Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5143
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李秀香(Hsiu-Hsiang Lee)
dc.contributor.authorJian-Ming Keen
dc.contributor.author柯建銘zh_TW
dc.date.accessioned2021-05-15T17:52:31Z-
dc.date.available2020-03-12
dc.date.available2021-05-15T17:52:31Z-
dc.date.copyright2015-03-12
dc.date.issued2014
dc.date.submitted2014-12-04
dc.identifier.citationBhanot P, Fish M, Jemison JA, Nusse R, Nathans J, Cadigan KM. (1999) Frizzled and Dfrizzled-2 function as redundant receptors for Wingless during Drosophila embryonic development. Development 126(18):4175-86.
Bhat KM. (1998) frizzled and frizzled 2 play a partially redundant role in wingless signaling and have similar requirements to wingless in neurogenesis. Cell 95(7):1027-36.
Bienz M. (1998) TCF: transcriptional activator or repressor? Curr Opin Cell Biol. 10(3):366-72.
Boutros M, Mlodzik M. (1999) Dishevelled: at the crossroads of divergent intracellular signaling pathways. Mech Dev. 83(1-2):27-37.
Cheyette BN, Waxman JS, Miller JR, Takemaru K, Sheldahl LC, Khlebtsova N, Fox EP, Earnest T, Moon RT. (2002) Dapper, a Dishevelled-associated antagonist of beta-catenin and JNK signaling, is required for notochord formation. Dev Cell 2(4):449-61.
Davidson G1, Wu W, Shen J, Bilic J, Fenger U, Stannek P, Glinka A, Niehrs C. (2005) Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction. Nature 438(7069):867-72.
Finley D. (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem. 78:477-513.
Grueber WB, Jan LY, Jan YN. (2002) Tiling of the Drosophila epidermis by multidendritic sensory neurons. Development 129(12):2867-78.
Hamer G, Matilainen O, Holmberg CI. (2010) A photoconvertible reporter of the ubiquitin-proteasome system in vivo. Nat Methods 7(6):473-8.
Hanna J, Finley D. (2007) A proteasome for all occasions. FEBS Lett. 581(15):2854-61.
Hayashi Y, Hirotsu T, Iwata R, Kage-Nakadai E, Kunitomo H, Ishihara T, Iino Y, Kubo T. (2009) A trophic role for Wnt-Ror kinase signaling during developmental pruning in Caenorhabditis elegans. Nat Neurosci 12(8):981-7.
Hsu W, Zeng L, Costantini F. (1999) Identification of a domain of Axin that binds to the serine/threonine protein phosphatase 2A and a self-binding domain. J Biol Chem. 274(6):3439-45.
Hwang RY, Zhong L, Xu Y, Johnson T, Zhang F, Deisseroth K, Tracey WD. (2007) Nociceptive neurons protect Drosophila larvae from parasitoid wasps. Curr Biol. 17(24):2105-16.
Johnson ES1, Bartel B, Seufert W, Varshavsky A. (1992) Ubiquitin as a degradation signal. EMBO J. 11(2):497-505.
Kanamori T, Kanai MI, Dairyo Y, Yasunaga K, Morikawa RK, Emoto K. (2013) Compartmentalized calcium transients trigger dendrite pruning in Drosophila sensory neurons. Science 340(6139):1475-8.
Kani S, Oishi I, Yamamoto H, Yoda A, Suzuki H, Nomachi A, Iozumi K, Nishita M, Kikuchi A, Takumi T, Minami Y. (2004) The receptor tyrosine kinase Ror2 associates with and is activated by casein kinase Iepsilon. J Biol Chem. 279(48):50102-9.
Kirilly D, Gu Y, Huang Y, Wu Z, Bashirullah A, Low BC, Kolodkin AL, Wang H, Yu F. (2009) A genetic pathway composed of Sox14 and Mical governs severing of dendrites during pruning. Nat Neurosci. 12(12):1497-505.
Kuo CT, Jan LY, Jan YN. (2005) Dendrite-specific remodeling of Drosophila sensory neurons requires matrix metalloproteases, ubiquitin-proteasome, and ecdysone signaling. Proc Natl Acad Sci U S A. 102(42):15230-5.
Kuo CT, Zhu S, Younger S, Jan LY, Jan YN. (2006) Identification of E2/E3 ubiquitinating enzymes and caspase activity regulating Drosophila sensory neuron dendrite pruning. Neuron 51(3):283-90.
Lee HH, Jan LY, Jan YN. (2009) Drosophila IKK-related kinase Ik2 and Katanin p60-like 1 regulate dendrite pruning of sensory neuron during metamorphosis. Proc Natl Acad Sci U S A. 106(15):6363-8.
Lee T, Lee A, Luo L. (1999) Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development 126(18):4065-76.
Loncle N, Williams DW. (2012) An interaction screen identifies headcase as a regulator of large-scale pruning. J Neurosci. 32(48):17086-96.
Lu W, Yamamoto V, Ortega B, Baltimore D. (2004) Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell 119(1):97-108.
Marin EC, Watts RJ, Tanaka NK, Ito K, Luo L. (2005) Developmentally programmed remodeling of the Drosophila olfactory circuit. Development 132(4):725-37.
Mikels AJ1, Nusse R. (2006) Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol. 4(4):e115.
Penton A, Wodarz A, Nusse R. (2002) A mutational analysis of dishevelled in Drosophila defines novel domains in the dishevelled protein as well as novel suppressing alleles of axin. Genetics 161(2):747-62.
Riese J, Yu X, Munnerlyn A, Eresh S, Hsu SC, Grosschedl R, Bienz M. (1997) LEF-1, a nuclear factor coordinating signaling inputs from wingless and decapentaplegic. Cell 88(6):777-87.
Rumpf S, Lee SB, Jan LY, Jan YN. (2011) Neuronal remodeling and apoptosis require VCP-dependent degradation of the apoptosis inhibitor DIAP1. Development 138(6):1153-60.
Schwarz-Romond T, Fiedler M, Shibata N, Butler PJ, Kikuchi A, Higuchi Y, Bienz M. (2007) The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization. Nat Struct Mol Biol. 14(6):484-92.
Speese SD, Budnik V. (2007) Wnts: up-and-coming at the synapse. Trends Neurosci. 30(6):268-75.
Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y, Hess F, Saint-Jeannet JP, He X. (2000) LDL-receptor-related proteins in Wnt signal transduction. Nature 407(6803):530-5.
Tamai K, Zeng X, Liu C, Zhang X, Harada Y, Chang Z, He X. (2004) A mechanism for Wnt coreceptor activation. Mol Cell 13(1):149-56.
Veeman MT, Axelrod JD, Moon RT. (2003) A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell. 5(3):367-77.
Wehrli M, Dougan ST, Caldwell K, O'Keefe L, Schwartz S, Vaizel-Ohayon D, Schejter E, Tomlinson A, DiNardo S. (2000) arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 407(6803):527-30.
Williams DW, Kondo S, Krzyzanowska A, Hiromi Y, Truman JW. (2006) Local caspase activity directs engulfment of dendrites during pruning. Nat Neurosci. 9(10):1234-6.
Williams DW, Truman JW. (2005) Cellular mechanisms of dendrite pruning in Drosophila: insights from in vivo time-lapse of remodeling dendritic arborizing sensory neurons. Development 132(16):3631-42.
Wong HC, Bourdelas A, Krauss A, Lee HJ, Shao Y, Wu D, Mlodzik M, Shi DL, Zheng J. (2003) Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of Frizzled. Mol Cell 12(5):1251-60.
Wong HC, Mao J, Nguyen JT, Srinivas S, Zhang W, Liu B, Li L, Wu D, Zheng J. (2000) Structural basis of the recognition of the dishevelled DEP domain in the Wnt signaling pathway. Nat Struct Biol. 7(12):1178-84.
Wong JJ, Li S, Lim EK, Wang Y, Wang C, Zhang H, Kirilly D, Wu C, Liou YC, Wang H, Yu F. (2013) A Cullin1-based SCF E3 ubiquitin ligase targets the InR/PI3K/TOR pathway to regulate neuronal pruning. PLoS Biol. 11(9):e1001657.
Xiang Y, Yuan Q, Vogt N, Looger LL, Jan LY, Jan YN. (2010) Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature 468(7326):921-6.
Yoshikawa S, McKinnon RD, Kokel M, Thomas JB. (2003) Wnt-mediated axon guidance via the Drosophila Derailed receptor. Nature 422(6932):583-8.
Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R, Okamura H, Woodgett J, He X. (2005) A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438(7069):873-7.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5143-
dc.description.abstractNeuronal remodeling plays a critical role during development from invertebrates to vertebrates. Pruning, one of the neuronal remodeling mechanisms, is a process to selectively remove specific parts of neurons without causing cell death. In Drosophila, the class IV dendritic arborization (da) neurons, which undergo pruning process to eliminate larval dendrites during metamorphosis, is an ideal model system to study the underlying mechanisms of pruning.
Previous studies showed that ubiquitin proteasome system (UPS) initiates the dendrite pruning. To address the dynamics of proteasome activity during pruning process, we generated a photoconvertible reporter system. The decrease of converted fluorescent signals over a period of time could be used to monitor the proteasome activity in vivo.
Wingless-Int (Wnt) signaling is crucial for variety of biological events. It could be divided into three major pathways: canonical Wnt pathway, planar cell polarity (PCP) pathway, and calcium pathway. Previous studies reported a trophic role for Wnt-Ror kinase signaling to regulate neuronal pruning in C.elegans, thus highlighted the regulatory roles of Wnt signaling. Here, we identified dishevelled (dsh), a Wnt signaling molecule, as a candidate to regulate Drosophila dendrite pruning. Dsh is a cytoplasmic phosphoprotein, which is involved in both canonical Wnt and PCP pathways. To determine which pathway of Wnt signaling can regulate dendrite pruning, we examined the dendrite pruning of class IV da neurons in various dsh mutant flies, and found the canonical Wnt pathway is associated with dendrite pruning. Next, we identified which Wnt receptors might act upstream of dsh during dendrite pruning. Consistent with the fact that the redundant roles of fz and fz2 in canonical Wnt signaling, both fz and fz2 loss of function mutants showed pruning defects. Furthermore, a co-receptor arrow, which is required for canonical Wnt signaling, also showed some dendrite severing defects when it lost its function. Finally, the canonical Wnt-specific nuclear TCF caused critical severing defects when expressing its N-terminal deletion form. Taken together, these results demonstrated that the canonical Wnt pathway is essential for Drosophila dendrite pruning.
en
dc.description.provenanceMade available in DSpace on 2021-05-15T17:52:31Z (GMT). No. of bitstreams: 1
ntu-103-R01448014-1.pdf: 4534979 bytes, checksum: 71c1b40994e62cb7d64110024337f70c (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書……………………………………………………….i
誌謝…..………………………………………………………………… .ii
Abstract………………………………………………………………....iii
摘要…..………………………………………………………………… .v
Chapter 1. Introduction .……………………………………………...01
1. Neuronal remodeling............................................................................01
2. Drosophila class IV dendritic arborization (da) neurons……………..02
3. Drosophila dendrite pruning………………………………………….03
4. Ubiquitin-proteasome system (UPS)…………………………………04
5. Wnt pathways………………………………………………………...06
6. Dishevelled (dsh)……………………………………………………..08
7. Multiple Wnt receptors……………………………………………….10
8. Other molecules involved in Wnt signaling………………………….11
9. Hypothesis……………………………………………………………12
Chapter 2. Materials Methods………………………………..……15
Chapter 3. Results…………………………………………..………….18
1. The relationship between the dynamics of proteasome activity and Drosophila dendrite pruning…………………………………………18
1.1 Knockdown of proteasome subunits in class IV da neurons caused pruning defects……………………...……………………………….18
1.2 The proteasome activities of Ub-Dendra2 and Dendra2 control in WT ddaC neurons during the larval stage………………………..………20
1.3 The proteasome activity of Ub-Dendra2 under knockdown of DTS5 and UAS-lacZ control backgrounds during the larval stage…...……21
2. Loss-of-function analysis of dishevelled in class IV da neurons.……22
2.1 The dsh mutants showed minor dendrite severing defects………….22
2.2 The genetic interaction between dsh and three identified regulators (Ik2, kat-60L1, and Spn-F) in class IV da neurons...………………..23
2.3 Mutational analysis of dsh with distinct mutated domains showed various morphological changes of dendrite pruning defects...………24
3. Loss-of-function analysis of multiple Wnt receptors in class IV da neurons…………..…………………………………………………..26
3.1 Loss-of-function analysis of two redundant Wnt receptors, fz and fz2, showed minor dendrite severing defects…………………….………26
3.2 Other receptors involved in multiple Wnt pathways……….……….28
3.3 Mutational analysis of Wg co-receptor arrow showed some dendrite pruning defects…………………...………………………………….29
4. Loss-of-function analysis of other Wnt members downstream of dsh in class IV da neurons…………………………….…………….………30
4.1 Expression of various mutant forms of sgg caused critical severing defects…………………………………..........................……………30
4.2 Expression of N-terminal-deletion TCF mutant form caused critical severing defects………………………...……………………………31
Chapter 4. Discussion………………………………………………….33
1. The application of photoconvertible reporter system of the UPS……34
2. The mutational analysis of Dishevelled…………...………………….35
3. The roles of two redundant Wnt receptors, Frizzled and Frizzled2, as well as the co-receptor arrow……………………………….……….36
4. Possible mechanisms for Wnt signaling to regulate dendrite pruning…………………….…………………………………………38
5. Crosstalk between protein degradation and Wnt pathway in dendrite pruning………………………………………….……………………39
Chapter 5. References………………...……………………………….41
Tables……………………………………….…………………………..48
Figures………………………………………….………………………53
List of Tables
Table 1. List of fly mutant stocks…………………………...…………..48
Table 2. List of fly RNAi stocks…………………………...……………51
Table 3. List of enhancer trap lines………………………………..…….52
List of Figures
Figure 1. Knockdown of proteasome subunits in class IV da neurons caused dendrite pruning defect………………………...…………….53
Figure 2. Proteasome activities of Ub-Dendra2 in class IV da neurons during the larval stage……………………………………………….55
Figure 3. Knockdown of dsh caused critical dendrite pruning defect…..58
Figure 4. No severing defect were observed in dsh mutants……………60
Figure 5. Dsh hemizygous mutants caused minor severing defect……...61
Figure 6. The genetic interaction between dsh and three identified regulators (Ik2, kat-60L1, and Spn-F) in class IV da neurons………63
Figure 7. Mutational analysis of dsh with distinct mutated domains showed various morphological changes of dendrite pruning defects..................................................................................................65
Figure 8. Mutants of two redundant Wnt receptors, fz and fz2, showed little dendrite severing defects……………………………………….68
Figure 9. Single or double Knockdown of fz and fz2 showed little dendrite severing defects…………………………………………….70
Figure 10. Other receptors involved in multiple Wnt pathways………...72
Figure 11. Mutational analysis of Wg co-receptor arr showed some dendrite pruning defects……………………………………………..73
Figure 12. Expression of various mutant forms of sgg caused severe dendrite pruning defects………….………………………………….76
Figure 13. Expression of N-terminal-deletion TCF caused critical dendrite severing defects…………………………………………….78
dc.language.isoen
dc.subjectdishevelledzh_TW
dc.subjectTCFzh_TW
dc.subject第四樹突型神經元zh_TW
dc.subject蛋白?體活性zh_TW
dc.subject神經樹突修剪zh_TW
dc.subjectWnt訊息傳導路徑zh_TW
dc.subjectWnt受體zh_TW
dc.subjectdendrite pruningen
dc.subjectTCFen
dc.subjectWnt receptorsen
dc.subjectdishevelleden
dc.subjectWnt pathwayen
dc.subjectproteasome activityen
dc.subjectclass IV da neuronsen
dc.title蛋白酶體活性與Wnt訊息傳導路徑調控果蠅神經元樹突修剪之研究zh_TW
dc.titleRoles of Proteasome Activity and Wnt Signaling Regulation during Neuronal Dendrite Pruning in Drosophilaen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee徐立中(Li-Chung Hsu),皮海薇(Hai-Wei Pi)
dc.subject.keyword神經樹突修剪,第四樹突型神經元,蛋白?體活性,Wnt訊息傳導路徑,Wnt受體,dishevelled,TCF,zh_TW
dc.subject.keyworddendrite pruning,class IV da neurons,proteasome activity,Wnt pathway,dishevelled,Wnt receptors,TCF,en
dc.relation.page78
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-12-04
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf4.43 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved