Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51439
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊健志(Chien-Chih Yang)
dc.contributor.authorI-Ru Chenen
dc.contributor.author陳奕如zh_TW
dc.date.accessioned2021-06-15T13:34:15Z-
dc.date.available2021-11-08
dc.date.copyright2016-11-08
dc.date.issued2015
dc.date.submitted2016-01-31
dc.identifier.citationAdie, B.A., Perez-Perez, J., Perez-Perez, M.M., Godoy, M., Sanchez-Serrano, J.J., Schmelz, E.A., and Solano, R. (2007). ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. The Plant cell 19, 1665-1681.
Arenas-Huertero, F., Arroyo, A., Zhou, L., Sheen, J., and Leon, P. (2000). Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes & development 14, 2085-2096.
Avonce, N., Leyman, B., Mascorro-Gallardo, J.O., Van Dijck, P., Thevelein, J.M., and Iturriaga, G. (2004). The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signaling. Plant physiology 136, 3649-3659.
Baena-Gonzalez, E., Rolland, F., Thevelein, J.M., and Sheen, J. (2007). A central integrator of transcription networks in plant stress and energy signalling. Nature 448, 938-942.
Bolouri Moghaddam, M.R., and Van den Ende, W. (2012). Sugars and plant innate immunity. Journal of experimental botany 63, 3989-3998.
Bolouri Moghaddam, M.R., and Van den Ende, W. (2013). Sweet immunity in the plant circadian regulatory network. Journal of experimental botany 64, 1439-1449.
Chen, C.-C., Liang, C.-S., Kao, A.-L., and Yang, C.-C. (2010). HHP1, a novel signalling component in the cross-talk between the cold and osmotic signalling pathways in Arabidopsis. Journal of experimental botany 61, 3305-3320.
Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.H., Hong, X., Agarwal, M., and Zhu, J.K. (2003). ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes & development 17, 1043-1054.
Cook, D., Fowler, S., Fiehn, O., and Thomashow, M.F. (2004). A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 101, 15243-15248.
Dar, T.A., Uddin, M., Khan, M.M.A., Hakeem, K.R., and Jaleel, H. (2015). Jasmonates counter plant stress: A Review. Environmental and Experimental Botany 115, 49-57.
Dean, J.V., and Delaney, S.P. (2008). Metabolism of salicylic acid in wild-type, ugt74f1 and ugt74f2 glucosyltransferase mutants of Arabidopsis thaliana. Physiologia plantarum 132, 417-425.
Dempsey, D.A., Vlot, A.C., Wildermuth, M.C., and Klessig, D.F. (2011). Salicylic Acid biosynthesis and metabolism. The Arabidopsis book / American Society of Plant Biologists 9, e0156.
Denay, G., Creff, A., Moussu, S., Wagnon, P., Thevenin, J., Gerentes, M.F., Chambrier, P., Dubreucq, B., and Ingram, G. (2014). Endosperm breakdown in Arabidopsis requires heterodimers of the basic helix-loop-helix proteins ZHOUPI and INDUCER OF CBP EXPRESSION 1. Development 141, 1222-1227.
Ding, Y., Li, H., Zhang, X., Xie, Q., Gong, Z., and Yang, S. (2015). OST1 Kinase Modulates Freezing Tolerance by Enhancing ICE1 Stability in Arabidopsis. Developmental cell 32, 278-289.
Dong, C.H., Agarwal, M., Zhang, Y., Xie, Q., and Zhu, J.K. (2006). The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proceedings of the National Academy of Sciences of the United States of America 103, 8281-8286.
Dong, T., Xu, Z.Y., Park, Y., Kim, D.H., Lee, Y., and Hwang, I. (2014). Abscisic acid uridine diphosphate glucosyltransferases play a crucial role in abscisic acid homeostasis in Arabidopsis. Plant physiology 165, 277-289.
Eastmond, P.J., Van Dijken, A.J.H., Spielman, M., Kerr, A., Tissier, A.F., Dickinson, H.G., Jones, J.D.G., Smeekens, S.C., and Graham, I.A. (2002). Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. The Plant Journal 29, 225-235.
Fernie, A.R., and Stitt, M. (2012). On the discordance of metabolomics with proteomics and transcriptomics: coping with increasing complexity in logic, chemistry, and network interactions scientific correspondence. Plant physiology 158, 1139-1145.
Feussner, I., and Polle, A. (2015). What the transcriptome does not tell - proteomics and metabolomics are closer to the plants' patho-phenotype. Current opinion in plant biology 26, 26-31.
Fiehn, O. (2002). Metabolomics – the link between genotypes and phenotypes. Plant molecular biology 48, 155-171.
Field, K.J., and Lake, J.A. (2011). Environmental metabolomics links genotype to phenotype and predicts genotype abundance in wild plant populations. Physiologia plantarum 142, 352-360.
Finkelstein, R. (2013). Abscisic Acid Synthesis and Response. The Arabidopsis Book, e0166.
Fukushima, A., Kusano, M., Mejia, R.F., Iwasa, M., Kobayashi, M., Hayashi, N., Watanabe-Takahashi, A., Narisawa, T., Tohge, T., Hur, M., Wurtele, E.S., Nikolau, B.J., and Saito, K. (2014). Metabolomic Characterization of Knockout Mutants in Arabidopsis: Development of a Metabolite Profiling Database for Knockout Mutants in Arabidopsis. Plant physiology 165, 948-961.
Gomez, L.D., Gilday, A., Feil, R., Lunn, J.E., and Graham, I.A. (2010). AtTPS1-mediated trehalose 6-phosphate synthesis is essential for embryogenic and vegetative growth and responsiveness to ABA in germinating seeds and stomatal guard cells. The Plant journal : for cell and molecular biology 64, 1-13.
Hirai, M.Y., Yano, M., Goodenowe, D.B., Kanaya, S., Kimura, T., Awazuhara, M., Arita, M., Fujiwara, T., and Saito, K. (2004). Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 101, 10205-10210.
Hu, Y., Jiang, L., Wang, F., and Yu, D. (2013). Jasmonate regulates the inducer of cbf expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. The Plant cell 25, 2907-2924.
Jossier, M., Bouly, J.P., Meimoun, P., Arjmand, A., Lessard, P., Hawley, S., Grahame Hardie, D., and Thomas, M. (2009). SnRK1 (SNF1-related kinase 1) has a central role in sugar and ABA signalling in Arabidopsis thaliana. The Plant journal : for cell and molecular biology 59, 316-328.
Kanaoka, M.M., Pillitteri, L.J., Fujii, H., Yoshida, Y., Bogenschutz, N.L., Takabayashi, J., Zhu, J.K., and Torii, K.U. (2008). SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to arabidopsis stomatal differentiation. The Plant cell 20, 1775-1785.
Kaplan, F., Kopka, J., Sung, D.Y., Zhao, W., Popp, M., Porat, R., and Guy, C.L. (2007). Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. The Plant Journal 50, 967-981.
Kazan, K. (2015). Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends in plant science 20, 219-229.
Kim, T., Dreher, K., Nilo-Poyanco, R., Lee, I., Fiehn, O., Lange, B.M., Nikolau, B.J., Sumner, L., Welti, R., Wurtele, E.S., and Rhee, S.Y. (2015). Patterns of metabolite changes identified from large-scale gene perturbations in Arabidopsis using a genome-scale metabolic network. Plant physiology 167, 1685-1698.
Kohli, A., Sreenivasulu, N., Lakshmanan, P., and Kumar, P.P. (2013). The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant cell reports 32, 945-957.
Krasensky, J., and Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of experimental botany 63, 1593-1608.
Laby, R.J., Kincaid, M.S., Kim, D., and Gibson, S.I. (2000). The Arabidopsis sugar‐insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. The Plant Journal 23, 587-596.
Lang, V., Mantyla, E., Welin, B., Sundberg, B., and Palva, E.T. (1994). Alterations in Water Status, Endogenous Abscisic Acid Content, and Expression of rab18 Gene during the Development of Freezing Tolerance in Arabidopsis thaliana. Plant physiology 104, 1341-1349.
Lastdrager, J., Hanson, J., and Smeekens, S. (2014). Sugar signals and the control of plant growth and development. Journal of experimental botany 65, 799-807.
Liang, C.H., and Yang, C.C. (2015). Identification of ICE1 as a negative regulator of ABA-dependent pathways in seeds and seedlings of Arabidopsis. Plant molecular biology.
Liu, Z., Yan, J.P., Li, D.K., Luo, Q., Yan, Q., Liu, Z.B., Ye, L.M., Wang, J.M., Li, X.F., and Yang, Y. (2015). UDP-glucosyltransferase71c5, a major glucosyltransferase, mediates abscisic acid homeostasis in Arabidopsis. Plant physiology 167, 1659-1670.
Ljung, K., Nemhauser, J.L., and Perata, P. (2015). New mechanistic links between sugar and hormone signalling networks. Current opinion in plant biology 25, 130-137.
Lunn, J.E., Delorge, I., Figueroa, C.M., Van Dijck, P., and Stitt, M. (2014). Trehalose metabolism in plants. The Plant journal : for cell and molecular biology 79, 544-567.
Miura, K., and Ohta, M. (2010). SIZ1, a small ubiquitin-related modifier ligase, controls cold signaling through regulation of salicylic acid accumulation. Journal of Plant Physiology 167, 555-560.
Miura, K., and Tada, Y. (2014). Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in plant science 5, 4.
Miura, K., Jin, J.B., Lee, J., Yoo, C.Y., Stirm, V., Miura, T., Ashworth, E.N., Bressan, R.A., Yun, D.J., and Hasegawa, P.M. (2007). SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. The Plant cell 19, 1403-1414.
Moore, B., Zhou, L., Rolland, F., Hall, Q., Cheng, W.-H., Liu, Y.-X., Hwang, I., Jones, T., and Sheen, J. (2003). Role of the Arabidopsis Glucose Sensor HXK1 in Nutrient, Light, and Hormonal Signaling. Science 300, 332-336.
Nambara, E., and Marion-Poll, A. (2005). ABSCISIC ACID BIOSYNTHESIS AND CATABOLISM. Annual Review of Plant Biology 56, 165-185.
O'Hara, L.E., Paul, M.J., and Wingler, A. (2013). How do sugars regulate plant growth and development? New insight into the role of trehalose-6-phosphate. Molecular plant 6, 261-274.
Pan, X., Welti, R., and Wang, X. (2010). Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nature protocols 5, 986-992.
Prasch, C.M., and Sonnewald, U. (2015). Signaling events in plants: Stress factors in combination change the picture. Environmental and Experimental Botany 114, 4-14.
Ramon, M., Rolland, F., and Sheen, J. (2008). Sugar sensing and signaling. The Arabidopsis book / American Society of Plant Biologists 6, e0117.
Robert-Seilaniantz, A., Grant, M., and Jones, J.D. (2011). Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annual review of phytopathology 49, 317-343.
Rodrigues, A., Adamo, M., Crozet, P., Margalha, L., Confraria, A., Martinho, C., Elias, A., Rabissi, A., Lumbreras, V., Gonzalez-Guzman, M., Antoni, R., Rodriguez, P.L., and Baena-Gonzalez, E. (2013). ABI1 and PP2CA phosphatases are negative regulators of Snf1-related protein kinase1 signaling in Arabidopsis. The Plant cell 25, 3871-3884.
Rolland, F., Baena-Gonzalez, E., and Sheen, J. (2006). Sugar sensing and signaling in plants: conserved and novel mechanisms. Annual Review of Plant Biology 57, 675-709.
Rook, F., Corke, F., Card, R., Munz, G., Smith, C., and Bevan, M.W. (2001). Impaired sucrose‐induction mutants reveal the modulation of sugar‐induced starch biosynthetic gene expression by abscisic acid signalling. The Plant Journal 26, 421-433.
Saito, K., and Matsuda, F. (2010). Metabolomics for functional genomics, systems biology, and biotechnology. Annual Review of Plant Biology 61, 463-489.
Sanchez, D.H., Siahpoosh, M.R., Roessner, U., Udvardi, M., and Kopka, J. (2008). Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiologia plantarum 132, 209-219.
Santino, A., Taurino, M., De Domenico, S., Bonsegna, S., Poltronieri, P., Pastor, V., and Flors, V. (2013). Jasmonate signaling in plant development and defense response to multiple (a)biotic stresses. Plant cell reports 32, 1085-1098.
Schluepmann, H., Pellny, T., van Dijken, A., Smeekens, S., and Paul, M. (2003). Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 100, 6849-6854.
Schluepmann, H., van Dijken, A., Aghdasi, M., Wobbes, B., Paul, M., and Smeekens, S. (2004). Trehalose mediated growth inhibition of Arabidopsis seedlings is due to trehalose-6-phosphate accumulation. Plant physiology 135, 879-890.
Scott, I.M., Clarke, S.M., Wood, J.E., and Mur, L.A. (2004). Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant physiology 135, 1040-1049.
Shahri, W., Ahmad, S., and Tahir, I. (2014). Sugar Signaling in Plant Growth and Development. In Plant signaling: Understanding the molecular crosstalk, K.R. Hakeem, R.U. Rehman, and I. Tahir, eds (Springer India), pp. 93-116.
Sheard, L.B., and Zheng, N. (2009). Plant biology: Signal advance for abscisic acid. Nature 462, 575-576.
Sheen, J. (2014). Master Regulators in Plant Glucose Signaling Networks. Journal of plant biology 57, 67-79.
Song, S., Qi, T., Wasternack, C., and Xie, D. (2014). Jasmonate signaling and crosstalk with gibberellin and ethylene. Current opinion in plant biology 21, 112-119.
Swiatek, A., Van Dongen, W., Esmans, E.L., and Van Onckelen, H. (2004). Metabolic fate of jasmonates in tobacco bright yellow-2 cells. Plant physiology 135, 161-172.
Tome, F., Nagele, T., Adamo, M., Garg, A., Marco-Llorca, C., Nukarinen, E., Pedrotti, L., Peviani, A., Simeunovic, A., Tatkiewicz, A., Tomar, M., and Gamm, M. (2014). The low energy signaling network. Frontiers in plant science 5, 353.
Tsai, A.Y., and Gazzarrini, S. (2014). Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling: the emerging picture. Frontiers in plant science 5, 119.
Umezawa, T., Nakashima, K., Miyakawa, T., Kuromori, T., Tanokura, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2010). Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant & cell physiology 51, 1821-1839.
Urano, K., Maruyama, K., Ogata, Y., Morishita, Y., Takeda, M., Sakurai, N., Suzuki, H., Saito, K., Shibata, D., Kobayashi, M., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2009). Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. The Plant journal : for cell and molecular biology 57, 1065-1078.
Wasternack, C. (2014). Action of jasmonates in plant stress responses and development — Applied aspects. Biotechnology advances 32, 31-39.
Weckwerth, W., Loureiro, M.E., Wenzel, K., and Fiehn, O. (2004). Differential metabolic networks unravel the effects of silent plant phenotypes. Proceedings of the National Academy of Sciences of the United States of America 101, 7809-7814.
Xiong, L. (2003). Regulation of Abscisic Acid Biosynthesis. Plant physiology 133, 29-36.
Xu, Z.J., Nakajima, M., Suzuki, Y., and Yamaguchi, I. (2002). Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from adzuki bean seedlings. Plant physiology 129, 1285-1295.
Xu, Z.Y., Lee, K.H., Dong, T., Jeong, J.C., Jin, J.B., Kanno, Y., Kim, D.H., Kim, S.Y., Seo, M., Bressan, R.A., Yun, D.J., and Hwang, I. (2012). A vacuolar beta-glucosidase homolog that possesses glucose-conjugated abscisic acid hydrolyzing activity plays an important role in osmotic stress responses in Arabidopsis. The Plant cell 24, 2184-2199.
Zhang, Y., Primavesi, L.F., Jhurreea, D., Andralojc, P.J., Mitchell, R.A., Powers, S.J., Schluepmann, H., Delatte, T., Wingler, A., and Paul, M.J. (2009). Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant physiology 149, 1860-1871.
Zheng, Z., Xu, X., Crosley, R.A., Greenwalt, S.A., Sun, Y., Blakeslee, B., Wang, L., Ni, W., Sopko, M.S., Yao, C., Yau, K., Burton, S., Zhuang, M., McCaskill, D.G., Gachotte, D., Thompson, M., and Greene, T.W. (2010). The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in Arabidopsis. Plant physiology 153, 99-113.
Zhu, Y., Yang, H., Mang, H.-G., and Hua, J. (2011). Induction of BAP1 by a Moderate Decrease in Temperature Is Mediated by ICE1 in Arabidopsis. Plant physiology 155, 580-588.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51439-
dc.description.abstract本實驗室先前的研究中,透過基因層次的分析了解到轉錄因子ICE1在糖訊息及離層酸(ABA)的訊息傳導中扮演著重要的角色。除了基因層次的分析,代謝層次的分析也在近年來受到重視,而代謝體學的研究亦為植物之基因功能及生理現象帶來更深入的了解。因此,本研究希望從代謝體學的角度,藉由分析不同處理下特定代謝物的含量變化,如糖類及植物荷爾蒙,進一步了解ICE1是否會透過影響糖類及荷爾蒙含量,而參與在糖訊息及離層酸訊息傳導,繼而影響植株之生長發育。
實驗結果顯示,七天大之ice1-2突變株幼苗相較於野生型幼苗,植株內之葡萄糖 (glucose)、果糖 (fructose)、離層酸及水楊酸 (SA)含量較低,而海藻糖(trehalose)及茉莉酸(JA)之含量較高,表示ice1-2突變株在幼苗長成階段 (establishment stage) 中發生能量及荷爾蒙受到干擾的現象。而在外加離層酸處理下,七天大之ice1-2植株內之葡萄糖、果糖、海藻糖、水楊酸及茉莉酸的含量皆有明顯上升,然而在野生型植株體內卻沒有上升且維持一樣的含量。另一方面,前述所提到之野生型植株及ice1-2突變株之間的差異,卻在到了不同生長階段後便差異減少。綜上所述,我們藉由糖類及荷爾蒙含量的分析,推測ICE1可能會在幼苗長成階段作為一個多重調控者,參與在糖類代謝及荷爾蒙訊息傳導途徑中,而影響植株之生長發育。
zh_TW
dc.description.abstractOur previous study has revealed the multifaceted role of ICE1 in sugar and ABA signaling at transcription level. Considering metabolomic analysis is a powerful tool to study plant responses to different conditions in addition to transcriptome or proteome analysis, we try to further investigate the role of ICE1 in sugar metabolism and phytohormone status in this study by analyzing soluble sugar (glucose, fructose, trehalose) levels and phytohormone (ABA, JA, SA) levels under different treatments.
The results showed that, in comparison to the WT, 7 day-old ice1-2 seedlings possessed lower levels of endogenous glucose, fructose, ABA and SA, while higher levels of trehalose and JA. This implied that a perturbation in energy homeostasis and hormone status occurred in ice1-2 during plant establishment stage. Exogenous ABA application induced elevation in the levels of glucose, fructose, trehalose, JA, and SA in ice1-2, while these metabolites remained in consistent levels in the WT. Furthermore, differences between the WT and ice1-2 in sugar and phytohormone analysis diminished at different growth stages. Taking together, soluble sugar and phytohormone analysis suggested ICE1 as a multiple regulator in sugar metabolism and phytohormone signaling pathways, especially in the stage of plant establishment.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:34:15Z (GMT). No. of bitstreams: 1
ntu-104-R02b22010-1.pdf: 2999941 bytes, checksum: 0923745de8e8f2cc556eabc241acb9dc (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsContents
摘要 i
Abstract iii
Abbreviation list v
Chapter 1. Introduction 1
1.1 Metabolomics in linking phenotypes to genotypes 1
1.2 Complexity of the metabolic response 2
1.3 Environmental stress and plant development 3
1.3.1 Sugar signaling 4
1.3.2 ABA metabolism and signaling 6
1.3.3 JA metabolism and signaling 9
1.3.4 SA metabolism and signaling 11
1.4 The physiological role and regulation of ICE1 12
1.5 Objective of this study 13
Chapter 2. Materials and Methods 15
2.1 Plant materials 15
2.2 Growth conditions 15
2.3 Chilling, glucose, and ABA treatments 15
2.3.1 Chilling treatment 15
2.3.2 Glucose treatment 15
2.3.3 ABA treatment 16
2.4 Measurement of carbohydrate content 16
2.4.1 Harvesting plant material 16
2.4.2 Soluble sugar extraction 16
2.4.3 Analysis of soluble sugar content 16
2.4.3.1 Determination by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) 16
2.4.3.2 Determination by enzymatic assay 17
2.5 Phytohormone content determination 17
2.5.1 Harvesting plant material 17
2.5.2 Phytohormone extraction 18
2.5.3 Mass spectrometry analysis 18
Chapter 3. Results 21
3.1 Methods for soluble sugar and phytohormone analysis 21
3.1.1 HPAEC-PAD was selected for soluble sugar analysis 21
3.1.2 95% ethanol was more suitable than 80% ethanol for soluble sugar extraction 21
3.1.3 Drying process had been optimized for phytohormone extraction procedure 22
3.2 Carbohydrate levels was altered in 7 day-old ice1-2 upon glucose and ABA treatment 22
3.3 Phytohormone levels was changed in 7 day-old ice1-2 upon glucose and ABA treatment 24
3.4 The differences in sugar and phytohormone levels in 7 day-old seedlings between WT and ice1-2 was diminished in 10 day-old seedlings 25
3.5 Glucose and fructose were decreased while trehalose remained similar level after chilling treatment in both WT and ice1-2 26
3.6 Hormones remained similar levels after chilling treatment in both WT and ice1-2 27
Chapter 4. Discussion 29
4.1 ICE1-mediated carbohydrate alteration might be via trehalose signaling 29
4.2 Multifaceted role of ICE1 in plant hormones crosstalk 30
4.2.1 ICE1 participates in not only ABA signaling but ABA biosynthesis 31
4.2.2 ICE1 as a novel regulator in JA and SA homeostasis 32
4.3 The fundamental role of ICE1 during the establishment stage in Arabidopsis 33
4.4 Whether ICE1 also act a multiple regulator in cold stress remains to be addressed 33
4.5 Insights into integration of sugar and hormonal crosstalk in plant development and stress response 34
Chapter 5. Perspective 37
5.1 Further investigation on the role of ICE1 in trehalose metabolism and signaling 37
5.2 Examining the effect of different sugar on ICE1-mediated metabolic alteration 37
5.3 Exploring the novel role of ICE1 in JA metabolism and signaling by monitoring other JA derivatives and gene expressions 38
Reference 39
Figures 47
Figure 1. Flow chart of extraction process for sugar (A) and phytohormone (B) analysis, and the principle of sugar determination by enzymatic assay (C) 48
Figure 2. Calibration curves determined by HPAEC-PAD and by enzymatic assay 49
Figure 3. Comparison of two sugar determination methods in extracted samples 50
Figure 4. The different effect on extraction in 95% ethanol and 80% ethanol 51
Figure 5. Different drying way for extraction had been tested to reduce the loss of ABA during drying process 52
Figure 6. Effect of exogenous glucose and ABA on sugar levels in Arabidopsis seedlings. 53
Figure 7. Effect of exogenous glucose and ABA on phytohormone levels in Arabidopsis seedlings. 54
Figure 8. Comparison of sugar levels between different growth stages 55
Figure 9. Comparison of phytohormone levels between different growth stages 56
Figure 10. Change in sugar contents before and after chilling treatment in dark 57
Figure 11. Change in phytohormone contents before and after chilling treatment in dark 58
Figure 12. The regulation model of ICE1 on sugar, ABA, and JA status 59
Appendices 61
dc.language.isoen
dc.title阿拉伯芥ice1-2突變株之代謝物分析與研究zh_TW
dc.titleMetabolic analysis on ice1-2 mutant of Arabidopsisen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王愛玉(Ai-Yu Wang),陳佩燁(Pei-Yeh Chen),常怡庸(Yee-Yung Charng),蘇仲卿(Jong-Ching Su)
dc.subject.keyword代謝分析,ICE1,糖類,葡萄糖,海藻糖,植物荷爾蒙,茉莉酸,zh_TW
dc.subject.keywordMetabolic analysis,ICE1,sugar,glucose,trehalose,plant hormone,JA,en
dc.relation.page79
dc.rights.note有償授權
dc.date.accepted2016-02-01
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
2.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved