Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51488
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳穎練(Ying-Lien Chen)
dc.contributor.authorShang-Jie Yuen
dc.contributor.author游尚潔zh_TW
dc.date.accessioned2021-06-15T13:36:03Z-
dc.date.available2021-02-24
dc.date.copyright2016-02-24
dc.date.issued2016
dc.date.submitted2016-01-27
dc.identifier.citation1. Azie N, Neofytos D, Pfaller M, Meier-Kriesche H-U, Quan S-P, Horn D. 2012. The PATH (Prospective Antifungal Therapy) Alliance® registry and invasive fungal infections: update 2012. Diagnostic microbiology and infectious disease 73:293-300
2. Balasubramanian R, Pray-Grant MG, Selleck W, Grant PA, Tan S. 2002. Role of the Ada2 and Ada3 transcriptional coactivators in histone acetylation. Journal of Biological Chemistry 277:7989-95
3. Berger SL. 2007. The complex language of chromatin regulation during transcription. Nature 447:407-12
4. Berger SL, Piña B, Silverman N, Marcus GA, Agapite J, et al. 1992. Genetic isolation of ADA2: a potential transcriptional adaptor required for function of certain acidic activation domains. Cell 70:251-65
5. Braakman I, Hebert DN. 2013. Protein folding in the endoplasmic reticulum. Cold Spring Harbor perspectives in biology 5:a013201
6. Brownell J, Zhou J, Ranalli T, Kobayashi R, Edmondson D, et al. 1996. Tetrahymena histone acetyltransferase A: a transcriptional co-activator linking gene expression to histone acetylation. Cell 84:843-51
7. Bruno VM, Kalachikov S, Subaran R, Nobile CJ, Kyratsous C, Mitchell AP. 2006. Control of the C. albicans cell wall damage response by transcriptional regulator Cas5. PLoS Pathog 2:e21-e
8. Calderone RA, Clancy CJ. 2012. Candida and candidiasis. ASM press
9. Calderone RA, Fonzi WA. 2001. Virulence factors of Candida albicans. Trends in microbiology 9:327-35
10. Castaño I, Pan SJ, Zupancic M, Hennequin C, Dujon B, Cormack BP. 2005. Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata. Molecular microbiology 55:1246-58
11. Chang YC, Kwon-Chung K. 1994. Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence. Molecular and Cellular Biology 14:4912-9
12. Chen Y-L, de Bernardis F, Yu S-J, Sandini S, Kauffman S, et al. 2015. Candida albicans OPI1 Regulates Filamentous Growth and Virulence in Vaginal Infections, but Not Inositol Biosynthesis. PloS one 10
13. Chen Y-L, Konieczka JH, Springer DJ, Bowen SE, Zhang J, et al. 2012. Convergent evolution of calcineurin pathway roles in thermotolerance and virulence in Candida glabrata. G3: Genes| Genomes| Genetics 2:675-91
14. Chen Y-L, Yu S-J, Huang H-Y, Chang Y-L, Lehman VN, et al. 2014. Calcineurin controls hyphal growth, virulence, and drug tolerance of Candida tropicalis. Eukaryotic cell:EC. 00302-13
15. Cormack BP, Falkow S. 1999. Efficient homologous and illegitimate recombination in the opportunistic yeast pathogen Candida glabrata. Genetics 151:979-87
16. Cormack BP, Ghori N, Falkow S. 1999. An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 285:578-82
17. Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS. 2014. Mechanisms of antifungal drug resistance. Cold Spring Harb. Perspect. Med 10
18. De Bernardis F, Arancia S, Morelli L, Hube B, Sanglard D, et al. 1999. Evidence that members of the secretory aspartyl proteinase gene family, in particular SAP2, are virulence factors for Candida vaginitis. Journal of Infectious Diseases 179:201-8
19. De Las Peñas A, Pan S-J, Castaño I, Alder J, Cregg R, Cormack BP. 2003. Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1-and SIR-dependent transcriptional silencing. Genes & development 17:2245-58
20. Domergue R, Castaño I, De Las Peñas A, Zupancic M, Lockatell V, et al. 2005. Nicotinic acid limitation regulates silencing of Candida adhesins during UTI. Science 308:866-70
21. Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, et al. 2004. Genome evolution in yeasts. Nature 430:35-44
22. Ferrari S, Ischer F, Calabrese D, Posteraro B, Sanguinetti M, et al. 2009. Gain of function mutations in CgPDR1 of Candida glabrata not only mediate antifungal resistance but also enhance virulence. PLoS pathogens 5:e1000268
23. Ferrari S, Sanguinetti M, De Bernardis F, Torelli R, Posteraro B, et al. 2011. Loss of mitochondrial functions associated with azole resistance in Candida glabrata results in enhanced virulence in mice. Antimicrobial agents and chemotherapy 55:1852-60
24. Fidel PL, Vazquez JA, Sobel JD. 1999. Candida glabrata: review of epidemiology, pathogenesis, and clinical disease with comparison toC. albicans. Clinical microbiology reviews 12:80-96
25. Fu Y, Rieg G, Fonzi WA, Belanger PH, Edwards JE, Filler SG. 1998. Expression of the Candida albicans GeneALS1 in Saccharomyces cerevisiae Induces Adherence to Endothelial and Epithelial Cells. Infection and immunity 66:1783-6
26. Gietz D, St Jean A, Woods RA, Schiestl RH. 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic acids research 20:1425
27. Grant PA, Duggan L, Côté J, Roberts SM, Brownell JE, et al. 1997. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes & development 11:1640-50
28. Gregori C, Glaser W, Frohner IE, Reinoso-Martín C, Rupp S, et al. 2011. Efg1 controls caspofungin-induced cell aggregation of Candida albicans through the adhesin Als1. Eukaryotic cell 10:1694-704
29. Guinea J. 2014. Global trends in the distribution of Candida species causing candidemia. Clinical Microbiology and Infection 20:5-10
30. Haynes BC, Skowyra ML, Spencer SJ, Gish SR, Williams M, et al. 2011. Toward an integrated model of capsule regulation in Cryptococcus neoformans. PLoS pathogens 7:e1002411
31. Hoke SM, Guzzo J, Andrews B, Brandl CJ. 2008. Systematic genetic array analysis links the Saccharomyces cerevisiae SAGA/SLIK and NuA4 component Tra1 to multiple cellular processes. BMC genetics 9:46
32. Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, et al. 1998. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95:717-28
33. Hoyer LL. 2001. The ALS gene family of Candida albicans. Trends in microbiology 9:176-80
34. Hube B, Sanglard D, Odds FC, Hess D, Monod M, et al. 1997. Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infection and immunity 65:3529-38
35. Iraqui I, Garcia‐Sanchez S, Aubert S, Dromer F, Ghigo JM, et al. 2005. The Yak1p kinase controls expression of adhesins and biofilm formation in Candida glabrata in a Sir4p‐dependent pathway. Molecular microbiology 55:1259-71
36. Jacobson S, Pillus L. 2009. The SAGA subunit Ada2 functions in transcriptional silencing. Molecular and cellular biology 29:6033-45
37. Kamai Y, Kubota M, Kamai Y, Hosokawa T, Fukuoka T, Filler SG. 2002. Contribution of Candida albicans ALS1 to the pathogenesis of experimental oropharyngeal candidiasis. Infection and immunity 70:5256-8
38. Kamran M, Calcagno A-M, Findon H, Bignell E, Jones MD, et al. 2004. Inactivation of transcription factor gene ACE2 in the fungal pathogen Candida glabrata results in hypervirulence. Eukaryotic cell 3:546-52
39. Kaur R, Domergue R, Zupancic ML, Cormack BP. 2005. A yeast by any other name: Candida glabrata and its interaction with the host. Current opinion in microbiology 8:378-84
40. Kaur R, Ma B, Cormack BP. 2007. A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata. Proceedings of the National Academy of Sciences 104:7628-33
41. Klevay MJ, Horn DL, Neofytos D, Pfaller MA, Diekema DJ. 2009. Initial treatment and outcome of Candida glabrata versus Candida albicans bloodstream infection. Diagnostic microbiology and infectious disease 64:152-7
42. Krishnan K, Askew DS. 2014. Endoplasmic reticulum stress and fungal pathogenesis. Fungal biology reviews 28:29-35
43. Lass‐Flörl C. 2009. The changing face of epidemiology of invasive fungal disease in Europe. Mycoses 52:197-205
44. Lo H-J, Köhler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR. 1997. Nonfilamentous C. albicans mutants are avirulent. Cell 90:939-49
45. MacCallum DM, Findon H, Kenny CC, Butler G, Haynes K, Odds FC. 2006. Different consequences of ACE2 and SWI5 gene disruptions for virulence of pathogenic and nonpathogenic yeasts. Infection and immunity 74:5244-8
46. Marcus GA, Silverman N, Berger SL, Horiuchi J, Guarente L. 1994. Functional similarity and physical association between GCN5 and ADA2: putative transcriptional adaptors. The EMBO Journal 13:4807
47. Miyazaki T, Nakayama H, Nagayoshi Y, Kakeya H, Kohno S. 2013. Dissection of Ire1 functions reveals stress response mechanisms uniquely evolved in Candida glabrata. PLoS pathogens 9:e1003160
48. O'Meara TR, Hay C, Price MS, Giles S, Alspaugh JA. 2010. Cryptococcus neoformans histone acetyltransferase Gcn5 regulates fungal adaptation to the host. Eukaryotic cell 9:1193-202
49. Odds FC, Brown AJ, Gow NA. 2003. Antifungal agents: mechanisms of action. Trends in microbiology 11:272-9
50. Pfaller M, Diekema D. 2007. Epidemiology of invasive candidiasis: a persistent public health problem. Clinical microbiology reviews 20:133-63
51. Pfaller MA, Andes DR, Diekema DJ, Horn DL, Reboli AC, et al. 2014. Epidemiology and outcomes of invasive candidiasis due to non-albicans species of Candida in 2,496 patients: data from the Prospective Antifungal Therapy (PATH) registry 2004–2008.
