請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51501完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊台鴻(Tai-Horng Young) | |
| dc.contributor.author | Yu-Jou Lin | en |
| dc.contributor.author | 林羽柔 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:36:34Z | - |
| dc.date.available | 2019-03-08 | |
| dc.date.copyright | 2016-03-08 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2016-01-27 | |
| dc.identifier.citation | [1] Patel S, Pasquale LR. Glaucoma drainage devices: a review of the past, present, and future. Seminars in ophthalmology: Informa Healthcare New York; 2010. p. 265-70.
[2] Rao K, Ahmed I, Blake DA, Ayyala RS. New devices in glaucoma surgery. 2009. [3] Pan T, Brown JD, Ziaie B. An artificial nano-drainage implant (ANDI) for glaucoma treatment. Engineering in Medicine and Biology Society, 2006 EMBS'06 28th Annual International Conference of the IEEE: IEEE; 2006. p. 3174-7. [4] Hong C-H, Arosemena A, Zurakowski D, Ayyala RS. Glaucoma drainage devices: a systematic literature review and current controversies. Survey of ophthalmology 2005;50:48-60. [5] Aref A, Gedde S, Budenz D. Glaucoma drainage implant surgery. 2012. [6] Schmidt W, Kastner C, Sternberg K, Allemann R, Lobler M, Guthoff R, et al. New concepts for glaucoma implants-controlled aqueous humor drainage, encapsulation prevention and local drug delivery. Current pharmaceutical biotechnology 2013;14:98-111. [7] Schwartz KS, Lee RK, Gedde SJ. Glaucoma drainage implants: a critical comparison of types. Current opinion in ophthalmology 2006;17:181-9. [8] Boswell CA, Noecker RJ, Mac M, Snyder RW, Williams SK. Evaluation of an aqueous drainage glaucoma device constructed of ePTFE. Journal of biomedical materials research 1999;48:591-5. [9] Jesse. Chemical structure of Polydimethylsiloxane (PDMS). 2006. [10] Geddeb AAASJ, Budenzc DL. Glaucoma drainage implant surgery. Glaucoma Surgery 2012;50:37. [11] Keefe AJ, Brault ND, Jiang S. Suppressing surface reconstruction of superhydrophobic PDMS using a superhydrophilic zwitterionic polymer. Biomacromolecules 2012;13:1683-7. [12] Löbler M, Sternberg K, Stachs O, Allemann R, Grabow N, Roock A, et al. Polymers and drugs suitable for the development of a drug delivery drainage system in glaucoma surgery. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2011;97:388-95. [13] Chen S, Li L, Zhao C, Zheng J. Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer 2010;51:5283-93. [14] Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM. A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir 2001;17:5605-20. [15] Chapman RG, Ostuni E, Liang MN, Meluleni G, Kim E, Yan L, et al. Polymeric thin films that resist the adsorption of proteins and the adhesion of bacteria. Langmuir 2001;17:1225-33. [16] Zheng J, Li L, Tsao H-K, Sheng Y-J, Chen S, Jiang S. Strong repulsive forces between protein and oligo (ethylene glycol) self-assembled monolayers: A molecular simulation study. Biophysical journal 2005;89:158-66. [17] Israelachvili J, Wennerström H. Role of hydration and water structure in biological and colloidal interactions. 1996. [18] Zheng J, Li L, Chen S, Jiang S. Molecular simulation study of water interactions with oligo (ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir 2004;20:8931-8. [19] Wang R, Kreuzer H, Grunze M. Molecular conformation and solvation of oligo (ethylene glycol)-terminated self-assembled monolayers and their resistance to protein adsorption. The Journal of Physical Chemistry B 1997;101:9767-73. [20] Ping Z, Nguyen Q, Chen S, Zhou J, Ding Y. States of water in different hydrophilic polymers—DSC and FTIR studies. Polymer 2001;42:8461-7. [21] Shao Q, He Y, White AD, Jiang S. Difference in hydration between carboxybetaine and sulfobetaine. The Journal of Physical Chemistry B 2010;114:16625-31. [22] Joshi H, Topp E. Hydration in hyaluronic acid and its esters using differential scanning calorimetry. International journal of pharmaceutics 1992;80:213-25. [23] Tamai Y, Tanaka H, Nakanishi K. Molecular dynamics study of polymer-water interaction in hydrogels. 1. Hydrogen-bond structure. Macromolecules 1996;29:6750-60. [24] Tamai Y, Tanaka H, Nakanishi K. Molecular dynamics study of polymer-water interaction in hydrogels. 