請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51453完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳志毅 | |
| dc.contributor.author | Xue-Qian You | en |
| dc.contributor.author | 游學謙 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:34:46Z | - |
| dc.date.available | 2016-02-15 | |
| dc.date.copyright | 2016-02-15 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2016-01-29 | |
| dc.identifier.citation | [1] http://cdnet.stpi.org.tw/techroom/analysis/2008/pat_08_A020.htm
[2] http://www.eternalsun.com/technology/aaa-accuracy/ [3] Huanping Zhou, Qi Chen, Gang Li, Song Luo, Tze-bing Song, Hsin-Sheng Duan, Ziruo Hong,Jingbi You, Yongsheng Liu, Yang Yang.(2014). Interface engineering of highly efficient perovskite solar cells. Science 1 August 2014: Vol. 345 no. 6196 pp. 542-546. [4] Akihiro Kojima , Kenjiro Teshima , Yasuo Shirai and Tsutomu Miyasaka.(2009). Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131 (17), pp 6050–6051. [5] Hui-Seon Kim, Chang-Ryul Lee, Jeong-Hyeok Im, Ki-Beom Lee, Thomas Moehl, Arianna Marchioro, Soo-Jin Moon, Robin Humphry-Baker, Jun-Ho Yum, Jacques E. Moser, Michael Grätzel, and Nam-Gyu Park. (2012). Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports, Sci Rep. 2012; 2: 591. Published online 2012 Aug 21. doi:10.1038/srep00591. [6] Michael M. Lee, Joël Teuscher, Tsutomu Miyasaka, Takurou N. Murakami, Henry J. Snaith. (2012). Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Published Online October 4 2012 Science 2 November 2012: Vol. 338 no. 6107 pp. 643-647. [7] Mingzhen Liu, Michael B. Johnston and Henry J. Snaith. (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (19 September 2013). [8] Qi Chen, Huanping Zhou, Ziruo Hong, Song Luo, Hsin-Sheng Duan, Hsin-Hua Wang, Yongsheng Liu, Gang Li, and Yang Yang. (2014). Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society, 2014, 136 (2), pp 622–625. [9] Chang-Wen Chen, Hao-Wei Kang, Sheng-Yi Hsiao, Po-Fan Yang, Kai-Ming Chiang, Hao-Wu Lin. (2014). Efficient and Uniform Planar-Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition. Advanced Material, DOI : 10.1002/adma.201402461. [10] Gary Hodes. Perovskite-Based solar cells. Applied Physics, Science 18 October 2013: Vol. 342 no. 6156 pp. 317-318 DOI: 10.1126/science.1245473. [11] https://en.wikipedia.org/wiki/File:Perovskite_solar_cell_architectures_1.png [12] Victoria Gonzalez-Pedro, Emilio J. Juarez-Perez, Waode-Sukmawati Arsyad, Eva M. Barea, Francisco Fabregat-Santiago, Ivan Mora-Sero, and Juan Bisquert. (2014). General Working Principles of CH3NH3PbX3 Perovskite Solar Cells. Nano Letters, 2014, 14, 888−893. [13] http://www.autooo.net/utf8-classid164-id98601.html [14] http://web.it.nctu.edu.tw/~jtchen/research/c-research-opv.htm [15] K. L. Mutolo, E. I. Mayo, B. P. Rand, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc. 128, 8108-8109(2006). [16] J. Liu, Y. Shi, Y. Yang, Adv. Funct. Mater. 11, No.6(2001). [17] G. G.Mallairas, J. R.Salem, P.J. Brock, J. C. Scott, J. Appl. Phys. 84, 1583(1998). [18] http://www.nj-chishun.com/mobile/proview.asp?id=169 [19] http://www.eternalsun.com/technology/aaa-accuracy/ [20] http://www.rfcafe.com/references/electrical/ASTM-G173-03-Reference-Spectra.htm [21] http://www.enlitechnology.com/style/Frame/templates16/product_detail.asp?lang=1&customer_id=874&content_set=color_1&name_id=43303&Directory_ID=27186&id=130892 [22] https://www.mtholyoke.edu/~menunez/ResearchPage/AFM.html [23] http://www.instrument.com.cn/netshow/SH101679/C77554.htm [24] http://www.errd.dicp.ac.cn/?p=3&a=view&r=9 [25] http://www.tlpfw.com/a/tl/dd/1949.html [26] https://zh.wikipedia.org/wiki/PCBM [27] Alexander H. Ip, Li Na Quan, Michael M. Adachi, Jeffrey J. McDowell, Jixian Xu, Dong Ha Kim, and Edward H. Sargent.(2015). A two-step route to planar perovskite cells exhibiting reduced hysteresis. Applied Physics Letters 106, 143902 (2015); doi: 10.1063/1.4917238. [28] Paifeng Luo, Zhaofan Liu, Wei Xia, Chenchen Yuan, Jigui Cheng, and Yingwei Lu. (2015). Uniform, Stable, and Efficient Planar-Heterojunction Perovskite Solar Cells by Facile Low-Pressure Chemical Vapor Deposition under Fully Open-Air Conditions. ACS Appl. Mater. Interfaces, 2015, 7 (4), pp 2708–2714. DOI: 10.1021/am5077588 [29] Hao Hu, Dong Wang, Yuanyuan Zhou, Jiliang Zhang, Siliu Lv, Shuping Pang, Xiao Chen, Zhihong Liu, Nitin P. Padtureb and Guanglei Cui.(2014). Vapour-based processing of hole-conductor-free CH3NH3PbI3 perovskite/C60 fullerene planar solar cells. RSC Adv, 2014, 4, 28964, DOI: 10.1039/c4ra03820g. [30] Qi Chen, Huanping Zhou, Tze-Bin Song, Song Luo, Ziruo Hong, Hsin-Sheng Duan, Letian Dou, Yongsheng Liu, and Yang Yang. (2014). Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells. Nano Lett. 2014, 14, 4158−4163. [31] Alexander H. Ip, Li Na Quan, Michael M. Adachi, Jeffrey J. McDowell, Jixian Xu, Dong Ha Kim, and Edward H. Sargent. A two-step route to planar perovskite cells exhibiting reduced hysteresis. Applied Physics Letters 106, 143902 (2015); doi: 10.1063/1.4917238. [32] Shin, Young Jun, et al. 'Surface-energy engineering of graphene.' Langmuir26.6 (2010): 3798-3802. [33] D. C. Wei, Y. Q. Liu, Y. Wang, H. L. Zhang, L. P. Huang, and G. Yu, “Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties”, Nano Letters, vol. 9, pp. 1752-1758, May 2009. [34] 國立臺灣大學化學系暨研究所汪根欉教授有機材料實驗室團隊 [35] Lin, Wei-Hsiang, et al. 'A Direct and Polymer-Free Method for Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate.' ACS nano8.2 (2014): 1784-1791. [36] https://fr.wikipedia.org/wiki/P3HT [37] http://pubs.rsc.org/en/content/articlehtml/2013/ta/c3ta13680a [38] Wei Zhang, Miguel Anaya, Gabriel Lozano, Mauricio E. Calvo, Michael B. Johnston, Hernán Míguez, and Henry J. Snaith.(2015). High Efficiency Perovskite Solar Cell with Tunable Structure Color. Nano Lett., 2015, 15 (3), pp 1698–1702. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51453 | - |
| dc.description.abstract | 本篇論文前半段旨在探討以蒸鍍輔助溶液(VASP)兩階段製程所做出的鈣鈦礦太陽能電池之效能。從二階段製成的前半段,PbI2旋轉塗佈於PEDOT:PSS開始,我們一步一步優化元件的每一層,並探討了不同參數情況下元件表現優劣的原因。我們用SEM檢視了不同轉速塗佈之PbI2與MAI反應後鈣鈦礦層的厚度,同時,也探討了熱蒸鍍過程中出現的表面型態問題與對元件造成的影響。接著我們討論了後退火對於鈣鈦礦主動層的影響,與改變元件表現的機制,並找到了適當的後退火時間,將元件的效率提升至10.26%。並且,我們去了解了電子傳輸層PCBM([6,6]-phenyl-C61-butyric acid methyl ester)用在鈣鈦礦太陽能電池中所扮演的角色,還有對元件效率提升提供的輔助,在優化條件下,元件的轉換效率提升至10.40%。最後我們測試了緩衝層Ca的適當厚度,使得元件在11%左右的轉換效率之下,還可以有不錯的填充係數表現。
在第二部分的實驗中,我們以一種親疏水介面材料HBC-6ImBr來對石墨烯電極進行改質而做出以石墨烯為陽極的正規有機太陽能電池。有了HBC-6ImBr的介面,原本親水的PEDOT:PSS因此可以與石墨烯/HBC-6ImBr電極連接在一起,使得後續的材料都可以順利的接續塗佈下去。在本章中我們對塗佈不同層數HBC-6ImBr的元件做了AFM的量測,發現當HBC-6ImBr的層數增加,電極表面因為HBC-6ImBr分子聚集而造成的不均勻現象以及破洞,會逐漸地被彌平,元件的填充係數因此獲得提升至百分之五十,以及串聯電阻下降至28.46Ω/cm2。但是由於HBC-6ImBr分子本導電性並不好,因此,最優化的元件是在三層HBC-6ImBr分子的情況之下,以PI(P3HT:ICBA)為主動層之正規太陽能電池之光電轉換效率可以到達3.65%,填充係數可以達到百分之五十以上。 | zh_TW |
| dc.description.abstract | In this study, performance improvement of Perovskite solar cells using two-step vapor-assisted solution process(VASP) has been achieved. Through experimental optimization, solar cell with optimal structure have been carried out and the mechanisms behind have been discussed in detail. Via scanning electron microscopy(SEM), the thickness profile and the morphological variation for Perovskite film obtained in different ways were investigated systematically. Next, the influence of post-annealing on device performance was verified by X-ray diffraction(XRD), suggesting that appropriate post treatment is crucial to the quality of active layer as well as the resulting performance. This is in addition to the study of passivation effect developed by PCBM([6,6]-phenyl-C61-butyric acid methyl ester) electron transport layer and also the Ca buffer incorporation, resulting in further improvement with decent fill factor for proposed devices. Based on these findings, the power conversion efficiency for Perovskite solar cells with an optimal device configuration has achieved over 11%.
Further, a buffer material, HBC-6ImBr(Hexa-peri-hexabenzocoronene-6ImBr), was employed to enable hydrophilic properties for the hydrophobic graphene, allowing graphene bottom anode for conventional organic photovoltaics(OPV). With the aid of HBC-6ImBr, the aqueous PEDOT:PSS can be deposited onto graphene anode uniformly; hence the following fabrication process can be achieved to complete the solution-processed OPV. The morphological studies of graphene/HBC-6ImBr composite films were performed via atomic force microscope(AFM) to check the capabilities of surface modification. In the end of this thesis, a decent power conversion efficiency of 3.65% with a fill factor around 50% for P3HT:PCBM BHJ solar cell using graphene anode has been achieved by incorporating the anode modification of tri-layer HBC-6ImBr. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:34:46Z (GMT). No. of bitstreams: 1 ntu-104-R02941032-1.pdf: 3039517 bytes, checksum: 23d96e126fcfd178d691ed85b247ace4 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 iv Abstract v 目錄 vii 圖目錄 x 表目錄 xii 第一章 緒論與簡介 1 1.1 太陽能電池介紹 1 1.2 鈣鈦礦太陽能電池 5 1.3 鈣鈦礦太陽能電池發展背景 5 第二章 太陽能電池理論基礎與參數介紹 7 2.1 倒置型鈣鈦礦太陽能電池 7 2.2 鈣鈦礦太陽能電池工作原理 8 2.3 太陽能電池等校電路與參數介紹 10 第三章 實驗儀器、材料及步驟 14 3.1 實驗儀器介紹 14 3.1.1 氮氣手套箱 14 3.1.2 太陽光源模擬器 15 3.1.3 外部量子效率(EQE) 16 3.1.4 原子力顯微鏡(AFM) 16 3.1.5 X-ray diffraction(XRD) 17 3.1.6 X射線光與紫外光電子頻譜 18 3.2 實驗材料介紹 19 3.2.1 氧化銦錫基板(ITO) 19 3.2.2 聚二氧乙基噻吩:聚苯乙烯磺酸(PEDOT:PSS) 19 3.2.3 MAPbI3(Perovskite) 20 3.2.4 電子傳輸材料(PC61BM) 20 3.2.5 陰極材料 21 第四章 以VASP備置倒置結構鈣鈦礦太陽能電池 22 4.1 研究動機 22 4.2 大氣下VASP倒置型鈣鈦礦太陽能電池實驗步驟 23 4.2.1 ITO基板的清洗與準備 23 4.2.2 塗佈PEDOT:PSS 23 4.2.3 Perovskite成膜 24 4.2.4 電子傳輸層PCBM塗佈 24 4.2.5 蒸鍍陰極電極 25 4.2.6 量測 25 4.3 實驗結果與討論 26 4.3.1 第一階段溼式塗佈PbI2 26 4.3.2 第二階段形成鈣鈦礦層條件測試 29 4.3.3 電子傳輸層PC61BM條件測試 40 4.3.4 陰極條件測試 43 4.3.5 VASP鈣鈦礦太陽能電池元件life time測試 45 4.4 結論 47 第五章 以Graphene/HBC製備graphene下電極正規太陽能電池 49 5.1 研究動機 49 5.2 Graphene下電極有機正規太陽能電池實驗步驟 50 5.2.1 Graphene transfer方法 50 5.2.2 有機正規太陽能電池製成 51 5.3 實驗結果與討論 54 5.3.1 Pristine之PI(P3HT:ICBA)元件不同PEDOT條件測試 54 5.3.2 以HBC-6ImBr /graphene為下電極之PI元件 55 5.4 結論 59 第六章 未來展望 60 參考資料 61 | |
| dc.language.iso | zh-TW | |
| dc.subject | 蒸鍍輔助溶液二階段製程 | zh_TW |
| dc.subject | 石墨烯陽極 | zh_TW |
| dc.subject | 石墨烯陽極 | zh_TW |
| dc.subject | 新型六苯並?分子 | zh_TW |
| dc.subject | 鈣鈦礦太陽能電池 | zh_TW |
| dc.subject | 蒸鍍輔助溶液二階段製程 | zh_TW |
| dc.subject | 鈣鈦礦太陽能電池 | zh_TW |
| dc.subject | 新型六苯並?分子 | zh_TW |
| dc.subject | Perovskite solar cell | en |
| dc.subject | graphene anode | en |
| dc.subject | HBC-6ImBr (Hexa-peri-hexabenzocoronene-6ImBr) | en |
| dc.subject | Vapor-assisted solution process | en |
| dc.subject | Perovskite solar cell | en |
| dc.subject | graphene anode | en |
| dc.subject | HBC-6ImBr (Hexa-peri-hexabenzocoronene-6ImBr) | en |
| dc.subject | Vapor-assisted solution process | en |
| dc.title | 大氣下以蒸鍍輔助溶液之二階段製程鈣鈦礦太陽能電池與石墨烯陽極備製有機正規太陽能電池之研究 | zh_TW |
| dc.title | Open-Air Vapor-Assisted Solution Process Perovskite Solar Cell and Graphene Anode Conventional Organic Solar Cell | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳美杏,吳肇欣,陳奕君 | |
| dc.subject.keyword | 鈣鈦礦太陽能電池,蒸鍍輔助溶液二階段製程,新型六苯並?分子,石墨烯陽極, | zh_TW |
| dc.subject.keyword | Perovskite solar cell,Vapor-assisted solution process,HBC-6ImBr (Hexa-peri-hexabenzocoronene-6ImBr),graphene anode, | en |
| dc.relation.page | 63 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-01-29 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