52. Pina B, Berger S, Marcus GA, Silverman N, Agapite J, Guarente L. 1993. ADA3: a gene, identified by resistance to GAL4-VP16, with properties similar to and different from those of ADA2. Molecular and cellular biology 13:5981-9
53. Prasad T, Hameed S, Manoharlal R, Biswas S, Mukhopadhyay CK, et al. 2010. Morphogenic regulator EFG1 affects the drug susceptibilities of pathogenic Candida albicans. FEMS yeast research 10:587-96
54. Ramírez-Zavala B, Mogavero S, Schöller E, Sasse C, Rogers PD, Morschhäuser J. 2014. SAGA/ADA complex subunit Ada2 is required for Cap1-but not Mrr1-mediated upregulation of the Candida albicans multidrug efflux pump Mdr1. Antimicrobial agents and chemotherapy 58:5102-10
55. Reuß O, Vik Å, Kolter R, Morschhäuser J. 2004. The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341:119-27
56. Roth SY, Denu JM, Allis CD. 2001. Histone acetyltransferases. Annual review of biochemistry 70:81-120
57. Ruiz-Garcı́a AB, Sendra R, Pamblanco M, Tordera V. 1997. Gcn5p is involved in the acetylation of histone H3 in nucleosomes. FEBS letters 403:186-90
58. Sanglard D, Hube B, Monod M, Odds FC, Gow N. 1997. A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence. Infection and immunity 65:3539-46
59. Schwarzmüller T, Ma B, Hiller E, Istel F, Tscherner M, et al. 2014. Systematic phenotyping of a large-scale Candida glabrata deletion collection reveals novel antifungal tolerance genes. PLoS pathogens 10:e1004211
60. Sellam A, Askew C, Epp E, Lavoie H, Whiteway M, Nantel A. 2009. Genome-wide mapping of the coactivator Ada2p yields insight into the functional roles of SAGA/ADA complex in Candida albicans. Molecular biology of the cell 20:2389-400
61. Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J. 2012. Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS microbiology reviews 36:288-305
62. Staab JF, Bradway SD, Fidel PL, Sundstrom P. 1999. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283:1535-8
63. Strahl BD, Allis CD. 2000. The language of covalent histone modifications. Nature 403:41-5
64. Vandeputte P, Tronchin G, Bergès T, Hennequin C, Chabasse D, Bouchara J-P. 2007. Reduced susceptibility to polyenes associated with a missense mutation in the ERG6 gene in a clinical isolate of Candida glabrata with pseudohyphal growth. Antimicrobial agents and chemotherapy 51:982-90
65. Vandeputte P, Tronchin G, Larcher G, Ernoult E, Bergès T, et al. 2008. A nonsense mutation in the ERG6 gene leads to reduced susceptibility to polyenes in a clinical isolate of Candida glabrata. Antimicrobial agents and chemotherapy 52:3701-9
66. Walter P, Ron D. 2011. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081-6
67. Yang Y-L. 2003. Virulence factors of Candida species. Journal of Microbiology Immunology and Infection 36:223-8
68. Young LY, Hull CM, Heitman J. 2003. Disruption of ergosterol biosynthesis confers resistance to amphotericin B in Candida lusitaniae. Antimicrobial agents and chemotherapy 47:2717-24
69. Zupancic ML, Frieman M, Smith D, Alvarez RA, Cummings RD, Cormack BP. 2008. Glycan microarray analysis of Candida glabrata adhesin ligand specificity. Molecular microbiology 68:547-59
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51488-
dc.description.abstract光滑念珠菌(Candida glabrata)是造成念珠菌症的重要菌種,僅次於白色念珠菌(Candida albicans),其為一伺機性的人體病原真菌,由於其常對藥物產生抗性,不僅造成治療上的困難,同時使免疫功能低落的病患死亡率提升。為了找尋有潛力的藥物標靶,我們利用光滑念珠菌的突變株庫對抗真菌藥物micafungin與fluconazole進行篩選,發現ada2突變株對兩藥物皆敏感,因此我們假設光滑念珠菌的Ada2蛋白(轉錄輔激活因子)會控制其藥物耐受性。為了驗證此假設,我們從光滑念珠菌野生株CBS138製造ada2突變株及互補株。除了確認ada2突變株對於micafungin及fluconazole敏感之外,同時我們也發現ada2突變株具有多種不同表現型,例如對於細胞壁擾動劑、三唑類藥劑(posaconazole與voriconazole)、echinocandins類藥劑(caspofungin與anidulafungin)、amphotericin B及內質網壓力誘導物質dithiothreitol敏感,但對於另一內質網壓力誘導物質tunicamycin則較具抗性。有趣的是,ada2突變株在攝氏40度時會有嚴重的生長缺陷,證明Ada2對於溫度耐受性扮演重要角色。根據RNA-sequencing的實驗結果,對比於野生株,有43個基因在ada2突變株中表現量降低,其中HSP30及SSB1可能與溫度耐受性有關,而ERG6及ERG13則可能與藥物耐受性有關。出乎意料之外,我們發現ada2突變株在小鼠系統性感染模式中具有比野生株較強的毒力。這些發現提供了光滑念珠菌Ada2蛋白在溫度耐受性、藥物耐受性及毒力中的新視野。zh_TW
dc.description.abstractCandida glabrata, the second most frequent cause of candidiasis after Candida albicans, is an emerging human fungal pathogen and commonly drug tolerant. Currently, few antifungal armamentaria are effective against C. glabrata, and thus result in treatment difficulties and higher mobidity or mortality in immunocompromised patients. To search for potential drug targets, we screened a C. glabrata deletion mutant library and found ada2 mutant susceptible to micafungin and fluconazole. We therefore hypothesized that C. glabrata Ada2, a transcription adaptor, controls drug tolerance. To test this hypothesis, we generated two independent ada2 mutants and a complementary strain of C. glabrata. In addition to confirming that newly generated C. glabrata ada2 mutants were susceptible to micafungin and fluconazole, we found that ada2 mutants exhibit pleiotropic phenotypes. For example, the ada2 mutants are susceptible to cell-wall perturbing agents (calcofluor white and sodium dodecyl sulfate), triazoles (posaconazole and voriconazole), echinocandins (caspofungin and anidulafungin), amphotericin B and endoplasmic reticulum stress chemical dithiothretol but resistant to tunicamycin. Interestingly, the ada2 mutants exhibit severe growth defects at 40°C, suggesting that Ada2 plays a critical role on controlling thermotolerance. According to RNA sequencing analyzes, we found 43 genes are down regulated in ada2 mutant compared to the wild type CBS138. Two genes associated with thermotolerance might be HSP30 and SSB1, while genes linked with drug tolerance might be ERG6 and ERG13. Surprisingly, we found that Ada2 negatively regulated virulence in immunocompromised murine model of systemic infection. These findings provide novel perspective to Ada2 controlling thermotolerance, drug tolerance and virulence in C. glabrata.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:36:03Z (GMT). No. of bitstreams: 1
ntu-105-R02633017-1.pdf: 4001649 bytes, checksum: db6010455ab1f9517c670185d6ccdffd (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員審定書
誌謝……………………………………………………………………………….…..I
中文摘要……………………………………………………………………………..II
ABSTRACT…………………………………………………………………………III
CONTENTS……………………………………………………………………….…V
1. INTRODUCTION……………………………………………………………......1
2. MATERIALS AND METHODS……………………………………………...…5
2.1 Ethic statement…………………………………………………………………...5
2.2 Yeast strains, media and chemicals………………………………………………5
2.3 Gene disruptions in C. glabrata………………………………………………….6
2.4 Southern blot analysis……………………………………………………...…….8
2.5 Serial dilution growth assays………………………………………………..…...8
2.6 Disc diffusion assays………………………………………………………...…...9
2.7 Determination of minimum inhibitory concentration……………………...…….9
2.8 RNA-sequencing experiments………………………………………………….10
2.9 Quantitative real-time RT-PCR…………………………………………………11
2.10 Growth kinetics and doubling time measurement……………………………..11
2.11 Murine systemic infection model……………………………………………..12
2.12 Observation of cell separation ability…………………………………………13
3. RESULTS AND DISCUSSION ………………………………………………...15
3.1 C. glabrata Ada2 controls antifungal drug tolerance …………………….........15
3.2 C. glabrata Ada2 is required for cell wall integrity and ER stress responses….17
3.3 CgAda2 is required for thermotolerance……………………………………….…19
3.4 C. glabrata ada2 mutants lead to hypervirulence in murine systemic infection
model……………………………………………………………………………..20
3.5 C. glabrata Ada2 regulates cell separation…………………………………….....23
4. CONCLUSION…………………………………………………………………….25
5. ACKNOWLEDGEMENT……………………………………………………..…..26
6. TABLES………………………………………………………………………….....27
Table 1. Candida glabrata strains used in this study………………………………....27
Table 2. PCR primers used in this study……………………………………………...28
Table 3. Plasmids used in this study……….………………………………………....29
Table 4. The minimum inhibitory concentration (MIC) of C. glabrata strains………30
Table 5. Doubling time of C. glabrata wild type, ada2 mutants and complementary
strains………………………………………………………………………..31
7. REFERENCES……………………………………………………………………..32
8. FIGURE LEGENDS..……………………………………………………………...43
9. FIGURES…………………………………………………………………………...49
Figure 1. Amino acid alignment of Ada2 from C. glabrata, S. cerevisiae and
C. albicans…………………………………………..……………………..49
Figure 2. The ADA2 gene was disrupted in the wild type CBS138…………..……....50
Figure 3. C. glabrata Ada2 controls drug tolerance to azoles, echinocandins and
amphotericin B………………………………………………………..……...51
Figure 4. Genes regulated by Ada2 in C. glabrata……………………..………….......52
Figure 5. C. glabrata ada2 mutants are sensitive to ER stressor DTT and cell wall
perturbing agents………………………………...………………….…........53
Figure 6. Ada2 is required for thermotolerance in C. glabrata……………….……….54
Figure 7. C. glabrata ada2 mutants are hypervirulent…………………….....………55
Figure 8. C. glabrata ada2 mutants exhibit defects on cell separation…….....….......56
Figure 9. Proposed roles of Ada2 in drug tolerance, cell wall integrity, ER
stress responses, thermotolerance, cell separation and virulence in
C. glabrata…………………………………………………………….……57
Figure S1. RNA-sequencing data were uploaded to Gene Expression
Omnibus and the accession number GSE76338 was
obtained……………………………………………………..……..…….58
附錄…………………………………………………………………………………….59
dc.language.isoen
dc.subject光滑念珠菌zh_TW
dc.subject毒力zh_TW
dc.subject溫度耐受性zh_TW
dc.subject藥物耐受性zh_TW
dc.subject光滑念珠菌zh_TW
dc.subject毒力zh_TW
dc.subject溫度耐受性zh_TW
dc.subject藥物耐受性zh_TW
dc.subjectDrug toleranceen
dc.subjectVirulenceen
dc.subjectThermotoleranceen
dc.subjectDrug toleranceen
dc.subjectCandida glabrataen
dc.subjectVirulenceen
dc.subjectThermotoleranceen
dc.subjectCandida glabrataen
dc.title光滑念珠菌之轉錄輔激活因子ADA2控制溫度耐受性、藥物耐受性及毒性zh_TW
dc.titleCandida glabrata ADA2, a transcription adaptor, controls thermotolerance, drug tolerance and virulenceen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee羅秀容(Hsiu-Jung Lo),藍忠昱(Chung-Yu Lan),林晉玄(Ching-Hsuan Lin),薛雁冰(Yen-Ping Hsueh)
dc.subject.keyword光滑念珠菌,藥物耐受性,溫度耐受性,毒力,zh_TW
dc.subject.keywordCandida glabrata,Drug tolerance,Thermotolerance,Virulence,en
dc.relation.page62
dc.rights.note有償授權
dc.date.accepted2016-01-28
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
3.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved