RSC advances, 2016. 6(4): p. 2662-2670.
55. Mei Li, Y.Z., Haoran Geng, Fabrication of nanoporous copper ribbons by dealloying of Al-Cu alloys. Journal of Porous Materials, 2012. 19(5): p. 791-796.
56. Dan, Z., et al., Dealloying behavior of amorphous binary Ti–Cu alloys in hydrofluoric acid solutions at various temperatures. Journal of alloys compounds, 2013. 581: p. 567-572.
57. Gwak, E.-J., et al., Microstructure evolution in nanoporous gold thin films made from sputter-deposited precursors. Scripta Materialia, 2013. 69(10): p. 720-723.
58. Scaglione, F., et al., De-alloying kinetics of an Au-based amorphous alloys. Journal of alloys compounds, 2012. 536: p. S60-S64.
59. Zhang, Z., et al., Formation of ultrafine nanoporous gold related to surface diffusion of gold adatoms during dealloying of Al2Au in an alkaline solution. Scripta Materialia, 2010. 62(3): p. 137-140.
60. Liu, W., et al., A facile one-pot route to fabricate nanoporous copper with controlled hierarchical pore size distributions through chemical dealloying of Al–Cu alloy in an alkaline solution. Microporous mesoporous materials, 2011. 138(1-3): p. 1-7.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51553-
dc.description.abstract近年來地球暖化日漸嚴重,地球的生態開始受到威脅,設法減少二氧化碳排量已成為受各界注意的環境議題,而目前透過電化學將二氧化碳轉化為可再利用的燃料已成為達成該目的最有前景的方法之一。
奈米多孔銅(Nanoporous Copper,在本研究中簡稱為NPC)有著密度低、高表面積、低成本等優點,又擁有良好的導電性、導熱性以及高催化活性,可應用於包括感測、焊接、超級電容、催化、二氧化碳還原等等領域[1-5],是一項具有無限應用前景的新興材料。
本研究主要是在探討銅鋁合金在不同去合金化條件下會對於奈米多孔結構的生成會有何影響,並利用不同條件(電解液、溫度、外加電位)的改變去控制奈米多孔結構的支架大小;在試片經過去合金化後,將其作為電極,測試奈米多孔銅結構的電化學二氧化碳還原的效率以及分析還原後的產物,並分析不同多層結構及支架尺寸的NPC在電化學二氧化碳還原上的優劣勢。首先選擇三種組成比例的銅鋁前驅合金(precursor alloy):Cu18Al82、Cu30Al70以及Cu33Al67並使用真空電弧熔煉法進行融煉。此三種合金均含有不同比例的富鋁相(α相)及介金屬化合物(θ相),也因此造就了不同的晶相分佈。接著使用不同種類的電解液、不同的環境溫度以及施加不同的電位,對前驅合金進行自由腐蝕去合金化,利用元素間還原電位的不同將活性較高的鋁成分選擇性去除,留下活性較低的銅擴散堆積形成奈米孔洞結構 (NPC);再由掃描式電子顯微鏡、能量散射光譜儀以及X射線繞射儀進行分析,確認去合金化處理後所生成的奈米多孔結構及其的成分。
本研究藉由不同的腐蝕條件將Cu-Al合金去合金化,成功合成出不同多層結構與支架尺寸的NPC。Cu-Al合金的去合金化時,具有共晶組織的Cu18Al82,其反應時間相較於其他的前驅合金短;在加溫腐蝕時,隨著腐蝕溫度上升而加速其反應速率,且支架尺寸也會隨著溫度上升而變粗,而此現象在HCl溶液中較為明顯;在定電位腐蝕時,去合金化所需的反應時間除了有明顯縮短,並能夠在去合金化後保留完整的多層次結構。除此之外,NPC的支架尺寸較自由腐蝕小,且支架尺寸可藉由改變施加的電位來控制。在二氧化碳還原反應的部分,將不同條件下所合成的NPC製作電極,並透過循環伏安法(cyclic voltammetry, CV)、高效液相色譜法(HP-LC)及氣相色譜法(GC),分析NPC的二氧化碳還原效果及檢測還原出的產物。目前結果顯示,支架分佈在70nm~80nm之間的NPC所量測的電流密度及電化學反應面積較大;在產物分析方面,目前的結果顯示雖然具有多層結構的NPC,在高電位時具有較高產物的法拉第效率,但在較低電位時卻不是如此。因此推測施加電位的改變及NPC的種類,是影響到二氧化碳還原法拉地效率的關鍵因素。
zh_TW
dc.description.abstractIn recent years, the effects of global warming have threatened the ecology of earth. Reducing carbon dioxide emission is necessary to solve the environmental issue. At present, electrochemical conversion of carbon dioxide into reusable fuels has become one method to achieve this goal.
Nanoporous copper has the advantages of having light weight, large specific surface area, good electrical, thermal, and electrochemical stability. Its applications in carbon dioxide reduction, seawater desalination, lithium battery and super capacitor are increasingly important [1-5]. In addition, this material is an emerging research topic with wide application prospects.
The purpose of this study was to investigate the influence of different dealloying conditions on the formation of nanoporous structures and its ligament size. After dealloying, the specimens were used as electrodes to test the electrochemical carbon dioxide reduction efficiency of nanoporous copper structure, and the reduced products were analyzed.
