請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51514完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳佩燁(Pei-Yeh Chen) | |
| dc.contributor.author | Po-Ting Chen | en |
| dc.contributor.author | 陳柏廷 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:37:03Z | - |
| dc.date.available | 2021-02-15 | |
| dc.date.copyright | 2016-02-15 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2016-01-26 | |
| dc.identifier.citation | 1. Jellinger, K. A. (2006) Alzheimer 100--highlights in the history of Alzheimer research. J Neural Transm 113, 1603-1623
2. Alzheimer's, A. (2014) 2014 Alzheimer's disease facts and figures. Alzheimers Dement 10, e47-92 3. Strittmatter, W. J., and Roses, A. D. (1996) Apolipoprotein E and Alzheimer's disease. Annu Rev Neurosci 19, 53-77 4. Selkoe, D. J. (2001) Alzheimer's disease: Genes, proteins, and therapy. Physiol Rev 81, 741-766 5. Tiraboschi, P., Hansen, L. A., Masliah, E., Alford, M., Thal, L. J., and Corey-Bloom, J. (2004) Impact of APOE genotype on neuropathologic and neurochemical markers of Alzheimer disease. Neurology 62, 1977-1983 6. Han, F., Wang, W., and Chen, C. (2014) Research progress in animal models and stem cell therapy for Alzheimer's disease. Journal of Neurorestoratology, 11 7. Rossor, M. N., Fox, N. C., Freeborough, P. A., and Harvey, R. J. (1996) Clinical features of sporadic and familial Alzheimer's disease. Neurodegeneration 5, 393-397 8. Nalivaeva, N. N., Beckett, C., Belyaev, N. D., and Turner, A. J. (2012) Are amyloid-degrading enzymes viable therapeutic targets in Alzheimer's disease? J Neurochem 120 Suppl 1, 167-185 9. Iwata, N., Higuchi, M., and Saido, T. C. (2005) Metabolism of amyloid-β peptide and Alzheimer's disease. Pharmacology & Therapeutics 108, 129-148 10. Dubrovskaya, N. M., Nalivaeva, N. N., Plesneva, S. A., Feponova, A. A., Turner, A. J., and Zhuravin, I. A. (2009) Changes in the Activity of Amyloid-Degrading Metallopeptidases Leads to Disruption of Memory in Rats. Zhurnal Vysshei Nervnoi Deyatelnosti Imeni I P Pavlova 59, 630-638 11. Iwata, N., Tsubuki, S., Takaki, Y., Shirotani, K., Lu, B., Gerard, N. P., Gerard, C., Hama, E., Lee, H. J., and Saido, T. C. (2001) Metabolic regulation of brain A beta by neprilysin. Science 292, 1550-1552 12. Russo, R., Borghi, R., Markesbery, W., Tabaton, M., and Piccini, A. (2005) Neprylisin decreases uniformly in Alzheimer's disease and in normal aging. FEBS Lett 579, 6027-6030 13. Hicks, D. A., Nalivaeva, N. N., and Turner, A. J. (2012) Lipid rafts and Alzheimer's disease: protein-lipid interactions and perturbation of signaling. Front Physiol 3, 189 14. Kerr, M. A., and Kenny, A. J. (1974) The purification and specificity of a neutral endopeptidase from rabbit kidney brush border. Biochem J 137, 477-488 15. Brown, G., Hogg, N., and Greaves, M. (1975) Candidate leukaemia-specific antigen in man. Nature 258, 454-456 16. Papandreou, C. N., Usmani, B., Geng, Y., Bogenrieder, T., Freeman, R., Wilk, S., Finstad, C. L., Reuter, V. E., Powell, C. T., Scheinberg, D., Magill, C., Scher, H. I., Albino, A. P., and Nanus, D. M. (1998) Neutral endopeptidase 24.11 loss in metastatic human prostate cancer contributes to androgen-independent progression. Nat Med 4, 50-57 17. Gohring, B., Holzhausen, H. J., Meye, A., Heynemann, H., Rebmann, U., Langner, J., and Riemann, D. (1998) Endopeptidase 24.11/CD10 is down-regulated in renal cell cancer. Int J Mol Med 2, 409-414 18. Takaki, Y., Iwata, N., Tsubuki, S., Taniguchi, S., Toyoshima, S., Lu, B., Gerard, N. P., Gerard, C., Lee, H. J., Shirotani, K., and Saido, T. C. (2000) Biochemical identification of the neutral endopeptidase family member responsible for the catabolism of amyloid beta peptide in the brain. J Biochem 128, 897-902 19. Iwata, N., Tsubuki, S., Takaki, Y., Watanabe, K., Sekiguchi, M., Hosoki, E., Kawashima-Morishima, M., Lee, H. J., Hama, E., Sekine-Aizawa, Y., and Saido, T. C. (2000) Identification of the major Abeta1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat Med 6, 143-150 20. Sisodia, S. S., and Gallagher, M. (1998) A role for the beta-amyloid precursor protein in memory? Proc Natl Acad Sci U S A 95, 12074-12076 21. Selkoe, D. J. (2002) Alzheimer's disease is a synaptic failure. Science 298, 789-791 22. Wada, S., Morishima-Kawashima, M., Qi, Y., Misono, H., Shimada, Y., Ohno-Iwashita, Y., and Ihara, Y. (2003) gamma-secretase activity is present in rafts but is not cholesterol-dependent. Biochemistry 42, 13977-13986 23. Sato, K., Tanabe, C., Yonemura, Y., Watahiki, H., Zhao, Y., Yagishita, S., Ebina, M., Suo, S., Futai, E., Murata, M., and Ishiura, S. (2012) Localization of Mature Neprilysin in Lipid Rafts. Journal of Neuroscience Research 90, 870-877 24. Iwata, N., Sekiguchi, M., Hattori, Y., Takahashi, A., Asai, M., Ji, B., Higuchi, M., Staufenbiel, M., Muramatsu, S., and Saido, T. C. (2013) Global brain delivery of neprilysin gene by intravascular administration of AAV vector in mice. Sci Rep 3, 1472 25. Liu, Y., Studzinski, C., Beckett, T., Murphy, M. P., Klein, R. L., and Hersh, L. B. (2010) Circulating neprilysin clears brain amyloid. Mol Cell Neurosci 45, 101-107 26. Ayoub, S., and Melzig, M. F. (2008) Influence of selected natural products on neutral endopeptidase activity and beta-amyloid production in SK-N-SH cells. Pharmaceutical Biology 46, 425-432 27. Eisele, Y. S., Baumann, M., Klebl, B., Nordhammer, C., Jucker, M., and Kilger, E. (2007) Gleevec increases levels of the amyloid precursor protein intracellular domain and of the amyloid-beta-degrading enzyme neprilysin. Molecular Biology of the Cell 18, 3591-3600 28. Klein, C., Patte-Mensah, C., Taleb, O., Bourguignon, J. J., Schmitt, M., Bihel, F., Maitre, M., and Mensah-Nyagan, A. G. (2013) The neuroprotector kynurenic acid increases neuronal cell survival through neprilysin induction. Neuropharmacology 70, 254-260 29. Saito, T., Iwata, N., Tsubuki, S., Takaki, Y., Takano, J., Huang, S. M., Suemoto, T., Higuchi, M., and Saido, T. C. (2005) Somatostatin regulates brain amyloid beta peptide Abeta42 through modulation of proteolytic degradation. Nat Med 11, 434-439 30. Belyaev, N. D., Nalivaeva, N. N., Makova, N. Z., and Turner, A. J. (2009) Neprilysin gene expression requires binding of the amyloid precursor protein intracellular domain to its promoter: implications for Alzheimer disease. EMBO Rep 10, 94-100 31. Deng, Y. S., Lu, X., Wang, L., Li, T., Ding, Y. B., Cao, H. M., Zhang, Y. P., Guo, X. M., and Yu, G. (2014) Curcumin Inhibits the AKT/NF-kappa B Signaling via CpG Demethylation of the Promoter and Restoration of NEP in the N2a Cell Line. Aaps Journal 16, 649-657 32. Chen, U. L., Wang, S. S. S., Yang, Y. Y., Yuan, R. Y., Chen, R. M., and Hu, C. J. (2009) The epigenetic effects of amyloid-beta(1-40) on global DNA and neprilysin genes in murine cerebral endothelial cells. Biochemical and Biophysical Research Communications 378, 57-61 33. Saab, B. J., Luca, R. M., Yuen, W. B., Saab, A. M., and Roder, J. C. (2011) Memantine affects cognitive flexibility in the Morris water maze. J Alzheimers Dis 27, 477-482 34. Green, R. C., Schneider, L. S., Amato, D. A., Beelen, A. P., Wilcock, G., Swabb, E. A., Zavitz, K. H., and Tarenflurbil Phase 3 Study, G. (2009) Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: a randomized controlled trial. JAMA 302, 2557-2564 35. Deane, R., Wu, Z., and Zlokovic, B. V. (2004) RAGE (yin) versus LRP (yang) balance regulates alzheimer amyloid beta-peptide clearance through transport across the blood-brain barrier. Stroke 35, 2628-2631 36. Gilman, S., Koller, M., Black, R. S., Jenkins, L., Griffith, S. G., Fox, N. C., Eisner, L., Kirby, L., Rovira, M. B., Forette, F., Orgogozo, J. M., and Team, A. N. S. (2005) Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64, 1553-1562 37. Boche, D., Denham, N., Holmes, C., and Nicoll, J. A. (2010) Neuropathology after active Abeta42 immunotherapy: implications for Alzheimer's disease pathogenesis. Acta Neuropathol 120, 369-384 38. Rinne, J. O., Brooks, D. J., Rossor, M. N., Fox, N. C., Bullock, R., Klunk, W. E., Mathis, C. A., Blennow, K., Barakos, J., Okello, A. A., Rodriguez Martinez de Liano, S., Liu, E., Koller, M., Gregg, K. M., Schenk, D., Black, R., and Grundman, M. (2010) 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer's disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol 9, 363-372 39. Blennow, K., Zetterberg, H., Rinne, J. O., Salloway, S., Wei, J., Black, R., Grundman, M., Liu, E., and Investigators, A. A. B. (2012) Effect of immunotherapy with bapineuzumab on cerebrospinal fluid biomarker levels in patients with mild to moderate Alzheimer disease. Arch Neurol 69, 1002-1010 40. Katsimpardi, L., Litterman, N. K., Schein, P. A., Miller, C. M., Loffredo, F. S., Wojtkiewicz, G. R., Chen, J. W., Lee, R. T., Wagers, A. J., and Rubin, L. L. (2014) Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344, 630-634 41. Villeda, S. A., Plambeck, K. E., Middeldorp, J., Castellano, J. M., Mosher, K. I., Luo, J., Smith, L. K., Bieri, G., Lin, K., Berdnik, D., Wabl, R., Udeochu, J., Wheatley, E. G., Zou, B., Simmons, D. A., Xie, X. S., Longo, F. M., and Wyss-Coray, T. (2014) Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med 20, 659-663 42. Queen, B. L., and Tollefsbol, T. O. (2010) Polyphenols and aging. Curr Aging Sci 3, 34-42 43. Wang, J., Ho, L., Zhao, W., Ono, K., Rosensweig, C., Chen, L., Humala, N., Teplow, D. B., and Pasinetti, G. M. (2008) Grape-derived polyphenolics prevent Abeta oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer's disease. J Neurosci 28, 6388-6392 44. Vingtdeux, V., Davies, P., Dickson, D., and Marambaud, P. (2011) AMPK is abnormally activated in tangle- and pre-tangle-bearing neurons in Alzheimer’s disease and other tauopathies. Acta Neuropathologica 121, 337-349 45. Augustin, S., Rimbach, G., Augustin, K., Schliebs, R., Wolffram, S., and Cermak, R. (2009) Effect of a short- and long-term treatment with Ginkgo biloba extract on amyloid precursor protein levels in a transgenic mouse model relevant to Alzheimer's disease. Arch Biochem Biophys 481, 177-182 46. Lin, X., Huang, R. B., Zhang, S. J., Wei, L., Zhuo, L., Wu, X. Y., Tang, A. C., and Huang, Q. F. (2013) Beneficial effects of asiaticoside on cognitive deficits in senescence-accelerated mice. Fitoterapia 87, 69-77 47. Aggarwal, B. B., Sundaram, C., Malani, N., and Ichikawa, H. (2007) Curcumin: The Indian solid gold. Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease 595, 1-+ 48. KVLV, M. J. (1910) Structure of curcumin. Chem Ber 43, 2163 49. Oppenheimer, A. (1937) TURMERIC (CURCUMIN) IN BILIARY DISEASES. The Lancet 229, 619-621 50. Gupta, S. C., Patchva, S., and Aggarwal, B. B. (2013) Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J 15, 195-218 51. NUNOMURA, A., PERRY, G., ALIEV, G., HIRAI, K., TAKEDA, A., BALRAJ, E. K., JONES, P. K., GHANBARI, H., WATAYA, T., SHIMOHAMA, S., CHIBA, S., ATWOOD, C. S., PETERSEN, R. B., and SMITH, M. A. (2001) Oxidative Damage Is the Earliest Event in Alzheimer Disease. Journal of Neuropathology & Experimental Neurology 60, 759-767 52. Zhao, B. L., Li, X. J., He, R. G., Cheng, S. J., and Xin, W. J. (1989) Scavenging effect of extracts of green tea and natural antioxidants on active oxygen radicals. Cell Biophys 14, 175-185 53. Sreejayan, and Rao, M. N. A. (1994) Curcuminoids as Potent Inhibitors of Lipid-Peroxidation. Journal of Pharmacy and Pharmacology 46, 1013-1016 54. Joe, B., and Lokesh, B. R. (1994) Role of capsaicin, curcumin and dietary n-3 fatty acids in lowering the generation of reactive oxygen species in rat peritoneal macrophages. Biochim Biophys Acta 1224, 255-263 55. Liu, Z. F., Xie, Z. L., Jones, W., Pavlovicz, R. E., Liu, S. J., Yu, J. H., Li, P. K., Lin, J. Y., Fuchs, J. R., Marcucci, G., Li, C. L., and Chan, K. K. (2009) Curcumin is a potent DNA hypomethylation agent. Bioorganic & Medicinal Chemistry Letters 19, 706-709 56. Fu, S. Q., and Kurzrock, R. (2010) Development of Curcumin as an Epigenetic Agent. Cancer 116, 4670-4676 57. Yang, F., Lim, G. P., Begum, A. N., Ubeda, O. J., Simmons, M. R., Ambegaokar, S. S., Chen, P. P., Kayed, R., Glabe, C. G., Frautschy, S. A., and Cole, G. M. (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280, 5892-5901 58. Xiong, Z., Hongmei, Z., Lu, S., and Yu, L. (2011) Curcumin mediates presenilin-1 activity to reduce beta-amyloid production in a model of Alzheimer's Disease. Pharmacol Rep 63, 1101-1108 59. Zhang, C., Browne, A., Child, D., and Tanzi, R. E. (2010) Curcumin decreases amyloid-beta peptide levels by attenuating the maturation of amyloid-beta precursor protein. J Biol Chem 285, 28472-28480 60. Hucklenbroich, J., Klein, R., Neumaier, B., Graf, R., Fink, G. R., Schroeter, M., and Rueger, M. A. (2014) Aromatic-turmerone induces neural stem cell proliferation in vitro and in vivo. Stem Cell Research & Therapy 5 61. Prasad, S., Tyagi, A. K., and Aggarwal, B. B. (2014) Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat 46, 2-18 62. Wang, D. S., Iwata, N., Hama, E., Saido, T. C., and Dickson, D. W. (2003) Oxidized neprilysin in aging and Alzheimer's disease brains. Biochem Biophys Res Commun 310, 236-241 63. Hellstrom-Lindahl, E., Ravid, R., and Nordberg, A. (2008) Age-dependent decline of neprilysin in Alzheimer's disease and normal brain: inverse correlation with A beta levels. Neurobiol Aging 29, 210-221 64. Yasojima, K., McGeer, E. G., and McGeer, P. L. (2001) Relationship between beta amyloid peptide generating molecules and neprilysin in Alzheimer disease and normal brain. Brain Res 919, 115-121 65. Caccamo, A., Oddo, S., Sugarman, M. C., Akbari, Y., and LaFerla, F. A. (2005) Age- and region-dependent alterations in Ab-degrading enzymes: implications for Ab-induced disorders. Neurobiol Aging 26, 645-654 66. Iwata, N., Takaki, Y., Fukami, S., Tsubuki, S., and Saido, T. C. (2002) Region-specific reduction of A beta-degrading endopeptidase, neprilysin, in mouse hippocampus upon aging. J Neurosci Res 70, 493-500 67. Iwata, N., Tsubuki, S., Takaki, Y., Shirotani, K., Lu, B., Gerard, N. P., Gerard, C., Hama, E., Lee, H. J., and Saido, T. C. (2001) Metabolic regulation of brain Ab by neprilysin. Science 292, 1550-1552 68. Guan, H., Liu, Y., Daily, A., Police, S., Kim, M. H., Oddo, S., LaFerla, F. M., Pauly, J. R., Murphy, M. P., and Hersh, L. B. (2009) Peripherally expressed neprilysin reduces brain amyloid burden: a novel approach for treating Alzheimer's disease. J Neurosci Res 87, 1462-1473 69. Park, M. H., Lee, J. K., Choi, S., Ahn, J., Jin, H. K., Park, J. S., and Bae, J. S. (2013) Recombinant soluble neprilysin reduces amyloid-beta accumulation and improves memory impairment in Alzheimer's disease mice. Brain Res 1529, 113-124 70. El-Amouri, S. S., Zhu, H., Yu, J., Marr, R., Verma, I. M., and Kindy, M. S. (2008) Neprilysin: an enzyme candidate to slow the progression of Alzheimer's disease. Am J Pathol 172, 1342-1354 71. Hemming, M. L., Patterson, M., Reske-Nielsen, C., Lin, L., Isacson, O., and Selkoe, D. J. (2007) Reducing amyloid plaque burden via ex vivo gene delivery of an Aβ-degrading protease: A novel therapeutic approach to Alzheimer disease. PLoS Med. 4, e262 72. Blurton-Jones, M., Spencer, B., Michael, S., Castello, N. A., Agazaryan, A. A., Davis, J. L., Muller, F. J., Loring, J. F., Masliah, E., and LaFerla, F. M. (2014) Neural stem cells genetically-modified to express neprilysin reduce pathology in Alzheimer transgenic models. Stem Cell Res. Ther. 5, 46 73. Lannfelt, L., Moller, C., Basun, H., Osswald, G., Sehlin, D., Satlin, A., Logovinsky, V., and Gellerfors, P. (2014) Perspectives on future Alzheimer therapies: amyloid-beta protofibrils - a new target for immunotherapy with BAN2401 in Alzheimer's disease. Alzheimers Res. Ther. 6, 16 74. Moreth, J., Mavoungou, C., and Schindowski, K. (2013) Passive anti-amyloid immunotherapy in Alzheimer's disease: What are the most promising targets? Immun. Ageing 10, 18 75. Chandra, V., Pandav, R., Dodge, H. H., Johnston, J. M., Belle, S. H., DeKosky, S. T., and Ganguli, M. (2001) Incidence of Alzheimer's disease in a rural community in India: the Indo-US study. Neurology 57, 985-989 76. Ganguli, M., Chandra, V., Kamboh, M. I., Johnston, J. M., Dodge, H. H., Thelma, B. K., Juyal, R. C., Pandav, R., Belle, S. H., and DeKosky, S. T. (2000) Apolipoprotein E polymorphism and Alzheimer disease: The Indo-US cross-national dementia study. Arch Neurol 57, 824-830 77. Ganguli, M., Chandra, V., Kamboh, M., and et al. (2000) Apolipoprotein e polymorphism and alzheimer disease: The indo-us cross-national dementia study. Archives of Neurology 57, 824-830 78. Brondino, N., Re, S., Boldrini, A., Cuccomarino, A., Lanati, N., Barale, F., and Politi, P. (2014) Curcumin as a therapeutic agent in dementia: A mini systematic review of human studies. Sci. World J. 2014, 174282 79. Liao, K. K., Wu, M. J., Chen, P. Y., Huang, S. W., Chiu, S. J., Ho, C. T., and Yen, J. H. (2012) Curcuminoids promote neurite outgrowth in PC12 cells through MAPK/ERK- and PKC-dependent pathways. J Agric Food Chem 60, 433-443 80. Lim, G. P., Chu, T., Yang, F., Beech, W., Frautschy, S. A., and Cole, G. M. (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 21, 8370-8377 81. Wang, P., Su, C., Li, R., Wang, H., Ren, Y., Sun, H., Yang, J., Sun, J., Shi, J., Tian, J., and Jiang, S. (2014) Mechanisms and effects of curcumin on spatial learning and memory improvement in APPswe/PS1dE9 mice. J Neurosci Res 92, 218-231 82. Ahmed, T., Enam, S. A., and Gilani, A. H. (2010) Curcuminoids enhance memory in an amyloid-infused rat model of Alzheimer's disease. Neuroscience 169, 1296-1306 83. Brondino, N., Re, S., Boldrini, A., Cuccomarino, A., Lanati, N., Barale, F., and Politi, P. (2014) Curcumin as a therapeutic agent in dementia: a mini systematic review of human studies. ScientificWorldJournal 2014, 174282 84. Endo, H., Nikaido, Y., Nakadate, M., Ise, S., and Konno, H. (2014) Structure activity relationship study of curcumin analogues toward the amyloid-beta aggregation inhibitor. Bioorg Med Chem Lett 24, 5621-5626 85. Jankowsky, J. L., Slunt, H. H., Ratovitski, T., Jenkins, N. A., Copeland, N. G., and Borchelt, D. R. (2001) Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomol Eng 17, 157-165 86. Borchelt, D. R., Thinakaran, G., Eckman, C. B., Lee, M. K., Davenport, F., Ratovitsky, T., Prada, C. M., Kim, G., Seekins, S., Yager, D., Slunt, H. H., Wang, R., Seeger, M., Levey, A. I., Gandy, S. E., Copeland, N. G., Jenkins, N. A., Price, D. L., Younkin, S. G., and Sisodia, S. S. (1996) Familial Alzheimer's disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo. Neuron 17, 1005-1013 87. Frommer, M., Mcdonald, L. E., Millar, D. S., Collis, C. M., Watt, F., Grigg, G. W., Molloy, P. L., and Paul, C. L. (1992) A Genomic Sequencing Protocol That Yields a Positive Display of 5-Methylcytosine Residues in Individual DNA Strands. Proceedings of the National Academy of Sciences of the United States of America 89, 1827-1831 88. Deng, Y., Lu, X., Wang, L., Li, T., Ding, Y., Cao, H., Zhang, Y., Guo, X., and Yu, G. (2014) Curcumin Inhibits the AKT/NF-κB Signaling via CpG Demethylation of the Promoter and Restoration of NEP in the N2a Cell Line. The AAPS Journal 16, 649-657 89. Garcia-Alloza, M., Borrelli, L. A., Rozkalne, A., Hyman, B. T., and Bacskai, B. J. (2007) Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J Neurochem 102, 1095-1104 90. Sato, K., Tanabe, C., Yonemura, Y., Watahiki, H., Zhao, Y., Yagishita, S., Ebina, M., Suo, S., Futai, E., Murata, M., and Ishiura, S. (2012) Localization of mature neprilysin in lipid rafts. J Neurosci Res 90, 870-877 91. Iijima-Ando, K., Hearn, S. A., Granger, L., Shenton, C., Gatt, A., Chiang, H. C., Hakker, I., Zhong, Y., and Iijima, K. (2008) Overexpression of neprilysin reduces alzheimer amyloid-beta42 (Abeta42)-induced neuron loss and intraneuronal Abeta42 deposits but causes a reduction in cAMP-responsive element-binding protein-mediated transcription, age-dependent axon pathology, and premature death in Drosophila. J Biol Chem 283, 19066-19076 92. Kanemitsu, H., Tomiyama, T., and Mori, H. (2003) Human neprilysin is capable of degrading amyloid β peptide not only in the monomeric form but also the pathological oligomeric form. Neuroscience Letters 350, 113-116 93. Kakiya, N., Saito, T., Nilsson, P., Matsuba, Y., Tsubuki, S., Takei, N., Nawa, H., and Saido, T. C. (2012) Cell surface expression of the major amyloid-beta peptide (Abeta)-degrading enzyme, neprilysin, depends on phosphorylation by mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) and dephosphorylation by protein phosphatase 1a. J Biol Chem 287, 29362-29372 94. Zhongfa, L., Chiu, M., Wang, J., Chen, W., Yen, W., Fan-Havard, P., Yee, L. D., and Chan, K. K. (2012) Enhancement of curcumin oral absorption and pharmacokinetics of curcuminoids and curcumin metabolites in mice. Cancer Chemother Pharmacol 69, 679-689 95. Li, W., Wang, S., Feng, J., Xiao, Y., Xue, X., Zhang, H., Wang, Y., and Liang, X. (2009) Structure elucidation and NMR assignments for curcuminoids from the rhizomes of Curcuma longa. Magn Reson Chem 47, 902-908 96. Wei, Q. Y., Chen, W. F., Zhou, B., Yang, L., and Liu, Z. L. (2006) Inhibition of lipid peroxidation and protein oxidation in rat liver mitochondria by curcumin and its analogues. Biochim Biophys Acta 1760, 70-77 97. Lannfelt, L., Moller, C., Basun, H., Osswald, G., Sehlin, D., Satlin, A., Logovinsky, V., and Gellerfors, P. (2014) Perspectives on future Alzheimer therapies: amyloid-beta protofibrils - a new target for immunotherapy with BAN2401 in Alzheimer's disease. Alzheimers Res Ther 6, 16 98. Moreth, J., Mavoungou, C., and Schindowski, K. (2013) Passive anti-amyloid immunotherapy in Alzheimer's disease: What are the most promising targets? Immunity & Ageing 10 99. Citron, M. (2010) Alzheimer's disease: strategies for disease modification. Nature Reviews Drug Discovery 9, 387-398 100. Marambaud, P., Zhao, H. T., and Davies, P. (2005) Resveratrol promotes clearance of Alzheimer's disease amyloid-beta peptides. Journal of Biological Chemistry 280, 37377-37382 101. Ayoub, S., and Melzig, M. F. (2008) Influence of Selected Natural Products on Neutral Endopeptidase Activity and β-Amyloid Production in SK-N-SH Cells. Pharmaceutical Biology 46, 425-432 102. Lim, H. J., Shim, S. B., Jee, S. W., Lee, S. H., Lim, C. J., Hong, J. T., Sheen, Y. Y., and Hwang, D. Y. (2013) Green tea catechin leads to global improvement among Alzheimer's disease-related phenotypes in NSE/hAPP-C105 Tg mice. J Nutr Biochem 24, 1302-1313 103. Khanna, S., Park, H. A., Sen, C. K., Golakoti, T., Sengupta, K., Venkateswarlu, S., and Roy, S. (2009) Neuroprotective and antiinflammatory properties of a novel demethylated curcuminoid. Antioxid Redox Signal 11, 449-468 104. Venkateswarlu, S., Ramachandra, M. S., and Subbaraju, G. V. (2005) Synthesis and biological evaluation of polyhydroxycurcuminoids. Bioorg Med Chem 13, 6374-6380 105. Chen, W. F., Deng, S. L., Zhou, B., Yang, L., and Liu, Z. L. (2006) Curcumin and its analogues as potent inhibitors of low density lipoprotein oxidation: H-atom abstraction from the phenolic groups and possible involvement of the 4-hydroxy-3-methoxyphenyl groups. Free Radic Biol Med 40, 526-535 106. Feng, J. Y., and Liu, Z. Q. (2009) Phenolic and enolic hydroxyl groups in curcumin: which plays the major role in scavenging radicals? J Agric Food Chem 57, 11041-11046 107. Encinas, M., Iglesias, M., Liu, Y., Wang, H., Muhaisen, A., Ceña, V., Gallego, C., and Comella, J. X. (2000) Sequential Treatment of SH-SY5Y Cells with Retinoic Acid and Brain-Derived Neurotrophic Factor Gives Rise to Fully Differentiated, Neurotrophic Factor-Dependent, Human Neuron-Like Cells. Journal of Neurochemistry 75, 991-1003 108. Garcia-Alloza, M., Robbins, E. M., Zhang-Nunes, S. X., Purcell, S. M., Betensky, R. A., Raju, S., Prada, C., Greenberg, S. M., Bacskai, B. J., and Frosch, M. P. (2006) Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease. Neurobiol Dis 24, 516-524 109. Begum, A. N., Jones, M. R., Lim, G. P., Morihara, T., Kim, P., Heath, D. D., Rock, C. L., Pruitt, M. A., Yang, F., Hudspeth, B., Hu, S., Faull, K. F., Teter, B., Cole, G. M., and Frautschy, S. A. (2008) Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer's disease. J Pharmacol Exp Ther 326, 196-208 110. Shytle, R. D., Tan, J., Bickford, P. C., Rezai-Zadeh, K., Hou, L., Zeng, J., Sanberg, P. R., Sanberg, C. D., Alberte, R. S., Fink, R. C., and Roschek, B., Jr. (2012) Optimized turmeric extract reduces beta-Amyloid and phosphorylated Tau protein burden in Alzheimer's transgenic mice. Curr Alzheimer Res 9, 500-506 111. Lim, G. P., Chu, T., Yang, F., Beech, W., Frautschy, S. A., and Cole, G. M. (2001) The Curry Spice Curcumin Reduces Oxidative Damage and Amyloid Pathology in an Alzheimer Transgenic Mouse. The Journal of Neuroscience 21, 8370-8377 112. Zhang, W., Bai, M., Xi, Y., Hao, J., Liu, L., Mao, N., Su, C., Miao, J., and Li, Z. (2012) Early memory deficits precede plaque deposition in APPswe/PS1dE9 mice: involvement of oxidative stress and cholinergic dysfunction. Free Radic Biol Med 52, 1443-1452 113. Liu, H., Li, Z., Qiu, D., Gu, Q., Lei, Q., and Mao, L. (2010) The inhibitory effects of different curcuminoids on beta-amyloid protein, beta-amyloid precursor protein and beta-site amyloid precursor protein cleaving enzyme 1 in swAPP HEK293 cells. Neurosci Lett 485, 83-88 114. Xiong, Z., Hongmei, Z., Lu, S., and Yu, L. (2011) Curcumin mediates presenilin-1 activity to reduce β-amyloid production in a model of Alzheimer’s disease. Pharmacological Reports 63, 1101-1108 115. Wang, D. S., Iwata, N., Hama, E., Saido, T. C., and Dickson, D. W. (2003) Oxidized neprilysin in aging and Alzheimer's disease brains. Biochem Biophys Res Commun 310, 236-241 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51514 | - |
| dc.description.abstract | 腦啡肽酶(neprilysin)被視為最重要的類澱粉降解蛋白,由於它在生理上的表現量不僅隨著年齡的增長而遞減和類澱粉的堆積情況也呈現負相關,故被認為對於偶發性阿茲海默症的促成有著密切的關聯。近幾年的許多研究中都表示調控腦啡肽酶增加其表現量對於阿茲海默症的預防與治療是有希望的。本篇實驗中,我們利用先前已建立用來偵測類澱粉貝塔蛋白降解的高靈敏螢光分析平台來篩選25種薑黃素衍生物對於調控腦啡肽酶活性的能力。我們意外地發現了雙羥基薑黃素、單羥基去甲基薑黃素、單羥基去雙甲基薑黃素及雙羥基去雙甲基薑黃素這4種化合物會增加腦啡肽酶的活性而薑黃素本身卻不會。而此我們在一系列細胞以及動物實驗的數據結果中,證實了這些多羥基薑黃素衍生物調控,使腦啡肽酶活性的增加,乃是由其信使核糖核酸和蛋白質的表現量調控增加所造成。最後我們在動物中,發現餵食雙基因轉殖鼠(APPswe/PS1dE9)單羥基去甲基薑黃素能增加腦內腦啡肽酶的量,並減少大腦皮層及海馬迴內類澱粉貝塔蛋白的堆積。透過此篇實驗的結果,相信此類多羥基薑黃素衍生物在防止罹患阿茲海默症上具有預防的潛力。 | zh_TW |
| dc.description.abstract | Neprilysin (NEP) is the most important Aβ-degrading enzyme. Its expression level decreases with age and inversely correlated with amyloid accumulation, suggesting its correlation with the late-onset of Alzheimer’s disease. Recently, many reports showed that upregulating NEP level is a promising strategy in the prevention and therapy of Alzheimer’s disease. Here, we used a sensitive fluorescence-based Aβ digestion assay to screen 25 curcumin analogs for their ability to upregulate NEP activity. We surprisingly found that four compounds, dihydroxylated curcumin, monohydroxylated demethoxycurcumin, and mono- and di-hydroxylated bisdemethoxycurcumin, increased NEP activity, while curcumin did not. The ability of these polyhydroxycurcuminoids on upregulating NEP was further confirmed by mRNA and protein expression levels in the cell and mouse models. Finally, feeding of monohydroxylated demethoxycurcumin to APPswe/PS1dE9 double transgenic mice upregulated NEP levels in the brain and reduced Aβ accumulation in the hippocampus and cortex. These polyhydroxycurcuminoids offer hope in the prevention of Alzheimer’s disease. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:37:03Z (GMT). No. of bitstreams: 1 ntu-104-D98b46006-1.pdf: 14649407 bytes, checksum: 4bdaa149d36b07ff37b258a9b280e721 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 謝誌 i
中文摘要 iii Abstract iv Abbreviations v Contents ix Figure contents xi Table contents xiii Chapter 1 Introduction 1 1.1 Introduction of Alzheimer Disease 1 1.2 Neprilysin 8 1.3 Therapeutic strategies of combating AD 12 1.4 Previous studies of herbal extracts on combating Alzheimers 16 1.5 Turmeric active component, curcumin 18 1.6 The aim of this thesis 22 Chapter 2 Materials and Methods 25 2.1 Materials 25 2.1.1 Water 25 2.1.2 Chemicals 25 2.1.3 Screened compounds 30 2.1.4 Cell lines 35 2.1.5 Animals 35 2.2 Methods 36 2.2.1 Synthesis of the quenched fluorogenic peptide substrates 36 2.2.2 Conditions of HPLC purification 37 2.2.3 Specificity of qf-Aβ(1-7)C and qf-Aβ(12-16)AAC for various Aβ-degrading enzymes 41 2.2.4 Cell-based NEP activity assay using qf-Aβ(1-7)C as substrate 42 2.2.5 Cell-based NEP activity assay using qf-Aβ(12-16)AAC as substrate 43 2.2.6 Protease inhibition assay 43 2.2.7 Differentiation of SH-SY5Y cells 44 2.2.8 Human NEP-cDNA transfection 44 2.2.9 Determination of the optimal selection antibiotic (G418) concentration (kill curve generation) 45 2.2.10 Procedure of producing stably-transfected cell lines 48 2.2.11 Western blotting 49 2.2.12 Animal experiment 55 2.2.13 Tissue preparation 56 2.2.14 Protein extraction for Aβ ELISA analysis 56 2.2.15 Aβ40 and Aβ42 ELISAs 57 2.2.16 Real-Time PCR Analysis 58 2.2.17 The Relative Standard Curve Method for qPCR data analysis 61 2.2.18 DNA methylation analysis by bisulfite sequencing 62 Chapter 3 Results 63 Part 1. Compounds screening 63 3.1 The fluorescence-based Aβ digestion assay for NEP activity examination 63 Part 2. Cell assay 66 3.2.1 The effect of curcumin analogs on NEP activity in cells 66 3.2.2 Optimization of the experimental conditions 69 3.2.3 Compounds no.7, 8, 10, 20 upregulate NEP activity rather than other Aβ-degrading enzymes 72 3.2.4 Effect of compounds no.7 & 8 in NEP protein expression and mRNA levels 74 Part 3. Animal experiment- normal B6C3 mice (short-term treatment) 81 3.3 Effect of compound no.7 & 8 on NEP mRNA levels in the mice brain 81 Part 4. Animal experiment-APPswe/PS1dE9 transgenic mice (long-term treatment) 84 3.4.1 Effect of compound no.7 on Aβ accumulation in the mice hippocampus and cortex 84 3.4.2 Effect of compound no.7 on NEP mRNA levels in the mice hippocampus and cortex 87 3.5 Effect of compound no.7 & 8 on DNA methylation of NEP in N2a cells 89 Chapter 4 Discussion 93 Chapter 5 Conclusions and Future works 103 Appendix 105 References 106 | |
| dc.language.iso | en | |
| dc.subject | 類澱粉貝塔蛋白 | zh_TW |
| dc.subject | 去甲基薑黃素衍生物 | zh_TW |
| dc.subject | 阿茲海默症 | zh_TW |
| dc.subject | 多羥基薑黃素衍生物 | zh_TW |
| dc.subject | 腦啡?? | zh_TW |
| dc.subject | 薑黃素 | zh_TW |
| dc.subject | 類澱粉 | zh_TW |
| dc.subject | Alzheimer disease | en |
| dc.subject | demethylated curcuminoid | en |
| dc.subject | polyhydroxycurcuminoid | en |
| dc.subject | neprilysin | en |
| dc.subject | curcumin | en |
| dc.subject | amyloid | en |
| dc.subject | Aβ | en |
| dc.title | 以多羥基薑黃素衍生物提升腦啡肽酶來預防阿茲海默症 | zh_TW |
| dc.title | Toward Prevention of Alzheimer’s Disease by Using Polyhydroxycurcuminoids to Upregulate Neprilysin | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 張文章,余榮熾,郭敏豪,侯文琪,王勝仕 | |
| dc.subject.keyword | 阿茲海默症,類澱粉貝塔蛋白,類澱粉,薑黃素,腦啡??,多羥基薑黃素衍生物,去甲基薑黃素衍生物, | zh_TW |
| dc.subject.keyword | Alzheimer disease,Aβ,amyloid,curcumin,neprilysin,polyhydroxycurcuminoid,demethylated curcuminoid, | en |
| dc.relation.page | 117 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-01-27 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 14.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