2. Hydrogen-bond dynamics. Macromolecules 1996;29:6761-9. [25] Hatakeyama T, Nakamura K, Hatakeyama H. Determination of bound water content in polymers by DTA, DSC and TG. Thermochimica Acta 1988;123:153-61. [26] Liu Q, Singh A, Liu L. Amino acid-based zwitterionic poly (serine methacrylate) as an antifouling material. Biomacromolecules 2012;14:226-31. [27] Zhang L, Cao Z, Bai T, Carr L, Ella-Menye J-R, Irvin C, et al. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nature biotechnology 2013;31:553-6. [28] Huang C-J, Li Y, Jiang S. Zwitterionic polymer-based platform with two-layer architecture for ultra low fouling and high protein loading. Analytical chemistry 2012;84:3440-5. [29] Zhai G, Toh S, Tan W, Kang E, Neoh K, Huang C, et al. Poly (vinylidene fluoride) with grafted zwitterionic polymer side chains for electrolyte-responsive microfiltration membranes. Langmuir 2003;19:7030-7. [30] Chang Y, Liao S-C, Higuchi A, Ruaan R-C, Chu C-W, Chen W-Y. A highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion. Langmuir 2008;24:5453-8. [31] Johnston EE, Bryers JD, Ratner BD. Plasma deposition and surface characterization of oligoglyme, dioxane, and crown ether nonfouling films. Langmuir 2005;21:870-81. [32] Yuan Y, Ai F, Zang X, Zhuang W, Shen J, Lin S. Polyurethane vascular catheter surface grafted with zwitterionic sulfobetaine monomer activated by ozone. Colloids and Surfaces B: Biointerfaces 2004;35:1-5. [33] Efimenko K, Wallace WE, Genzer J. Surface modification of Sylgard-184 poly (dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. Journal of colloid and interface science 2002;254:306-15. [34] Peterson SL, McDonald A, Gourley PL, Sasaki DY. Poly (dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: cell culture and flow studies with glial cells. Journal of Biomedical Materials Research Part A 2005;72:10-8. [35] Wu MH. Simple poly (dimethylsiloxane) surface modification to control cell adhesion. Surface and Interface Analysis 2009;41:11-6. [36] Yeh S-B, Chen C-S, Chen W-Y, Huang C-J. Modification of silicone elastomer with zwitterionic silane for durable antifouling properties. Langmuir 2014;30:11386-93. [37] Zhang Z, Wang J, Tu Q, Nie N, Sha J, Liu W, et al. Surface modification of PDMS by surface-initiated atom transfer radical polymerization of water-soluble dendronized PEG methacrylate. Colloids and Surfaces B: Biointerfaces 2011;88:85-92. [38] Kostina NY, Rodriguez-Emmenegger C, Houska M, Brynda E, Mich lek Jí. Non-fouling hydrogels of 2-hydroxyethyl methacrylate and zwitterionic carboxybetaine (meth) acrylamides. Biomacromolecules 2012;13:4164-70. [39] Li D, Zheng Q, Wang Y, Chen H. Combining surface topography with polymer chemistry: exploring new interfacial biological phenomena. Polymer Chemistry 2014;5:14-24. [40] Chang Y, Shih YJ, Lai CJ, Kung HH, Jiang S. Blood‐Inert Surfaces via Ion‐Pair Anchoring of Zwitterionic Copolymer Brushes in Human Whole Blood. Advanced Functional Materials 2013;23:1100-10. [41] Zhang H, Bian C, Jackson JK, Khademolhosseini F, Burt HM, Chiao M. Fabrication of robust hydrogel coatings on polydimethylsiloxane substrates using micropillar anchor structures with chemical surface modification. ACS applied materials & interfaces 2014;6:9126-33. [42] Zhou J, Yuan J, Zang X, Shen J, Lin S. Platelet adhesion and protein adsorption on silicone rubber surface by ozone-induced grafted polymerization with carboxybetaine monomer. Colloids and Surfaces B: Biointerfaces 2005;41:55-62. [43] Ye S-H, Johnson CA, Woolley JR, Murata H, Gamble LJ, Ishihara K, et al. Simple surface modification of a titanium alloy with silanated zwitterionic phosphorylcholine or sulfobetaine modifiers to reduce thrombogenicity. Colloids and Surfaces B: Biointerfaces 2010;79:357-64. [44] Zhang Z, Feng X, Luo Q, Liu BF. Environmentally friendly surface modification of PDMS using PEG polymer brush. Electrophoresis 2009;30:3174-80. [45] Yang L, Li L, Tu Q, Ren L, Zhang Y, Wang X, et al. Photocatalyzed surface modification of poly (dimethylsiloxane) with polysaccharides and assay of their protein adsorption and cytocompatibility. Analytical chemistry 2010;82:6430-9. [46] Sui G, Wang J, Lee C-C, Lu W, Lee SP, Leyton JV, et al. Solution-phase surface modification in intact poly (dimethylsiloxane) microfluidic channels. Analytical chemistry 2006;78:5543-51. [47] Maheshwari N, Kottantharayil A, Kumar M, Mukherji S. Long term hydrophilic coating on poly (dimethylsiloxane) substrates for microfluidic applications. Applied Surface Science 2010;257:451-7. [48] Tu Q, Wang J-C, Liu R, He J, Zhang Y, Shen S, et al. Antifouling properties of poly (dimethylsiloxane) surfaces modified with quaternized poly (dimethylaminoethyl methacrylate). Colloids and Surfaces B: Biointerfaces 2013;102:361-70. [49] Wu L, Guo Z, Meng S, Zhong W, Du Q, Chou LL. Synthesis of a zwitterionic silane and its application in the surface modification of silicon-based material surfaces for improved hemocompatibility. ACS applied materials & interfaces 2010;2:2781-8. [50] Tamada Y, Kulik EA, Ikada Y. Simple method for platelet counting. Biomaterials 1995;16:259-61. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51501 | - |
| dc.description.abstract | 青光眼係指一種造成眼睛不可回復性損傷的疾病,此類疾病嚴重時往往會導 致失明。而眼內壓的升高被認為是造成青光眼的重要病因,因此在青光眼的治療 上多以降低眼內壓為目標。目前,使用青光眼引流裝置為近年來主要治療青光眼 之方法,因其可達到抑制青光眼病情之效果。然而,外科植入手術所產生的傷口 會導致人體之傷口修復機制啟動,蛋白質的貼附、纖維母細胞之沾黏與增生最終 使傷口纖維化,導致青光眼引流裝置無法達到應有之功效。因此本研究所使用之 青光眼引流裝置最主要材料-矽膠作為引流管基底,並設計了一個兩階段矽膠表 面改質方法:(一)首先挑選三種常見之親水性分子與矽氧烷基合成高分子後,(二) 再將此高分子接枝到矽膠上以降低非特異性蛋白質貼附。改質後之表面利用接觸 角測試 (contact angle)、衰減式全反射傅立葉轉換紅外線光譜儀 (ATR-FTIR)與化 學分析影像能譜儀 (ESCA)先進行化學定性測試,再進行一系列之生物性測試如 蛋白質吸附、血小板與細胞貼附測試。實驗結果顯示此表面改質方法具有可行性, 在材料吸附性測試中,改質後之矽膠表面吸附量皆有明顯下降。此表面改質方法 對於降低非特異性蛋白質沾黏有顯著性效果,在青光眼引流裝置上應用具有未來 發展性。 | zh_TW |
| dc.description.abstract | Glaucoma, an irreversible damage in eye diseases, usually causes blindness. Several studies have shown that intraocular pressure (IOP) is a major risk factor for optic nerve damage; therefore, the main goal of glaucoma treatment usually focuses on how to reduce IOP sufficiently in order to suppress glaucoma progression. Recently, glaucoma drainage implant (GDI) surgery becomes the main treatment of glaucoma due to its effect on prevention of glaucoma. However, the surgery wound will cause function loss of GDI because the wound healing process will result in protein adsorption, fibroblast adhesion, and proliferation. In this study we modified polydimethylsiloxane (PDMS) surfaces to reduce nonspecific protein adsorption by three hydrophilic polymers. We designed a two steps surface modification method: First, synthesis of silanated hydrophilic polymer and then grafting it onto a PDMS surface. The modified surface was analyzed by surface characterization tests such as contact angle goniometry, attentuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). Protein adsorption, platelet adhesion and cell adhesion test were also used to examine the biological effects of modified surfaces. Our results showed that the modification of PDMS surfaces was successful and the modified surfaces significantly reduced protein adsorption, platelet adhesion and cell adhesion. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:36:34Z (GMT). No. of bitstreams: 1 ntu-104-R02548016-1.pdf: 3798701 bytes, checksum: e5fa8fee65e274e46e1601badd4f2e05 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 第一章 緒論 ................................................... 1
1.1 青光眼 (Glaucoma) ..................................................................... 1 1.1.1 青光眼的成因 ...................................................................... 1 1.1.2 青光眼現有治療方法 ...................................................................... 1 1.1.3 青光眼引流裝置 ...................................................................... 2 1.1.4 青光眼引流裝置之材料 ....................................................................... 3 1.1.5 矽膠(Polydimethylsiloxane).................................. 4 1.1.6 現今青光眼引流裝置發展限制 .................................................................. 5 1.2 抗沾黏特性 (antifouing property).................................................................. 5 1.2.1 抗沾黏特性之發展 ................................................................... 6 1.2.2 官能基 (functionalgroup)........................................6 1.2.3 表面堆積密度 (surfacepacking)........................................7 1.3 研究目的 .................................................................. 9 第二章 實驗材料與方法 ................................................................... 10 2.1 實驗架構 ................................................................... 10 2.2 實驗材料 .................................................................... 12 2.3 試劑、藥品製備 .................................................................... 12 2.4 PDMS 製備 ..................................................................... 13 2.5 合成矽氧烷基側鏈聚高分子 ....................................................................... 13 2.6 PDMS 表面改質 ....................................................................... 14 2.7 材料表面定性測試 ...................................................................... 14 2.7.1 接觸角測試 (contact angle) .............................................................. 14 2.7.2 衰減式全反射傅立葉轉換紅外線光譜儀 (Attentuated total reflectance Fourier transform infrared spectroscopy, ATR-FTIR) ................. 15 2.7.3 化學分析影像能譜儀 (ESCA) ......................................................... 15 2.8 材料生物吸附測試 ........................................................... 16 2.8.1 蛋白質吸附測試 (Protein Absorption Test)...................................... 16 2.8.2 細胞貼附測試 (Cell Adhesion Test) ................................................. 16 2.8.3 血小板吸附測試 (Platelet Adhesion Test)........................................ 17 2.9 材料穩定性測試 (Stability) ......................................................................... 18 2.10 統計分析 ........................................................................ 18 2.11 實驗儀器 ..................................................................... 18 第三章 結果與討論 ...................................................................... 21 3.1 接觸角 (Contact angle)分析 ........................................................................ 21 3.2 衰減式全反射傅立葉轉換紅外線光譜儀 (ATR-FTIR)分析 ..................... 22 3.3 蛋白質吸附 (Protein adsorption)分析 ......................................................... 22 3.4 化學分析影像能譜儀 (ESCA)分析 ............................................................ 23 3.5 細胞貼附 (Cell adhesion)分析.......................................................... 24 3.5.1 人類包皮纖維母細胞貼附 (Human foreskin fibroblast)分析 ................. 24 3.5.2 牛角膜纖維母細胞貼附 (Bovinecorneafibroblast)分析........................24 3.5.2 牛角膜內皮細胞貼附 (Bovine cornea endothelia)分析........................... 25 3.6 血小板貼附 (Platelet adhesion)分析 ........................................................... 26 3.7 穩定性 (Stability)分析 ................................................................................. 26 第四章 結論............................................ 28 第五章 參考文獻......................................... 29 第六章 圖表............................................... 37 | |
| dc.language.iso | zh-TW | |
| dc.subject | 聚二甲基矽氧烷 | zh_TW |
| dc.subject | 親水性 | zh_TW |
| dc.subject | 雙離子分子 | zh_TW |
| dc.subject | 自由基聚合 | zh_TW |
| dc.subject | 表面改質 | zh_TW |
| dc.subject | 非特異性蛋白質吸附 | zh_TW |
| dc.subject | 聚二甲基矽氧烷 | zh_TW |
| dc.subject | 親水性 | zh_TW |
| dc.subject | 雙離子分子 | zh_TW |
| dc.subject | 自由基聚合 | zh_TW |
| dc.subject | 表面改質 | zh_TW |
| dc.subject | 非特異性蛋白質吸附 | zh_TW |
| dc.subject | hydrophilic | en |
| dc.subject | zwitterionic molecule | en |
| dc.subject | nonspecific protein adsorption | en |
| dc.subject | surface modification | en |
| dc.subject | radical polymerization | en |
| dc.subject | zwitterionic molecule | en |
| dc.subject | hydrophilic | en |
| dc.subject | Polydimethylsiloxane (PDMS) | en |
| dc.subject | nonspecific protein adsorption | en |
| dc.subject | surface modification | en |
| dc.subject | radical polymerization | en |
| dc.subject | Polydimethylsiloxane (PDMS) | en |
| dc.title | 探討矽氧烷基親水性高分子改質矽膠表面降低非特異性蛋白質吸附 | zh_TW |
| dc.title | Surface Modification of Polydimethylsiloxane (PDMS) with Silanated Hydrophilic Polymer to Reduce Nonspecific Protein Adsorption | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡瑞瑩(Ruey-Yug Tsay),黃俊仁(Chun-Jen Huang) | |
| dc.subject.keyword | 聚二甲基矽氧烷,非特異性蛋白質吸附,表面改質,自由基聚合,雙離子分子,親水性, | zh_TW |
| dc.subject.keyword | Polydimethylsiloxane (PDMS),nonspecific protein adsorption,surface modification,radical polymerization,zwitterionic molecule,hydrophilic, | en |
| dc.relation.page | 53 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-01-27 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
