請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51454完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧中仁(Chung-Jen Lu) | |
| dc.contributor.author | Chih-Yu Chen | en |
| dc.contributor.author | 陳芝郁 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:34:48Z | - |
| dc.date.available | 2020-08-21 | |
| dc.date.copyright | 2020-08-21 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-12 | |
| dc.identifier.citation | [1] N. W. Bode, J. J. Faria, D. W. Franks, J. Krause, and A. J. Wood, 'How perceived threat increases synchronization in collectively moving animal groups,' Proceedings of the Royal Society B: Biological Sciences, vol. 277, no. 1697, pp. 3065-70, Oct 22 2010. [2] M. Toiya, H. O. González-Ochoa, V. K. Vanag, S. Fraden, and I. R. Epstein, 'Synchronization of Chemical Micro-oscillators,' The Journal of Physical Chemistry Letters, vol. 1, no. 8, pp. 1241-1246, 2010. [3] M. Miyagi, Y. Shiroma, A. Yona, T. Senjyu, and T. Funabashi, 'Uninterruptible smart house equipped with the phase synchronization control system,' International Journal of Electrical Power Energy Systems, vol. 63, pp. 302-310, 2014. [4] Y. Hu, Y. Hu, X. Li, Y. Pan, and X. Cheng, 'Brain-to-brain synchronization across two persons predicts mutual prosociality,' Social Cognitive and Affective Neuroscience, vol. 12, no. 12, pp. 1835-1844, Dec 1 2017. [5] S. H. Strogatz, D. M. Abrams, A. McRobie, B. Eckhardt, and E. Ott, 'Theoretical mechanics: crowd synchrony on the Millennium Bridge,' Nature, vol. 438, no. 7064, pp. 43-4, Nov 3 2005. [6] M. Kapitaniak, K. Czolczynski, P. Perlikowski, A. Stefanski, and T. Kapitaniak, 'Synchronization of clocks,' Physics Reports, vol. 517, no. 1-2, pp. 1-69, 2012. [7] M. Bennett, M. F. Schatz, H. Rockwood, and K. Wiesenfeld, 'Huygens's clocks,' Proceedings-Royal Society. Mathematical, physical and engineering sciences (Print), vol. 458, no. 2019, pp. 563-579, 2002. [8] K. Czolczynski, P. Perlikowski, A. Stefanski, and T. Kapitaniak, 'Huygens’ odd sympathy experiment revisited,' International Journal of Bifurcation and Chaos, vol. 21, no. 07, pp. 2047-2056, 2011. [9] J. Pantaleone, 'Synchronization of metronomes,' American Journal of Physics, vol. 70, no. 10, pp. 992-1000, 2002. [10] K. Czolczynski, P. Perlikowski, A. Stefanski, and T. Kapitaniak, 'Why two clocks synchronize: energy balance of the synchronized clocks,' Chaos, vol. 21, no. 2, p. 023129, Jun 2011. [11] Q. Hu, W. Liu, H. Yang, J. Xiao, and X. Qian, 'Experimental study on synchronization of three coupled mechanical metronomes,' European Journal of Physics, vol. 34, no. 2, pp. 291-302, 2013. [12] J. Peña Ramirez, K. Aihara, R. H. B. Fey, and H. Nijmeijer, 'Further understanding of Huygens’ coupled clocks: The effect of stiffness,' Physica D: Nonlinear Phenomena, vol. 270, pp. 11-19, 2014. [13] F. Hoogeboom, A. Pogromsky, and H. Nijmeijer, 'Huygens’ Synchronization: Experiments, Modeling, and Local Stability Analysis,' International Federation of Automatic Control, vol. 48, no. 18, pp. 146-151, 2015. [14] X. Xin, Y. Muraoka, and S. Hara, 'Analysis of synchronization of n metronomes on a cart via describing function method: New results beyond two metronomes,' in 2016 American Control Conference (ACC), 2016, pp. 6604-6609: IEEE. [15] Y. Wu, N. Wang, L. Li, and J. Xiao, 'Anti-phase synchronization of two coupled mechanical metronomes,' Chaos, vol. 22, no. 2, p. 023146, Jun 2012. [16] J. Pena Ramirez, L. A. Olvera, H. Nijmeijer, and J. Alvarez, 'The sympathy of two pendulum clocks: beyond Huygens’ observations,' Scientific Reports, vol. 6, p. 23580, Mar 29 2016. [17] A. Y. Pogromsky, V. Belykh, and H. Nijmeijer, 'Controlled synchronization of pendula,' in 42nd IEEE International Conference on Decision and Control (IEEE Cat. No. 03CH37475), 2003, vol. 5, pp. 4381-4386: IEEE. [18] K. Czolczynski, P. Perlikowski, A. Stefanski, and T. Kapitaniak, 'Clustering and synchronization of n Huygens’ clocks,' Physica A: Statistical Mechanics and its Applications, vol. 388, no. 24, pp. 5013-5023, 2009. [19] 簡伯丞, '無幌擒縱器擺鐘的同步,' 碩士, 機械工程學研究所, 國立臺灣大學, 台北市, 2018. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51454 | - |
| dc.description.abstract | Huygens最早發現擺鐘的同步現象,隨後有許多學者研究多個擺鐘間的同步形式。Czolczynski等人[18]從能量的觀點將 個擺鐘的同步行為分類。他們將 個擺鐘依相位分組,同相位的分為一組,不同相位的視為不同組。特別的,相位差為180度的2個擺鐘,稱為一對反相對。他們認為n個擺鐘同步時,只可能為分為1、3或5組。此外,當n為偶數時,也可能分為n/2對反相對。但是簡伯丞[19]透過數值積分以及諧和平衡法發現可能存在其他種的同步形式。本研究的目的在於釐清這個歧見,並改採多尺度法進行分析。多尺度法是一個較精確的方法,也可以較方便的使用在阻尼系統中。首先利用多尺度法分別推導單一擺鐘固定於地板與固定於水平滑動基底上振幅的解析解,並分析其穩態行為。再發展為n個擺鐘固定於水平滑動基底上的相角關係式並進行討論。最後透過數值積分驗證所得的結果。 | zh_TW |
| dc.description.abstract | Huygens is the first to observe the synchronization of pendulum clocks. Then, several researchers started looking into further insights of the synchronization between several pendulum clocks. Czolczynski et al. [18] categorized the synchronization of n pendulums based on a minimum total energy aspect. They claimed that n synchronized pendulums can be grouped into one, three or five clusters. A cluster may contain only one pendulum. All the pendulums in a cluster are in fully synchronization with one another. There is a fixed phase difference between two clusters. Besides, when n is even, the pendulums can be grouped into n/2 pairs of pendulums synchronized in anti-phase. However, Po-Cheng Chien[19] found out that there may exist other types of synchronization via numerical integration and the method of harmonic balance. This thesis aims to clarify the disagreement. The method of multiple scales, which is more accurate and suitable for a damped system, is employed. The analytical solutions of the steady-state amplitude of a single pendulum fixed on a floor and a horizontal sliding base, are derived respectively. The results are then extended for the case of n pendulums fixed on a horizontal sliding base. Steady state behavior of the n-pendulum and sliding base system is discussed in detail. Finally, numerical integration are applied to verify the derived conclusions. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:34:48Z (GMT). No. of bitstreams: 1 U0001-1008202001091600.pdf: 4990966 bytes, checksum: 2ae1a87eaa68d0bef3ec2de27001401f (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員審定書 i 致謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 vii 表目錄 x 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 1 1.3 論文架構 4 第二章 理論與方法 5 2.1 擺鐘工作原理 5 2.2 統御方程式 7 2.2.1 固定於地面擺鐘的運動方程式 7 2.2.2 置於水平滑動基底擺鐘的運動方程式 10 2.2.3 參數設定 11 2.3 一個擺鐘 12 2.3.1 一個擺鐘固定於地面 12 2.3.2 一個擺鐘置於水平滑動基底 17 2.4 n個置於水平滑動基底上擺鐘間相角關係式 22 第三章 擺鐘的同步形式 27 3.1 兩個擺鐘 27 3.2 三個擺鐘 31 3.3 四個擺鐘 36 3.4 五個擺鐘 43 3.5 六個擺鐘 52 第四章 結論 62 參考文獻 64 附錄A 66 | |
| dc.language.iso | zh-TW | |
| dc.subject | 同步 | zh_TW |
| dc.subject | 擺鐘 | zh_TW |
| dc.subject | 多尺度法 | zh_TW |
| dc.subject | 擺鐘 | zh_TW |
| dc.subject | 多尺度法 | zh_TW |
| dc.subject | 同步 | zh_TW |
| dc.subject | the method of multiple scales | en |
| dc.subject | pendulum clocks | en |
| dc.subject | synchronization | en |
| dc.subject | synchronization | en |
| dc.subject | pendulum clocks | en |
| dc.subject | the method of multiple scales | en |
| dc.title | 耦合擺鐘的同步形式分析 | zh_TW |
| dc.title | On the synchronization patterns of coupled pendulum clocks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 伍次寅(Tzu-Yin Wu),蘇春熺(Chun-Hsi Su) | |
| dc.subject.keyword | 同步,擺鐘,多尺度法, | zh_TW |
| dc.subject.keyword | synchronization,pendulum clocks,the method of multiple scales, | en |
| dc.relation.page | 74 | |
| dc.identifier.doi | 10.6342/NTU202002752 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1008202001091600.pdf 未授權公開取用 | 4.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
