Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51503
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor謝松蒼,孫維仁
dc.contributor.authorMing-Dar Tsaien
dc.contributor.author蔡明達zh_TW
dc.date.accessioned2021-06-15T13:36:38Z-
dc.date.available2016-02-24
dc.date.copyright2016-02-24
dc.date.issued2016
dc.date.submitted2016-01-27
dc.identifier.citation1. Abdullah S, Qaddoumi I, Bouffet E. Advances in the management of pediatric central nervous system tumors. Ann N Y Acad Sci. 2008; 1138:22–31
2. Bach LA, Headey SJ, Norton RS. IGF-binding proteins–the pieces are falling into place. Trends Endocrinol Metab. 2005; 16:228-34.
3. Bach LA. IGFBP-6 five years on; not so 'forgotten'? Growth Horm IGF Res. 2005; 15:185-92.
4. Bai SW, Li B, Zhang H, Jonas JB, Zhao B, Shen L, Wang Y. Pax6 Regulates Proliferation and Apoptosis of Human Retinoblastoma Cells. IOVS 2011; 52(7): 4560-70
5. Balmer A, Munier F. Differential diagnosis of leukocoria and strabismus, first presenting signs of retinoblastoma. Clin Ophthalmol. 2007; 1:431-39.
6. Benz CC, Iyer SB, Asgari HS, Matlin SA, Aronson FR, Barchowsky A. Gossypol effects on endothelial cells and tumor blood flow. Life Sci. 1991; 49:PL67-72.
7. Buron N, Porceddu M, Brabant M, Desgue D, Racoeur C, Lassalle M, Pechoux C, Rustin P, Jacotot E, Borgne- Sanchez A. Use of human cancer cell lines mitochondria to explore the mechanisms of BH3 peptides and ABT-737- induced mitochondrial membrane permeabilization. PLoS ONE 2010; 5:e9924.
8. Butler MG, Tilburt J, DeVries A, Muralidhar B, Aue G, Hedges L, Atkinson J, Schwartz H. Comparison of chromosome telomere integrity in multiple tissues from subjects at different ages. Cancer Genet Cytogenet. 1998;105:138–44
9. Chan SR, Blackburn EH. Telomeres and telomerase. Philos Trans R Soc Lond B Biol. Sci. 2004;359:109–21
10. Chang CJ, Ghosh PK, Hu YF, Brueggemeier RW, Lin YC. Anti-proliferative and antimetastatic effects of gossypol on Dunning prostate cell-bearing Copenhagen rats. Res Commun Chem Pathol Pharmacol. 1993; 79:293-312.
11. Chang JS, Hsu YL, Kuo PL, Chiang LC, Lin CC. Upregulation of Fas/Fas ligand-mediated apoptosis by gossypol in an immortalized human alveolar lung cancer cell line. Clin Exp Pharmacol Physiol. 2004; 31:716-22.
12. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J. Neuroscience Methods 1994;53: 55-63.
13. Chen YH, Lin HY, Hsu WM, Lee SM, Cheng CY. Retinoblastoma in Taiwan: incidence and survival characteristics from 1979 to 2003. Eye (Lond) 2010; 24:318-22.
14. Davis AJ, Perkins MN. The involvement of bradykinin B1 and B2 receptor mechanisms in cytokine-induced mechanical hyperalgesia in the rat. British Journal of Pharmacology 1994; 113:63-68.
15. Decosterd I, Woolf C J. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 2000; 87:149-58.
16. Dray A, Perkins M. Bradykinin and inflammatory pain. Trends Neurosci. 1993; 16:99-104.
17. Durant ST. Telomerase-independent paths to immortality in predictable cancer subtypes. J Cancer 2012; 3:67–82
18. Bashir S M, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411:494-98.
19. Friedrich U, Griese E, Schwab M, Fritz P, Thon K, Klotz U. Telomere length in different tissues of elderly patients. Mech Ageing Dev. 2000; 119:89–99
20. Gadalla SM, Cawthon R, Giri N, Alter BP, Savage SA. Telomere length in blood, buccal cells, and fibroblasts from patients with inherited bone marrow failure syndromes. Aging 2010; 2:867–74
21. Gao P, Bauvy C, Souquere S, Tonelli G, Liu L, Zhu Y, Qiao Z, Bakula D, Proikas-Cezanne T, Pierron G, Codogno P, Chen Q, Mehrpour M. The Bcl-2 homology domain 3 mimetic gossypol induces both Beclin 1-dependent and Beclin 1-independent cytoprotective autophagy in cancer cells. J Biol. Chem. 2010; 285:25570-81.
22. Gatta G, Capocaccia R, Coleman MP, Ries LAG, Berrino F. Childhood cancer survival in Europe and the United States. Cancer 2002; 95:1767–72
23. Ge L, Shao W, Zhang Y, Qiu Y, Cui D, Huang D, Deng Z. RNAi targeting of hTERT gene expression induces apoptosis and inhibits the proliferation of lung cancer cells. Oncol Lett. 2011; 2:1121–29
24. Giuliano M, Vento R, Lauricella M, Calvaruso G, Carabillo M, Tesoriere G. Role of insulin-like growth factors in autocrine growth of human retinoblastoma Y79 cells. Eur J Biochem. 1996; 236:523-32.
25. Goldsby RE, Matthay KK. Neuroblastoma: evolving therapies for a disease with many faces. Paediatr Drugs 2004; 6:107–22
26. Goldsmith KC, Hogarty MD. Targeting programmed cell death pathways with experimental therapeutics: opportunities in high-risk neuroblastoma. Cancer Lett. 2005; 228:133-41.
27. Gombos DS, Chevez-Barrios AP. Current treatment and management of retinoblastoma. Curr Oncol Rep. 2007; 9:453-56.
28. Hamilton AJ, Baulcombe DC. A species of small antisense RNA in post-transcriptional gene silencing in plants. Science 1999; 286:950-52.
29. Hammond SM, Caudy AA, Hannon GJ. Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet. 2001; 2:110-19.
30. Harborth J, Elbashir SM, Bechert K, Tuschl T, WeberK. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J. Cell Sci. 2001; 114:4557-65.
31. Heck JE, Ritz B, Hung RJ, Hashibe M, Boffetta P. The epidemiology of neuroblastoma: a review. Paediatr Perinat Epidemiol. 2009; 23:125–43
32. Hiyama E, Hiyama K, Ohtsu K, Yamaoka H, Ichikawa T, Shay JW, Yokoyama T. Telomerase activity in neuroblastoma: is it a prognostic indicator of clinical behaviour? Eur J Cancer 1997;33:1932–36
33. Hiyama K, Hiyama E, Ishioka S, Yamakido M, Inai K, Gazdar AF, Piatyszek MA, Shay JW. Telomerase activity in small- cell and non-small-cell lung cancers. J Natl Cancer Inst. 1995; 87: 895–902
34. Hoare SF, Bryce LA, Wisman GB, Burns S, Going JJ, van der Zee AG, Keith WN. Lack of telomerase RNA gene hTERC expression in alternative lengthening of telomeres cells is associated with methylation of the hTERC promoter. Cancer Res. 2001; 61:27–32
35. Holt SE, Wright WE, Shay JW. Regulation of telomerase activity in immortal cell lines. Mol Cell Biology 1996; 16:2932–39
36. Kannan N, Kang J, Kong X, Tang J, Perry JK, Mohankumar KM, Miller LD, Liu ET, Mertani HC, Zhu T, Grandison PM, Liu DX, Lobie PE. Trefoil factor 3 is oncogenic and mediates anti- estrogen resistance in human mammary carcinoma. Neoplasia 2010; 12:1041–53
37. Kar A, Saha D, Purohit G, Singh A, Kumar P, Yadav VK, Thakur RK, Chowdhury S. Metastases suppressor NME2 associates with telomere ends and telomerase and reduces telomerase activity within cells. Nucleic Acids Res. 2012; 40:2554–65
38. Karaca B, Kucukzeybek Y, Gorumlu G, Erten C, Gul MK, Cengiz E, Atmaca H, Uzunoglu S, Sanli UA, Karabulut B, Uslu R. Profiling of angiogenic cytokines produced by hormone- and drug-refractory prostate cancer cell lines, PC-3 and DU-145 before and after treatment with gossypol. Eur Cytokine Netw. 2008; 19:176-84.
39. Kawa K, Ohnuma N, Kaneko M, Yamamoto K, Etoh T, Mugi- shima H, Ohhira M, Yokoyama J, Bessho F, Honna T, Yoshizawa J, Nakada K, Iwafuchi M, Nozaki T, Mimaya J, Sawada T, Na- kamura T, Miyata H, Yamato K, Tsuchida Y. Long-term survivors of advanced neuroblastoma with MYCN amplification: a report of 19 patients surviving disease-free for more than 66 months. J Clin Oncol. 1999; 17:3216–20
40. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266:2011–15
41. Kim SH, Chung JM. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 1992; 50:355-63.
42. Kim SH, Chung JM. Sympathectomy alleviates mechanical allodynia in an experimental animal model for neuropathy in the rat. Neuroscience Lettter 1991; 134:131-34.
43. Kitada S, Leone M, Sareth S, Zhai D, Reed JC, Pellecchia M. Discovery, characterization, and structure-activity relationships studies of proapoptotic polyphenols targeting B-cell lymphocyte/leukemia-2 proteins. J Med Chem. 2003; 46:4259-64.
44. Koltzenburg M. The changing sensitivity in the life of the nociceptor. Pain Suppl 1999; 6:93-102.
45. Kosciolek BA, Kalantidis K, Table.r M, Rowley PT. Inhibition of telomerase activity in human cancer cells by RNA interference. Mol. Cancer Ther. 2003; 2:209-16.
46. Kumazawa T, Mizumura K, Koda H, Fukusako H. EP receptor subtypes implicated in the PGE2-induced sensitization of polymodal receptors in response to bradykinin and heat. J NeuroPhysiol. 1996; 75:2361-68.
47. Lee YJ, Zachrisson O, Tonge DA, McNaughton PA. Upregulation of bradykinin B2 receptor expression by neurotrophic factors and nerve injury in mouse sensory neurons. Mol. Cell Neurosci. 2002; 19:186-200.
48. Li ZM, Jiang WQ, Zhu ZY, Zhu XF, Zhou JM, Liu ZC, Yang DJ, Guang ZZ. Synergistic cytotoxicity of Bcl-xL inhibitor, gossypol and chemotherapeutic agents in non-Hodgkin's lymphoma cells. Cancer Biol. Ther. 2008; 7:51-60.
49. Lian J, Karnak D, Xu L. The Bcl-2-Beclin 1 interaction in (-)- gossypol-induced autophagy versus apoptosis in prostate cancer cells. Autophagy 2010; 6:1201-03.
50. Lin P, O'Brien JM. Frontiers in the management of retinoblastoma. Am J Ophthalmol. 2009; 148:192-98.
51. Liu Y, Wu BQ, Zhong HH, Tian XX, Fang WG. Quantification of alternative splicing variants of human telomerase reverse transcriptase and correlations with telomerase activity in lung cancer. PLoS ONE 2012; 7:e38868
52. Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, Swift P, Shimada H, Black CT, Brodeur GM, Gerbing RB, Reynolds CP. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children’s Cancer Group. N Engl J Med. 1999; 341:1165–73
53. Melamud A, Palekar R, Singh A. Retinoblastoma. Am Fam
Physician 2006; 73:1039-44.
54. MengY, TangW, DaiY, WuX, LiuM, JiQ, JiM, PientaK, Lawrence T, Xu L. Natural BH3 mimetic (-)-gossypol chemosensitizes human prostate cancer via Bcl-xL inhibition accompanied by increase of Puma and Noxa. Mol Cancer Ther 2008; 7:2192-202.
55. Mohammad RM, Wang S, Aboukameel A, Chen B, Wu X, Chen J, Al-Katib A. Preclinical studies of a nonpeptidic small-molecule inhibitor of Bcl-2 and Bcl-X(L) [(-)- gossypol] against diffuse large cell lymphoma. Mol Cancer Ther. 2005; 4:13-21.
56. Mohammad RM, Wang S, Banerjee S, Wu X, Chen J, Sarkar FH. Nonpeptidic small-molecule inhibitor of Bcl-2 and Bcl- XL, (-)-Gossypol, enhances biological effect of genistein against BxPC-3 human pancreatic cancer cell line. Pancreas 2005; 31:317-24.
57. Moon DO, Kim MO, Lee JD, Kim GY. Gossypol suppresses NF-kappaB activity and NF-kappaB-related gene expression in human leukemia U937 cells. Cancer Lett. 2008; 264:192-200.
58. Munoz-Pinedo C. Signaling pathways that regulate life and cell death: evolution of apoptosis in the context of self-defense. Adv Exp Med Biol. 2012; 738:124–43
59. Nishimura R, Tabata K, Arakawa M, Ito Y, Kimura Y, Akihisa T, Nagai H, Sakuma A, Kohno H, Suzuki T. Isobavachalcone, a chalcone constituent of Angelica keiskei, induces apoptosis in neuroblastoma. Biol. Pharm Bull. 2007; 30:1878–83
60. Njajou OT, Blackburn EH, Pawlikowska L, Mangino M, Damcott CM, Kwok PY, Spector TD, Newman AB, Harris TB, Cummings SR, Cawthon RM, Shuldiner AR, Valdes AM, Hsueh WC. A common variant in the telomerase RNA component is associated with short telomere length. PLoS ONE 2010; 5:e13048
61. Ohali A, Avigad S, Ash S, Goshen Y, Luria D, Feinmesser M, Zaizov R, Yaniv I. Telomere length is a prognostic factor in neuroblastoma. Cancer 2006; 107:1391–9
62. Pajalunga D, Mazzola A, Franchitto A, Puggioni E, Crescenzi M. The logic and regulation of cell cycle exit and reentry. Cell Mol Life Sci. 2008; 65:8–15
63. Perez CA, Matthay KK, Atkinson JB, Seeger RC, Shimada H, Haase GM, Stram DO, Gerbing RB, Lukens JN. Biologic variables in the outcome of stages I and II neuroblastoma treated with surgery as primary therapy: a children’s cancer group study. J Clin Oncol. 2000; 18:18–26
64. Pezzino S, Paratore S, Cavallaro S. System’s biology of apoptosis and survival: implications for drug development. Curr Pharm Des. 2011; 17:190–203
65. Reed JC, Pellecchia M. Apoptosis-based therapies for hematologic malignancies. Blood 2005; 106:408-18.
66. Schor NF. New approaches to pharmacotherapy of tumors of the nervous system during childhood and adolescence. Pharmacol Therapeut. 2009; 122:44–55
67. Seabrook GR, Bowery BJ, Heavens R, Brown N, Ford H, Sirinthsinghi DJS, Borkowski JA, Hess JF, Strader CD, Hill RG. Expression of B1 and B2 bradykinin receptor mRNA and their functional roles in sympathetic ganglia and sensory dorsal root ganglia neurons from wild-type and b2 receptor knockout mice. Neuropharmacology 1997; 36:1009-17.
68. Segond V, Banchet G, Petersen M, Heppelmann B. Bradykinin receptors in cultured rat dorsal root ganglion cells: Influence of length of time in culture. Neuroscience 1996; 75:1211-18.
69. Shah A. Kumar A HIV-1 gp120-mediated increases in IL- 8 production in astrocytes are mediated through the NF-kappaB pathway and can be silenced by gp120-specific siRNA. J Neuro-inflamm. 2010; 7:96
70. Shandilya L, Clarkson TB, Adams MR, Lewis JC. Effects of gossypol on reproductive and endocrine functions of male cynomolgus monkeys (Macaca fascicularis). Biol. Reprod. 1982; 27:241-52.
71. Sharp PA. RNA interference--2001. Genes Dev. 2001; 15:485-90.
72. Shay JW, Wright WE. Role of telomeres and telomerase in cancer. Semin Cancer Biol. 2011; 21:349–53
73. Soohoo CY, Shi R, Lee TH, Huang P, Lu KP, Zhou XZ. Telomerase inhibitor PinX1 provides a link between TRF1 and telomerase to prevent telomere elongation. J Biol. Chem. 2011; 286: 3894–06
74. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J, John M, Kesavan V, Lavine G, Pandey RK, Racie T, Rajeev KG, Roぴ hl I, Toudjarska I, Wang G, Wuschko S, Bumcrot D, Koteliansky V, Limmer S, Manoharan M, Vornlocher HP. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004; 432: 173-8
75. Steranka LR, Manning DC, DeHaas CJ, Ferkany JW, Borosky SA, Connor JR, Vavrek RJ, Stewart JM, Snyder SH. Bradykinin as a pain mediator: Receptors are localized to sensory neurons, and antagonists have analgesic actions. Proceedings of the National Academy of Sciences of the United States of America 1988; 85:3245-49.
76. Sung B, Ravindran J, Prasad S, Pandey MK, Aggarwal BB. Gossypol Induces Death Receptor-5 through Activation of the ROS-ERK-CHOP Pathway and Sensitizes Colon Cancer Cells to TRAIL. J Biol. Chem. 2010; 285:35418-27.
77. Tuschl T. RNA interference and small interfering RNAs. Chembiochem. 2001; 2:239-45.
78. Volate SR, Kawasaki BT, Hurt EM, Milner JA, Kim YS, White J, Farrar WL. Gossypol induces apoptosis by activating p53 in prostate cancer cells and prostate tumor- initiating cells. Mol Cancer Ther. 2010; 9:461-70.
79. Wang X, Howell CP, Chen F, Yin J, Jiang Y. Gossypol–a polyphenolic compound from cotton plant. Adv Food Nutr Res. 2009; 58:215-63.
80. Wang X, Wang J, Wong SC, Chow LS, Nicholls JM, Wong YC, Liu Y, Kwong DL, Sham JS, Tsa SW. Cytotoxic effect of gossypol on colon carcinoma cells. Life Sci. 2000; 67:2663-71.
81. Woolf CJ, SafiehGarabedian B, Ma QP, Crilly P, Winters J. Nerve growth factor contributes to the generation of inflammatory sensory hypersensitivity. Neuroscience 1994; 62:327-31.
82. Xu C, Wang J. Delivery systems for siRNA drug development in cancer therapy. Asian Journal of Pharmaceutical Sciences 2015; 10:1-12
83. Young JLSM, Roffers SD, Liff JM, Bunin GR. Editors. Retinoblastoma. Bethesda, MD, USA National Cancer 
Institute, SEER Program. NIH Pub. 1999; 99:4649
84. Zhang XQ, Huang XF, Hu XB, Zhan YH, An QX, Yang SM, Xia AJ, Yi J, Chen R, Mu SJ, Wu DC. Apogossypolone, a novel inhibitor of antiapoptotic Bcl-2 family proteins, induces autophagy of PC-3 and LNCaP prostate cancer cells in vitro. Asian J Androl. 2010; 12:697-708.
85. Zhang Y, Toh L, Lau P, Wang X. Telomerase reverse transcriptase (TERT) is a novel target of Wnt/beta-catenin path- way in human cancer. J Biol. Chem. 2012; 287:32494–511
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51503-
dc.description.abstract本篇論文研究分為三部分,第一部分是以緩激肽B2受體小干擾核糖核酸(Bradykinin B2 receptor siRNA)在大白鼠背根神經節阻斷疼痛傳導而達到鎮痛效果。第二部分是以端粒酶小干擾核糖核酸(telomerase siRNA)引導神經母細胞瘤癌細胞(neuroblastoma cell)產生核凝結及細胞週期停動;第三部分是以棉酚(Gossypol)引導經由Smac, p53及caspase途徑的視網膜母細胞腫瘤細胞凋亡。
小干擾核糖核酸(small interfering RNA; siRNA)是長度20-25個核甘酸的雙股RNA,主要參與RNA干擾(RNAi)現象,以帶有專一性的方式調節基因的表達。小干擾RNA可經由多種不同轉染(transfection)技術導入細胞內,並對特定基因產生具專一性的基因表現減量(knock-out)效果,已經成為研究基因功能與開發新藥物目標的一項重要工具。
第一部分研究以大白鼠神經病變痛動物模式進行,將大白鼠麻醉後,左側腰椎第六條神經使用外科手術用鈦金屬夾夾住,造成神經損傷,因此就成為神經病變痛動物模式。大白鼠的接受手術後,在不同的足底觸覺刺激程度時觀察牠左腳收起時所需的時間,用來作為對疼痛感覺敏銳度的評估。在對照組是將神經夾起,實驗組則將神經夾起同時系列的注射緩激肽B2受體小干擾核糖核酸,實驗動物觀察到2周的時間,同時重複性的比較大白鼠雙下肢對於觸感刺激的下肢收縮時間,用於評估對疼痛的耐受度。根據實驗結果可以證實,使用緩激肽B2受體小干擾核糖核酸會使大鼠對於神經病變痛的耐受性顯著的增加,另外實驗後將大鼠的左右雙側腰椎第四、五及第六背根神經節取出,以RT-PCR檢測緩激肽B2受體的表現量,可以證實在給予小干擾核糖核酸之後緩激肽B2受體的表現量在實驗組有顯著的降低。由以上的結果可以證實緩激肽B2受體小干擾核糖核酸在動物模式可以顯著地降低疼痛的敏感度,達到鎮痛的效果。
第二部分研究的目標是神經母細胞瘤,我們選用人類神經母細胞瘤細胞(IMR-32)做實驗,在加入不同濃度的siRNA後,發現端粒酶的活性顯著降低(加入100 μM濃度時比對照組降低80%活性),檢測其端粒酶RNA發現加入100 μM組是對照組的20%。
IMR-32細胞的生存能力以WST-1測定法(WST-1 assay)評估,結果發現加入10 μM及100 μM濃度組別的IMR-32細胞生存能力顯著的比對照組低。
細胞凋亡的末期會有細胞核碎裂(fragmentation),IMR-32細胞培養時加以上不同濃度的端粒酶siRNA,並以DAPI標記,DAPI可以分辨出正常細胞與進行凋亡的細胞,結果發現10 μM及100 μM濃度組的細胞比1 μM濃度及對照組多了10%的凋亡現象。
以流式細胞計量術(flow cytometry)劑量細胞週期不同期的細胞比率,一般而言,癌細胞為不死細胞,因為預估會有較少細胞在sub-G1及G1期;而較多的細胞在S及G2/M期。將IMR-32以不同濃度端粒酶siRNA處置後,結果顯示在10 μM及100 μM濃度組在sub-G1期細胞顯著的增加:在100 μM組則發現G1及S期的細胞顯著的減少。
第三部分研究的目標是視網膜母細胞瘤,我們選用人類視網膜母細胞Y79以及人類視網膜素色上皮細胞(ARPE)進行實驗。在細胞存活能力方面使用MTT-測定法,發現5,10及20 μM濃度的棉酚顯著的抑制Y79的存活能力,但對ARPE細胞沒有影響。
Y79細胞培養時加上不同濃度的棉酚,並以DAPI標記,發現10 μM及20 μM濃度組比對照組有顯著增加的細胞凋亡現象。
以流式細胞計量術計量細胞週期不同期的數目時,發現在10 μM及20 μM時,有顯著的細胞增加在G0/G1期,但在G2/M期則顯著的減少,表示棉酚除了可以誘導凋亡外,也可以使細胞週期停動。
在棉酚導引細胞凋亡機制研究方面,以20 μM濃度組與對照組比較蛋白質表現發現凋亡蛋白質如DR5, p53, Smac, caspase 8, caspase 9 及caspase 3在Y79外細胞組的提升1.5-2倍。而Cytochrome C則提升到5.8倍,顯示棉酚可使用多個機制導引Y79細胞凋亡,包括1) TRAIL-媒介(DR5)途徑,導致caspase家族成員濃度提升,如Smac, Cytochrome C等。2) DNA降解致p53提升及細胞週期停動。
以上的結果,可以推論若能通過未來進一步的臨床試驗,則可以在臨床治療上,使用緩激肽B2受體及端粒酶的小干擾核糖核酸分別治療重度神經疼痛及罹患神經母細胞瘤的病患。另外棉酚除了現有的男性避孕臨床用途外,可以經由臨床試驗將來或能在難治的視網膜母細胞的治療上扮演重要角色。
zh_TW
dc.description.abstractRNA interference (RNAi) describes a conserved biological response to double stranded RNA (dsRNA), which results in the degradation of homologous messenger RNA. This process of sequence-specific, post-transcriptional gene silencing has become a key technique for rapidly assessing gene function in both plants and mammals. For target RNA recognition to occur, the small interfering RNA (siRNA) duplex unwinds, allowing binding of one siRNA strand to the target mRNA. The advantage of RNAi to an organism is that siRNA, which specifically binds to target mRNA, prevents damage to other tissues. Adopting this approach may increase a treatment’s therapeutic effect and reduce side effects in patients receiving treatment.
The first part of this dissertation is RNA interference of bradykinin B2 receptor reducing the neuropathic pain caused by sciatic nerve injury. In the condition of cell injury, several inflammatory mediators release from damaged cells. Some of these mediators cause local effect results in increased sensitivity to pain. The hypersensitivity of this sensation is partly due to inflammatory mediators such as prostaglandins, histamine, bradykinin, substance P, and serotonin, which cause a local effect of nociception, and partly some neurotrophic factors. Some mediators transmit the sensation of pain, induced by damage of surrounding cells or even nociceptive neurons. The sensitization of nociception caused by neural damage is normally known as neuropathic pain. Other mediators, such as nerve growth factor and other neurotrophic factors, regulate the progress of neuron regeneration. However, changes in expression of receptors for allogeneic substances such as bradykinin may also be involved, causing a long-term effect. The result shows the nociception caused by neuropathy was reduced by bradykinin B2 receptor siRNA. We therefore supposed that inhibit bradykinin B2 expression may reduce the nociceptive sensation caused by neuropathy.
In our preliminary studies, we screened several inflammatory mediators and found that the nociception caused by neuropathy can be decreased by blocking the transmission of bradykinin. We therefore constructed the RNA interference (RNAi) of bradykinin B2 receptor and applied on the neuropathic animal models. The spared nerve injury models will be used to demonstrate the neuropathic nociception and the mechanical sensitivity behavior test were used to evaluate the degree of neuropathic nociception. Bradykinin B2 receptor expression was upregulated after sciatic nerve crush, while this upregulation was reversed by application of siRNA of bradykinin B2 receptor. This result confirmed that inhibit bradykinin B2 gene expression reduce the nociception caused by neuropathy.
The second part of this dissertation is nuclear condensation and cell cycle arrest induced by telomerase siRNA in neuroblastoma cells. Neuroblastoma is a type of malignant extracranial tumor that occurs in children. Advanced neuroblastoma, and tumors with MYCN amplification in particular, has poor prognoses. Therefore, it is important to find an effective cure for this disease. Small interfering RNA (siRNA) disrupts gene function by specifically binding to target mRNA. In this study, we used siRNA against telomerase to treat neuroblastoma, to evaluate any anti-proliferative effect on these cells. We evaluated cell viability by WST-1 assay on neuroblastoma cells treated with or without telomerase siRNA. Nuclear condensation, an indicator for apoptotic cells, was determined by DAPI labeling following siRNA treatment. The effectiveness of telomerase siRNA on altering the neuroblastoma cell cycle was detected by flow cytometry. Our results indicated that telomerase siRNA reduces the viability of neuroblastoma cells and increases the percentage of cells in the cell cycle’s sub-G1 phase. We found that telomerase siRNA increases the percentage of condensed DNA in neuroblastoma cells. In conclusion, using siRNA against telomerase could be further developed as a therapy for the treatment of neuroblastoma.
The third part of this dissertation is involvement of Smac, p53, and caspase pathways in induction of apoptosis by gossypol in human retinoblastoma cells. Retinoblastoma is a malignant tumor of the retina usually occurring in young children. To date, the conventional treatments for retinoblastoma have been enucleation, cryotherapy, external beam radiotherapy or chemotherapy. Most of these treatments, however, have possible side effects, including blindness, infections, fever, gastrointestinal toxicity and neurotoxicity. More effective treatments are therefore imperative. Gossypol has been reported as a potential inhibitor of cell proliferation in various types of cancers, such as prostate cancer, breast cancer, leukemia, and lung cancer. This study investigates the possible anti-proliferative effect of gossypol on retinoblastoma. The human retinoblastoma cells were cultured with various concentrations of gossypol and checked for cell viability with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Nuclear condensation caused by cell apoptosis was detected by staining retinoblastoma cells with 4', 6-diamidino-2-phenylindole (DAPI), counting those with condensed nuclei, and determining the percentage of apoptotic cells. In addition, the stages of apoptosis and phases in cell cycles were examined with flow cytometry. The possible signal transduction pathways involved were examined with a protein array assay and western blot analysis. Our results indicated that after incubation, the cell survival rate was significantly lower after treatment with 5, 10, and 20 μM of gossypol. The maximum antisurvival effect of gossypol was observed at 20 μM, and the number of apoptotic cells was higher in the preparations cultured with 10 and 20 μM of gossypol. The results in flow cytometry indicated that at concentrations of 10 and 20 μM, gossypol increased the proportion of early- and late-apoptotic retinoblastoma cells and induced cell arrest of retinoblastoma cells at the same concentrations. This anti-proliferative effect was later confirmed by upregulating the expression of death receptor 5 (DR5), caspase 8, caspase 9, caspase 3, cytochrome C, tumor protein 53 (p53), and second mitochondria-derived activator of caspases (Smac) in the signal transduction pathways. We concluded that gossypol has an anti-proliferative effect on retinoblastoma cells.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:36:38Z (GMT). No. of bitstreams: 1
ntu-105-D92421102-1.pdf: 2956787 bytes, checksum: 6d9f9fcd2ef39c8c8bd683a5618a59a2 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsAcknowledgement (致謝) i
Index (目錄) ii
Table index (表目錄) vi
Figure index (圖目錄) vi
Abbreviations (縮寫對照表) vii
Abstract in Chinese (中文摘要) 1
Abstract in English (英文摘要) 4
Chapter 1 Introduction (緒論) 9
1.0 Small interfering RNA (siRNA) acts as a role in post-transcriptional gene silencing (PTGS). 9
1.1 RNA interference of bradykinin B2 receptor reduced the neuropathic pain caused by sciatic nerve injury. 10
1.1.1 Role of bradykinin B2 receptor in pain. 10
1.1.2 Animal model for study of neuropathic pain. 11
1.1.3 Hypothesis: Down-regulation of bradykinin B2 receptor expression at dorsal root ganglion is able to reduce neuropathic pain. 12
1.2 Nuclear condensation and cell cycle arrest induced by telomerase siRNA in neuroblastoma cells. 12
1.2.1 Critical points on the treatment for pediatric malignancies. 12
1.2.2 General information about neuroblastoma. 14
1.2.3 Hypothesis: Telomerase siRNA has the anti-proliferative effect in the neuroblastoma cell line IMR-32. 16
1.3 Involvement of Smac, p53, and caspase pathways in induction of apoptosis by gossypol in human retinoblastoma cells. 18
1.3.1 General information about retinoblastoma. 18
1.3.2 Hypothesis: Gossypol has an anti-proliferative effect on retinoblastoma cells. 19
Chapter 2. Methods and materials (研究方法與材料) 22
2.1 RNA interference of bradykinin B2 receptor reduced the neuropathic pain caused by sciatic nerve injury. 22
2.1.1 Animals. 22
2.1.2 Surgery for neuropathic pain model. 22
2.1.3 RNA interference construction. 23
2.1.4 Administration of siRNA. 24
2.1.5 Behavioral analysis. 24
2.2 Nuclear condensation and cell cycle arrest induced by telomerase siRNA in neuroblastoma cells. 26
2.2.1 Cell culture. 26
2.2.2 Preparation of siRNA. 26
2.2.3 Transfection of siRNA. 27
2.2.4 Quantitation of telomerase RNA. 27
2.2.5 Cell proliferation assay. 28
2.2.6 Labeling DNA fragments of apoptotic cells. 28
2.2.7 Flow cytometry. 29
2.2.8 Statistical analysis. 30
2.3 Involvement of Smac, p53, and caspase pathways in induction of apoptosis by gossypol in human retinoblastoma cells. 31
2.3.1 Preparation of gossypol. 31
2.3.2 Cell viability assay. 31
2.3.3 Assay for nuclear condensation. 32
2.3.4 Annexin V-fluorescein isothiocyanate and propidium iodide staining. 33
2.3.5 Flow cytometry. 34
2.3.6 Western blot analysis. 34
2.3.7 Statistical analysis. 35
Chapter 3. Results (結果) 36
3.1 RNA interference of bradykinin B2 receptor reduced the neuropathic pain caused by sciatic nerve injury. 36
3.1.1 Analgesic effect of bradykinin B2 receptor siRNA. 36
3.1.2 Real-time PCR study of bradykinin B2 receptor expression. 36
3.2 Nuclear condensation and cell cycle arrest induced by telomerase siRNA in neuroblastoma cells. 37
3.2.1 Activity of telomerase. 37
3.2.2 Cell viability. 37
3.2.3 Nuclear condensation of apoptotic cells. 38
3.2.4 Cell cycle study. 39
3.3 Involvement of Smac, p53, and caspase pathways in induction of apoptosis by gossypol in human retinoblastoma cells. 40
3.3.1 Effective concentrations of gossypol. 40
3.3.2 Apoptotic studies of Y79 cells treated with gossypol. 40
3.3.3 Signal transduction pathway of gossypol-mediated apoptosis of Y79 cells. 42
Chapter 4. Discussion (討論) 44
4.1 RNA interference of bradykinin B2 receptor reduced the neuropathic pain caused by sciatic nerve injury. 44
4.2 Nuclear condensation and cell cycle arrest induced by telomerase siRNA in neuroblastoma cells. 46
4.3 Involvement of Smac, p53, and caspase pathways in induction of apoptosis by gossypol in human retinoblastoma cells. 48
Chapter 5. Prospective (展望) 53
5.1 RNA interference of bradykinin B2 receptor reduced the neuropathic pain caused by sciatic nerve injury. 53
5.2 Nuclear condensation and cell cycle arrest induced by telomerase siRNA in neuroblastoma cells. 55
5.3 Involvement of Smac, p53, and caspase pathways in induction of apoptosis by gossypol in human retinoblastoma cells. 56
Chapter 6. Summary in Chinese (論文中文簡述) 58
Chapter 7. References (參考文獻) 65
Chapter 8. Figures and Tablets (圖表) 81
博士班修業期間所發表之相關論文 108
dc.language.isoen
dc.subject細胞凋亡zh_TW
dc.subject神經病變痛zh_TW
dc.subject緩激?B2受體zh_TW
dc.subject小干擾核糖核酸zh_TW
dc.subject端粒?zh_TW
dc.subject神經母細胞瘤zh_TW
dc.subject細胞核凝集zh_TW
dc.subject細胞週期停動zh_TW
dc.subject棉酚zh_TW
dc.subject視網膜母細胞瘤zh_TW
dc.subject細胞凋亡zh_TW
dc.subject神經病變痛zh_TW
dc.subject緩激?B2受體zh_TW
dc.subject小干擾核糖核酸zh_TW
dc.subject端粒?zh_TW
dc.subject神經母細胞瘤zh_TW
dc.subject細胞核凝集zh_TW
dc.subject細胞週期停動zh_TW
dc.subject棉酚zh_TW
dc.subject視網膜母細胞瘤zh_TW
dc.subjectsiRNAen
dc.subjectTelomeraseen
dc.subjectNeuroblastomaen
dc.subjectNuclear condensationen
dc.subjectCell cycle arresten
dc.subjectGossypolen
dc.subjectRetinoblastoma Apoptosisen
dc.subjectNeuropathic painen
dc.subjectBradykinin B2 receptoren
dc.subjectsiRNAen
dc.subjectTelomeraseen
dc.subjectNeuroblastomaen
dc.subjectNuclear condensationen
dc.subjectCell cycle arresten
dc.subjectGossypolen
dc.subjectRetinoblastoma Apoptosisen
dc.subjectNeuropathic painen
dc.subjectBradykinin B2 receptoren
dc.title小干擾核糖核酸治療神經外科疾病---以神經病變痛及神經腫瘤為例zh_TW
dc.titleSmall interfering RNAs for treatment of neurosurgical diseases, specifically involving neuropathic pain and neural tumorsen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree博士
dc.contributor.oralexamcommittee邱浩彰,紀秀華,陳培哲,鄭劍廷
dc.subject.keyword神經病變痛,緩激?B2受體,小干擾核糖核酸,端粒?,神經母細胞瘤,細胞核凝集,細胞週期停動,棉酚,視網膜母細胞瘤,細胞凋亡,zh_TW
dc.subject.keywordNeuropathic pain,Bradykinin B2 receptor,siRNA,Telomerase,Neuroblastoma,Nuclear condensation,Cell cycle arrest,Gossypol,Retinoblastoma Apoptosis,en
dc.relation.page112
dc.rights.note有償授權
dc.date.accepted2016-01-27
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
Appears in Collections:臨床醫學研究所

Files in This Item:
File SizeFormat 
ntu-105-1.pdf
  Restricted Access
2.89 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved