Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51383
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor章良渭(Liang-Wey Chang)
dc.contributor.authorYun-Chung Linen
dc.contributor.author林允中zh_TW
dc.date.accessioned2021-06-15T13:32:23Z-
dc.date.available2024-03-12
dc.date.copyright2019-03-12
dc.date.issued2016
dc.date.submitted2016-02-02
dc.identifier.citation1. Spinal cord injury facts and fugures at a glance 2014. National spinal cord injury statistical center, 2014.
2. Ogilvie, C., P. Bowker, and D.I. Rowley, The physiological benefits of paraplegic orthotically aided walking. Paraplegia, 1993. 31(2): p. 111-5.
3. Center for Orthostics Design-ISOCENTRIC RGO. Available from: http://www.centerfororthoticsdesign.com/isocentric_rgo/.
4. Lisa A. Harvey, G.M.D., Merrick B. Smith, Stella Engel, Energy Expenditure During Gait Using the Walkablout and Isocentric Reciprocal Gait Orthosis in Persons With Paraplegia. Arch Phys Med Rehabil, 1998. 79: p. 945.
5. Lower-limb robotic rehabilitation: Literature, in Journal of Robotics. 2011. p. 11.
6. Amit GOFFER, K.T. and P. Oren TAMARI, Locomotion assisting apparatus with integrated tilt sensor 2012.
7. Hugo A. Quintero, R.J.F., and Michael Goldfarb, Members, Control and Implementation of a Powered Lower Limb Orthosis. IEEE, 2011.
8. 人體計測資料庫簡介及重要計測值, 勞動部勞動及職業安全衛生研究所, Editor. 2008.
9. ANATOMICAL ANGLES OF THE LOWER EXTREMITY. 2009, Synthes, Inc.
10. Hafner, B.J., et al., Evaluation of function, performance, and preference as transfemoral amputees transition from mechanical to microprocessor control of the prosthetic knee. Arch Phys Med Rehabil, 2007. 88(2): p. 207-17.
11. Meier, M.R., A.H. Hansen, and S.A. Gard, PERFORMANCE ON AN OBSTACLE COURSE: OTTO BOCK C-LEG VS. OTTO BOCK 3R60 VS. CATECH SNS. 2005.
12. Rogers, H., et al., A comparison of functional mobility in standard vs. ultralight wheelchairs as measured by performance on a community obstacle course. Disabil Rehabil, 2003. 25(19): p. 1083-8.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51383-
dc.description.abstract半身癱瘓的患者像是腦傷、即隨損傷、脊柱裂等等的患者現在幾乎都是以輪椅代步。因為長期坐在輪椅上,站立步行將能夠提供這些患者很多生理上和心理上的好處。以往患者若要站立步行只能使用純機構式的交替式步行矯具,現在因為科技的進步,具有動力的醫療用外骨骼已經可以在臨床上使用。
研究目的:
台灣大學醫學工程學研究所復健工程學實驗室最近正在開發一款醫療用外骨骼叫做UPGO,患者自控式電動步行矯具來幫助半身癱瘓的使用者站立及步行。本篇論文的目的是要比較兩種不同的醫療用外骨骼UPGO的控制邏輯演算法,按鈕控制和姿態引發控制在日常生活中的表現有甚麼不同。
假說:
1. 兩種不同控制邏輯的步行速度會相同
2. 使用姿態引發控制會需要比較少的精神負擔
3. 按鈕控制提供使用者更精準地控制因此更容易應付障礙物
4. 按鈕控制可以讓使用者輕易地進出狹小的空間
受試者:
我們使用4位常人受試者
實驗方法:
本論文使用四個不同的測驗來模擬日常生活的患者使用外骨骼所會遇到的情況來驗證四個假說,分別是平地步行測試、精神負擔測試、障礙物測試、狹小空間測試。患者會穿著外骨骼並且使用兩種不同的控制邏輯來進行這四個不同的測試並且比較測試結果。
實驗結果:
平地步行測試中,使用姿態引發控制邏輯的使用者平均步行速度比按鈕控制的要高一點,約7%。姿態引發控制邏輯的三分鐘步行速度也明顯比7公尺步行速度要快;相反的按鈕控制邏輯的三分鐘步行速度明顯比7公尺步行速度要慢。另外姿態引發控制邏輯的三分鐘步行速度顯著的比按鈕控制還要快。在精神負擔測試中,按鈕控是邏輯的平均步行速度下降的較姿態引發控制邏輯多。在障礙物測試中姿態引發控制邏輯的通過時間稍微比按鈕控制短一點,但是姿態引發控制邏輯障礙物的次數比按鈕控制邏輯多很多。在狹窄空間測試中,按鈕控制邏輯可以更快的進出狹小空間。
zh_TW
dc.description.abstractMost persons with paraplegia, including spinal cord injury, spina bifida, brain injury etc., use a wheelchair for daily mobility. Walking provides many physiological benefits for persons with paraplegia. The ability to stand and walk also contributes to quality of life and convalescence. The Reciprocating Gait Orthosis (RGO) is the most frequently used brace for the ambulatory needs of a paralyzed child or adult. Recently, many scientists and engineers have been working to develop powered exoskeletons. Because of advancements in computers, motor efficiency, and battery capacity, it is now possible to develop powered exoskeletons that can be used in daily life.
Purpose:
National Taiwan University’s Rehabilitation Engineering Laboratory in the department of Biomedical Engineering and the Rehabilitation Engineering Research Center has recently been developing a User-controlled Powered Gait Orthosis (UPGO) to provide an affordable powered orthosis without sacrificing its performance in assisting persons with paraplegia with standing and walking. The objective of this research is to compare the efficacy of the UPGO’s push button control algorithm in daily walking activities with that of the postural control algorithm similar to the one used with the ReWalk.
Hypotheses:
1. The walking speed with the push button control will not be different than that with the posture control.
2. The postural control requires lesser mental effort than the user control.
3. The push button control will allow the user to perform more precise control of each step so that the user can manage complex obstacle situation in the daily life compared to the postural control.
4. The push button control allows the user to perform different step length on each step. As a result, user can perform U-turn in narrow spaces such as elevator more easily compared to postural control.
Subjects:
We will use 4 nondisabled subjects as models for persons with paraplegia.
Method:
This experiment performed the Level Ground Walking Task, Mental Loading Task, Obstacle Task and Narrow Space Task on two different control algorithm to test the hypotheses and know the effect of control algorithm. Subjects will perform the above 4 tasks on two different days using a different control algorithms for each day to avoid interaction and user confusion.
Results:
In Level Ground Walking Task, average walking speed of postural control is slightly higher (7%) than push button control. The highest walking speed of Postural Control occur in 3 minute walking trial compared to 7-m walking trial. There was a significant speed drop in 3 minute walking trial of push button control. 3 minute Walking Speed of postural control is significantly higher than that of push button control. For the Mental Loading Task, average walking speed of push button control decrease more in mental loading task. For the Obstacle Task, push button control have fewer contact error compared to postural control but require more time to navigate through obstacles. In Narrow Space Task, push button control require less time to perform a U-turn in narrow space.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:32:23Z (GMT). No. of bitstreams: 1
ntu-105-R02548023-1.pdf: 1779143 bytes, checksum: cd206718a35adf0cb1574e37936ac75c (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 1
摘要 2
Abstract 4
Introduction 12
RGOs 12
Powered Exoskeletons 13
ReWalk 14
Indego 16
UPGO Project Objectives 18
Hardware Design of UPGO 20
Software Design of UPGO 24
Control Algorithm comparison 25
Research Objective 28
Hypotheses 29
Methods and Materials 30
Subjects 30
Methods 31
Outcome Measure and Experiment Setup 35
Results 38
Discussion 40
Limitations 44
Conclusion 44
Reference 47
dc.language.isoen
dc.title患者自控式電動步行矯具之控制邏輯演算–比較按鈕控制和姿態引發控制zh_TW
dc.titleComparison of User-Controlled Powered Gait Orthoses (UPGO)
control algorithms:Push-Button Control and Posture-triggered Control
en
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳適卿,陳文翔,韓德生
dc.subject.keyword外骨骼,控制邏輯,醫療用外骨骼,機器人,半身癱瘓,zh_TW
dc.subject.keywordexoskeleton,control algorithm,paraplagia,SCI,en
dc.relation.page48
dc.rights.note有償授權
dc.date.accepted2016-02-02
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
1.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved