請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51534
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 魏宏宇(Hung-Yu Wei) | |
dc.contributor.author | Yu-Chieh Chen | en |
dc.contributor.author | 陳鈺杰 | zh_TW |
dc.date.accessioned | 2021-06-15T13:37:52Z | - |
dc.date.available | 2018-02-16 | |
dc.date.copyright | 2016-02-16 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-01-25 | |
dc.identifier.citation | [1] Takehiro Nakamura, Satoshi Nagata, Anass Benjebbour, Yoshihisa Kishiyama, Tang Hai, Shen Xiaodong, Yang Ning, and Li Nan. Trends in Small Cell Enhancements in LTE Advanced. Communications Magazine, IEEE, 51(2):98–105, 2013.
[2] Further Enhancements to LTE Time Division Duplex (TDD) for Downlink-Uplink (DL-UL) Interference Management and Traffic Adaptation. 3GPP, TR 36.828 (V11.0.0), Jun. 2012. [3] Yoshihisa Kishiyama, Anass Benjebbour, Hiroyuki Ishii, and Takehiro Nakamura. Evolution Concept and Candidate Technologies for Future Steps of LTE-A. In Communication Systems (ICCS), 2012 IEEE International Conference on, pages 473–477. IEEE, 2012. [4] Venkatkumar Venkatasubramanian, Matthias Hesse, Patrick Marsch, and Michał Maternia. On the Performance Gain of Flexible UL/DL TDD with Centralized and Decentralized Resource Allocation in Dense 5G Deployments. In Proc. IEEE PIMRC, pages 1–6, 2014. [5] Alexey Khoryaev, Andrey Chervyakov, Mikhail Shilov, Sergey Panteleev, and Artyom Lomayev. Performance Analysis of Dynamic Adjustment of TDD Uplink-Downlink Configurations in Outdoor Picocell LTE Networks. In Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), 2012 4th International Congress on, pages 914–921. IEEE, 2012. [6] Hyoungju Ji, Younsun Kim, Seunghoon Choi, Joonyoung Cho, and Juho Lee. Dynamic Resource Adaptation in Beyond LTE-A TDD Heterogeneous Networks. InCommunications Workshops (ICC), 2013 IEEE International Conference on, pages 133–137. IEEE, 2013. [7] Sida Song, Yongyu Chang, Hao Xu, Daixu Zheng, and Dacheng Yang. Energy Efficiency Model Based on Stochastic Geometry in Dynamic TDD Cellular Networks. In Communications Workshops (ICC), 2014 IEEE International Conference on, pages 889–894. IEEE, 2014. [8] Hongguang Sun, Min Sheng, Matthias Wildemeersch, and Tony QS Quek. Coverage Analysis for Two-Tier Dynamic TDD Heterogeneous Networks. In Global Communications Conference (GLOBECOM), 2014 IEEE, pages 3672–3677. IEEE, 2014. [9] Hongguang Sun, Matthias Wildemeersch, Min Sheng, and Tony QS Quek. D2D Enhanced Heterogeneous Cellular Networks with Dynamic TDD. Wireless Communications, IEEE Transactions, 14(8):4204–4218, 2014. [10] Ming Ding, David Lopez-Perez, Ruiqi Xue, Athanasios V Vasilakos, and Wen Chen. Small Cell Dynamic TDD Transmissions in Heterogeneous Networks. In Communications (ICC), 2014 IEEE International Conference on, pages 4881–4887. IEEE, 2014. [11] Yanchao Lin, Yuehong Gao, Yuancao Li, Xin Zhang, and Dacheng Yang. QoS Aware Dynamic Uplink-Downlink Reconfiguration Algorithm in TD-LTE HetNet. In Globecom Workshops (GC Wkshps), 2013 IEEE, pages 708–713. IEEE, 2013. [12] Ming Ding, David Lopez-Perez, Athanasios V Vasilakos, and Wen Chen. Analysis on the SINR Performance of Dynamic TDD in Homogeneous Small Cell Networks. In Global Communications Conference (GLOBECOM), 2014 IEEE, pages 1552–1558. IEEE, 2014. [13] Mohammed S ElBamby, Mehdi Bennis, Walid Saad, and Matti Latva-aho. Dynamic Uplink-Downlink Optimization in TDD-Based Small Cell Networks. In Wireless Communications Systems (ISWCS), 2014 11th International Symposium on, pages 939–944. IEEE, 2014. [14] Dalin Zhu and Ming Lei. Cluster-Based Dynamic DL/UL Reconfiguration Method in Centralized RAN TDD with Trellis Exploration Algorithm. In Wireless Communications and Networking Conference (WCNC), 2013 IEEE, pages 3758–3763. IEEE, 2013. [15] Yi-Ting Lin, Cheng-Chih Chao, and Hung-Yu Wei. Dynamic TDD Interference Mitigation by Using Soft Reconfiguration. In Proc. 11th International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (Qshine 2015), 2015. [16] Lei Jiang, Ming Lei, and Jun Du. Cross-Subframe Co-Channel Interference Mitigation Scheme for LTE-Advanced Dynamic TDD System. In Vehicular Technology Conference (VTC Spring), 2013 IEEE 77th, pages 1–5. IEEE, 2013. [17] Mohammed Al-Rawi and Riku Jäntti. A Dynamic TDD Inter-Cell Interference Coordination Scheme for Long Term Evolution Networks. In Personal Indoor and Mobile Radio Communications (PIMRC), 2011 IEEE 22nd International Symposium on, pages 1590–1594. IEEE, 2011. [18] Bo Yu, Hiroyuki Ishii, and Liuqing Yang. System Level Performance Evaluation of Dynamic TDD and Interference Coordination in Enhanced Local Area Architecture. In Vehicular Technology Conference (VTC Spring), 2013 IEEE 77th, pages1–6. IEEE, 2013. [19] Han YuNan, Chang Yongyu, Cui Jie, and Yang Dacheng. A Novel Inter-Cell Interference Coordination Scheme Based on Dynamic Resource Allocation in LTE-TDD Systems. In Vehicular Technology Conference (VTC 2010-Spring), 2010 IEEE 71st, pages 1–5. IEEE, 2010. [20] Manli Qian, Wibowo Hardjawana, Yonghui Li, Branka Vucetic, Jinglin Shi, and Xuezhi Yang. Inter-Cell Interference Coordination through Adaptive Soft Frequency Reuse in LTE Networks. In Wireless Communications and Networking Conference (WCNC), 2012 IEEE, pages 1618–1623. IEEE, 2012. [21] Mahmudur Rahman and Halim Yanikomeroglu. Enhancing Cell-Edge Performance: a Downlink Dynamic Interference Avoidance Scheme with Inter-Cell Coordination. Wireless Communications, IEEE Transactions on, 9(4):1414–1425, 2010. [22] Jiyong Pang, Jun Wang, Dongyao Wang, Gang Shen, Qi Jiang, and Jianguo Liu. Optimized Time-Domain Resource Partitioning for Enhanced Inter-Cell Interference Coordination in Heterogeneous Networks. In Wireless Communications and Networking Conference (WCNC), 2012 IEEE, pages 1613–1617. IEEE, 2012. [23] Yuanye Wang, Klaus Pedersen, et al. Performance Analysis of Enhanced Inter-Cell Interference Coordination in LTE-Advanced Heterogeneous Networks. In Vehicular Technology Conference (VTC Spring), 2012 IEEE 75th, pages 1–5. IEEE, 2012. [24] Supratim Deb, Pantelis Monogioudis, Jerzy Miernik, and James P Seymour. Algorithms for Enhanced Inter-Cell Interference Coordination (eICIC) in LTE HetNets. IEEE/ACM Transactions on Networking (TON), 22(1):137–150, 2014. [25] Siyi Wang, Weisi Guo, Chadi Khirallah, Dejan Vukobratovic, and John Thompson. Interference Allocation Scheduler for Green Multimedia Delivery. Vehicular Technology, IEEE Transactions on, 63(5):2059–2070, 2014. [26] Yu-Shan Liang, Wei-Ho Chung, Guo-Kai Ni, Ing-Yi Chen, Hongke Zhang, and Sy-Yen Kuo. Resource Allocation with Interference Avoidance in OFDMA Femtocell Networks. Vehicular Technology, IEEE Transactions on, 61(5):2243–2255, 2012. [27] Gilsoo Lee, Hongseok Kim, Yunhee Cho, and Seung-Hwan Lee. QoE-Aware Scheduling for Sigmoid Optimization in Wireless Networks. Communications Letters, IEEE, 18(11):1995–1998, 2014. [28] Kandaraj Piamrat, Kamal Deep Singh, Adlen Ksentini, César Viho, and Jean-Marie Bonnin. QoE-Aware Scheduling for Video-Streaming in High Speed Downlink Packet Access. In Wireless Communications and Networking Conference (WCNC), 2010 IEEE, pages 1–6. IEEE, 2010. [29] Lili Xie, Chunjing Hu, Wenjun Wu, and Zhenning Shi. QoE-Aware Power Allocation Algorithm in Multiuser OFDM Systems. In Mobile Ad-hoc and Sensor Networks (MSN), 2011 Seventh International Conference on, pages 418–422. IEEE, 2011. [30] Bingquan Li, Shuo Li, Chengwen Xing, Zesong Fei, and Jingming Kuang. A QoE Based OFDM Resource Allocation Scheme for Energy Efficiency and Quality Guarantee in Multiuser-Multiservice System. In Globecom Workshops (GC Wkshps), 2012 IEEE, pages 1293–1297. IEEE, 2012. [31] Jianchao Zheng, Yueming Cai, Yongkang Liu, Yuhua Xu, Bowen Duan, and Xuemin Shen. Optimal Power Allocation and User Scheduling in Multicell Networks: Base Station Cooperation Using a Game-Theoretic Approach. Wireless Communications, IEEE Transactions on, 13(12):6928–6942, 2014. [32] Dimitris Tsolkas, Eirini Liotou, Nikos Passas, and Lazaros Merakos. The Need for QoE-driven Interference Management in Femtocell-Overlaid Cellular Networks. In Mobile and Ubiquitous Systems: Computing, Networking, and Services, pages 588–601. Springer, 2014. [33] Jari Korhonen, Nino Burini, Junyong You, and Ehsan Nadernejad. How to Evaluate Objective Video Quality Metrics Reliably. In Quality of Multimedia Experience (QoMEX), 2012 Fourth International Workshop on, pages 57–62. IEEE, 2012. [34] Shoaib Khan, Svetoslav Duhovnikov, Eckehard Steinbach, and Wolfgang Kellerer. MOS-Based Multiuser Multiapplication Cross-Layer Optimization for Mobile Multimedia Communication. Advances in Multimedia, 2007, 2007. [35] Frank Kelly. Charging and Rate Control for Elastic Traffic. European transactions on Telecommunications, 8(1):33–37, 1997. [36] Asiya Khan, Lingfen Sun, Emmanuel Jammeh, and Emmanuel Ifeachor. Quality of Experience-Driven Adaptation Scheme for Video Applications over Wireless Networks. IET communications, 4(11):1337–1347, 2010. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51534 | - |
dc.description.abstract | 在動態分時雙工(Dynamic TDD)系統中,為了依據實際上下行需求進行較佳資源配置,而支援7個上下行配置(uplink-downlink configuration),如此藉由在時間軸上不同的上下行配置達到上下行非對稱資源配置。然而在密度高的小型基地台佈建的網路中,由於基地台的地理位置鄰近,加上每個基地台各自設定其上下行配置,彼此會產生嚴重的干擾,鄰近的兩個基地台皆為上行或皆為下行就會有同向傳輸干擾;一者為上行另一者為下行則會有異向傳輸干擾。本文針對此一系統提出一個干擾抑制的方法,依據使用者的體驗品質來最佳化分配基地台的資源,一方面降低基地台之間的干擾,另一方面維持系統整體的使用體驗品質。模擬結果顯示我們所提出的方法,不論在同質網路與異質網路,都能讓系統有更高的且更穩定的體驗品質。最後我們也基於模擬結果提出一些關於同向及異向傳輸干擾與使用者經驗品質管理的洞見,以利日後設計或運行Dynamic TDD的小型基地台網路。 | zh_TW |
dc.description.abstract | In LTE dynamic time division duplexing (dynamic TDD), seven uplink-downlink configurations (UL-DL configurations) are supported to accommodate downlink/uplink traffic asymmetry for traffic adaptation. The Third Generation Partnership Project (3GPP) has considered the opportunity of adopting such dynamic adaptation of UL-DL configurations in small cell networks to enlarge the network capacity. However, dynamic TDD inducing opposite transmission directions in different cells results in new destructive interference components, i.e., BS-to-BS and UE-to-UE interference, which makes the inter-cell interference in small cell networks even worse. In this paper, a QoE-aware interference mitigation scheme is proposed to mitigate interference and to manage QoE as well in small cell deployment networks. The scheme explicitly uses the received signal strength and QoE state of users to generate a QoE-aware interference graph, where vertices represent cells, edges represent intolerant inter-cell interference among the incident cells and weights represent the utility increment of QoE. Then, a graph-based optimisation problem is formulated to determine which cells are allowed to transmit to maximize the system utility of QoE. Further, a linear-time approximation algorithm is proposed for large-scale deployment environments. The LTE-based simulation results show that the proposed QoE-aware interference mitigation scheme significantly improves overall QoE and also alleviate inter-cell interference. Finally, based on the simulation, we provide some insight into QoE management and interference mitigation in both homogeneous and heterogeneous networks operating dynamic TDD. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:37:52Z (GMT). No. of bitstreams: 1 ntu-105-R02921099-1.pdf: 1460132 bytes, checksum: 8a0ca6aaa02382342e380775e2217827 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 口試委員審定書 i
中文摘要 ii Abstract iii Contents v List of Figures vii List of Tables x 1 Introduction 1 2 System Model 8 3 QoE-Aware Interference Mitigation 11 3.1 Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 3.2 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . .11 3.3 Approximation Algorithm . . . . . . . . . . . . . . . . . . . . . . 13 3.3.1 Simplification to BS-based scheduling . . . . . . . . . . . . . . 13 3.3.2 Graph transformation . . . . . . . . . . . . . . . . . . . . . . .14 3.3.3 2-approximation algorithm . . . . . . . . . . . . . . . . . . . . 15 3.3.4 Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 3.4 Enhancement of Approximation Algorithm . . . . . . . . . . . . . . .16 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4 Application of QAIM for Dynamic TDD networks 19 5 Simulation and Discussion 27 5.1 Simulation scenarios . . . . . . . . . . . . . . . . . . . . . . . .27 5.2 Homogeneous Pico scenario . . . . . . . . . . . . . . . . . . . . . 28 5.3 Heterogeneous Macro-Pico scenario . . . . . . . . . . . . . . . . . 41 5.4 Discussion 1: SINR Threshold . . . . . . . . . . . . . . . . . . . 51 5.5 Discussion 2: Throughput Maximization . . . . . . . . . . . . . . . 54 5.6 Discussion 3: Multi-Service System . . . . . . . . . . . . . . . . .58 5.7 Discussion 4: Variant Traffic Demand . . . . . . . . . . . . . . . .59 5.8 Discussion 5: Brute Force or Approximation . . . . . . . . . . . . .61 5.9 Discussion 6: Importance of Interference Mitigation and QoE Management 64 5.10 Discussion 7: Impact of Conventional and Cross-Link Interference . . 64 6 Conclusion 67 Bibliography 68 | |
dc.language.iso | en | |
dc.title | 動態分時多工長期演進技術之具體驗品質感知細胞間干擾抑制 | zh_TW |
dc.title | QoE-Aware Inter-Cell Interference Mitigation for Dynamic TDD Networks | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡欣穆,鄭瑞光,謝欣霖,林靖茹 | |
dc.subject.keyword | 動態分時雙工,小型基地台佈建,干擾抑制,使用者經驗品質, | zh_TW |
dc.subject.keyword | LTE Dynamic TDD,small cell,interference mitigation,QoE, | en |
dc.relation.page | 73 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-01-25 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
顯示於系所單位: | 電機工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 1.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。