In this study, three kinds of composite Cu-Al precursor alloys, Cu18Al82, Cu30Al70 and Cu33Al67 were prepared by vacuum arc melting. All three alloys contain different crystalline phase distributions which includes aluminum-rich phase (α phase) and metal-meshed compound (θ phase).The precursor alloys were then dealloyed under different corrosion conditions (electrolyte, temperature, applied potential). Aluminum, the element with high electrochemical activity of the two elements in the precursor alloy, was selectively removed to form nanoporous copper structure (referred as NPC in this study).
The results of dealloying were analyzed by scanning electron microscope, energy scattering spectrometer and X-ray diffraction to confirm the nanoporous structure and composition generated after the dealloying treatment. After confirming the results of dealloying, the NPCs were made into electrodes, and the CO2 reduction effect was analyzed by cyclic voltammetry (CV), high performance liquid chromatography (HP-LC), and gas chromatography (GC)
The results showed that the etching time of Cu18Al82 with eutectic structure was shorter than other precursor alloys. The corrosion rate is accelerated with the increase of corrosion temperature, and the size of the support also gets thicker. This effect is more obvious in HCl solution. In addition, in terms of potentiostatic dealloying, the ligament size of NPC becomes thicker with the increase of applied potential, while the dealloying time was shortened.
For carbon dioxide reduction reaction, NPCs made under different conditions were tested through cyclic Voltammetry (CV), high performance liquid chromatography (HP-LC), and gas chromatography (GC). Current results show that NPC with ligament size of between 70nm and 80nm has the highest current density and ECSA values . The product analysis results show that the NPC with hierarchical structure has higher Faraday efficiency of products at high potential, however, that is not the case at low potential. Therefore, it is speculated that the potential and the relative density of NPC are the key factors affecting the efficiency of CO2 reduction.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:38:36Z (GMT). No. of bitstreams: 1
U0001-0502202115253900.pdf: 11088481 bytes, checksum: a7df02c5934de1fac99fb6c7a09d46d8 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents論文口試委員審定書 I
摘 要 II
Abstract IV
目 錄 VI
圖 目 錄 VIII
表 目 錄 XI
第一章 緒論 1
1.1研究背景 1
1.2 奈米多孔銅的發展 2
1.3研究動機 3
第二章 文獻回顧 4
2.1去合金化法 4
2.1.1去合金化法的歷史 4
2.1.2去合金化的原理機制 6
2.1.3去合金化法製造的奈米多孔銅之應用 8
2.2 電化學分析 9
2.2.1動電位極化法(potentiodynamic) 10
2.2.2循環伏安法(cyclic voltammetry, CV) 11
2.2.3 循環伏安法應用於電雙層電荷吸脫附 12
2.2.4 銅應用於二氧化碳還原反應 13
2.3 合金融煉方式 17
2.3.1 高週波感應熔煉法(High Frequency Induction) 17
2.3.2 真空電弧熔煉法(Vacuum arc remelting,VAR) 18
第三章 實驗流程與實驗方法 20
3.1實驗流程 20
3.1.1奈米多孔銅(NPC)的合成 20
3.1.2電化學二氧化碳還原實驗流程 22
3.2 實驗材料與設備 24
3.2.1 實驗材料及藥品 24
3.2.2 實驗設備 24
3.3實驗方法 34
3.3.1 Cu-Al前驅合金的熔煉與試片製備 34
3.3.2 去合金化處理 37
3.3.3 電化學二氧化碳還原測試 39
第四章 實驗結果與討論 42
4.1前驅合金 42
4.1.1 銅鋁前驅合金選用與分析方法 42
4.1.2 Cu18Al82 43
4.1.3 Cu30Al70 45
4.1.4 Cu33Al67 47
4.1.5 前驅合金的XRD分析 49
4.2 NPC之顯微結構 50
4.2.1 前驅合金經去合金化後之成分分析 55
4.2.2 前驅合金比例對於去合金化的影響 58
4.2.3 腐蝕液對於去合金化的影響 60
4.2.4 腐蝕溫度對於去合金化的影響 64
4.2.5定電位腐蝕對於去合金化的影響 69
4.3 電化學二氧化碳還原 73
4.3.1 二氧化碳之循環伏安測試 73
4.3.2 二氧化碳還原之產物分析 76
第五章 結論與未來展望 78
第六章 研究建議 81
6.1 NPC的合成 81
6.2 NPC電極對於二氧化碳還原效果的影響 84
附錄 84
參考文獻 85
dc.language.isozh-TW
dc.subject銅zh_TW
dc.subject電化學腐蝕zh_TW
dc.subject去合金化zh_TW
dc.subject二氧化碳還原反應zh_TW
dc.subject介金屬化合物zh_TW
dc.subject奈米多孔結構zh_TW
dc.subjectelectrochemical corrosionen
dc.subjectcarbon dioxide reduction reactionen
dc.subjectnanoporous copperen
dc.subjectdealloyingen
dc.subjectmesometallic compoundsen
dc.title銅鋁合金之去合金化製程及奈米多孔結構之電催化應用zh_TW
dc.titleDealloying Process of Copper-Aluminum Alloy and
Electrocatalytic Application
of Nanoporous Structure
en
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee吳恆良(Heng-Liang Wu),李岳聯(Yueh-Lien Lee)
dc.subject.keyword奈米多孔結構,銅,去合金化,電化學腐蝕,介金屬化合物,二氧化碳還原反應,zh_TW
dc.subject.keywordnanoporous copper,dealloying,electrochemical corrosion,mesometallic compounds,carbon dioxide reduction reaction,en
dc.relation.page88
dc.identifier.doi10.6342/NTU202100594
dc.rights.note有償授權
dc.date.accepted2021-02-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
U0001-0502202115253900.pdf
  未授權公開取用
10.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved