Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51331
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李百祺(Pai-chi Li)
dc.contributor.authorQi-Wei Yangen
dc.contributor.author楊棋崴zh_TW
dc.date.accessioned2021-06-15T13:30:45Z-
dc.date.available2021-02-20
dc.date.copyright2021-02-20
dc.date.issued2021
dc.date.submitted2021-02-05
dc.identifier.citationS. Kumar and D. Mahto, 'Recent Trends in Industrial and other Engineering Applications of Non Destructive Testing: A Review,' Global Journal of Research In Engineering, vol. 4, no. 9, pp. 183-194, 2013.
S. K. Dwivedi, M. Vishwakarma and A. Soni, 'Advances and Researches on Non Destructive Testing: A Review,' Materials Today: Proceedings, vol. 5, no. 2, pp. 3690-3698, 2018.
M. V. Felice and Z. Fan, 'Sizing of flaws using ultrasonic bulk wave testing: A review,' Ultrasonics, vol. 88, pp. 26-42, 2018.
A. Hijazi, 'Introduction to Non-Destructive Testing Techniques,' [Online]. Available: https://sites.google.com/view/alahijazi/classes/non-destructive-testing-ndt#h.p_7XngzhRHpBO7. [Accessed 22 Dec. 2020].
M. Willcox and J. Li, A brief description of NDT techniques, Insight NDT Equipment Ltd, 2003.
E. Brunner, 'Ultrasound system considerations and their impact on front-end components,' Analog Dialogue Analog Devices, vol. 36, no. 3, 2002.
G. York and Y. Kim, 'Ultrasound processing and computing: Review and future directions,' Annu. Rev. Biomed. Eng., vol. 1, pp. 559-588, 1999.
J. Powers and F. Kremkau, 'Medical ultrasound systems,' Interface Focus, vol. 1, pp. 477-489, 2011.
S. S. Brunke, M. F. Insana, J. J. Dahl, C. Hansen, M. Ashfaq and H. Ermert, 'An ultrasound research interface for a clinical system,' IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 54, no. 1, pp. 198-210, 2007.
P. Tortoli, L. Bassi, E. Boni, A. Dallai, F. Guidi and S. Ricci, 'ULA-OP: An advanced open platform for ultrasound research,' IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 56, no. 10, pp. 2207-2216, 2009.
J. A. Jensen, O. Holm, L. J. Jerisen, H. Bendsen, S. I. Nikolov, B. G. Tomov, P. Munk, M. Hansen, K. Salomonsen, J. Hansen, K. Gormsen, H. M. Pedersen and K. L. Gammelmark, 'Ultrasound research scanner for real-time synthetic aperture data acquisitio,' IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 52, no. 5, pp. 881-891, 2005.
S-Sharp, 'Prodigy 128,' [Online]. Available: https://www.s-sharp.com/web/products/products.jsp. [Accessed 19 Dec 2020].
J. Zhang, B. W. Drinkwater, P. D. Wilcox and A. J. Hunter, 'Defect detection using ultrasonic arrays: The multi-mode total focusing method,' NDT E International, vol. 43, no. 2, pp. 123-133, 2010.
A. A. Samokrutov and V. G. Shevaldykin, 'Ultrasonic tomography of metal structures using the digitally focused antenna array method,' Russ J Nondestruct Test, vol. 47, no. 1, pp. 16-29, 2011.
C. Holmes, B. W. Drinkwater and P. D. Wilcox, 'Post-processing of the full matrix of ultrasonic transmit–receive array data for non-destructive evaluation,' NDT E International, vol. 38, no. 8, pp. 701-711, 2005.
B. E. Treeby, D. R. J. Jaros and B. T. Cox, 'Modelling elastic wave propagation using the k-Wave MATLAB Toolbox,' IEEE Ultrason. Symp. Proc., pp. 146-149, 2014.
J. Zhang, T. Barber, A. Nixon and P. Wilcox, 'Investigation into distinguishing between small volumetric and crack-like defects using multi-view total focusing method images,' Proc. AIP Conf., vol. 1806, no. 1, p. 040003, 2017.
J. Krautkramer and H. Krautkramer, Ultrasonic Testing of Materials, Springer-Verlag, 1990.
J. Camacho, M. Parrilla and C. Fritsch, 'Phase Coherence Imaging,' IEEE Trans. Ultrason. Ferroelect. Freq. Contr., vol. 56, no. 5, pp. 958-974, 2009.
J. Cheng, M. Grossman and T. KcKercher, Professional CUDA C Programming, Indianapolis:Wrox, 2014.
L. L. Jeune, P. D. S. Robert, A. Membre and C. Prada, 'Adaptive ultrasonic imaging with the total focusing method for inspection of complex components immersed in water,' Proc. AIP Conf, vol. 1650, no. 1, pp. 1037-1046, 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51331-
dc.description.abstract非破壞性檢測技術 (Nondestructive testing, NDT) 被用來評估組件壽命,也幫助工廠提高產品質量,已廣泛應用於運輸、航空、管道等行業中。超音波陣列成像能用來探測受測物體內部之缺陷,因其具有靈活及快速使用等特性,已成為非破壞性檢測的主要方法,其中又以總聚焦法 (Total focusing method, TFM) 為常用方法之一。然而此方法之成像結果仍受探測方向及缺陷取向所影響,當探測方向與缺陷法向量夾角大於45度時,探頭無法接收到來自缺陷輪廓的回聲訊號,會有無法探測的限制。此外,當探測方向與缺陷法向量夾角小於45度時,聲波可能會在探頭與缺陷間來回反射,會導致多重反射假影 (Reverberation artifact) 產生,而這些現象都會導致錯誤判斷。在本論文中,我們探討上述現象的發生條件,並利用前人提出之多角度全圖聚焦法 (multi-mode TFM) 配合時域窗遮罩 (Time-domain window mask) 以濾除來自背板的強烈反射訊號,使探測方向與缺陷法向量夾角大於45度的缺陷仍可以被探測。另外,本論文提出一種創新的方法,利用符號同調因子 (Sign coherence factor),來判別由於聲波在探頭與缺陷間來回反射所造成的多重反射假影,以更簡單地辨識出缺陷與多重反射假影。為了使上述兩種成像方法能夠即時地應用在超音波系統上,本文在可程式的超音波影像系統上利用 NVIDIA 的統一計算架構 (Compute unified device architecture, CUDA) 實踐軟體波束形成,其實際成像速率可分別達到每秒17張及每秒24張,已證明可達到即時成像。此外,本論文使用模擬仿體及實際金屬仿體實驗取得的超音波信號來驗證上述方法的可行性。zh_TW
dc.description.abstractNondestructive testing is performed to evaluate component life and quality. It has been widely used in transportation, aviation, and other industries. Ultrasound array imaging has the ability to detect defects under the surface of the object. Because of its flexibility and usability, it has become one of the main methods of nondestructive testing. Among all the array imaging methods, the total focusing method has been widely used. However, the performance of this method is limited by the detection direction and defect orientation. When the angle between the detection direction and the normal vector of the defect is greater than 45 degrees, the ultrasound probe cannot receive the echo signal from the defect contour. In addition, when the angle between the detection direction and the normal vector of the defect is less than 45 degrees, sound waves may be reflected back and forth between the probe and the defect, which may cause reverberation artifacts, and these phenomena lead to misjudgment. In this study, we propose the use of the multi-angle total focusing method, which had been reported in the literature with the time-domain window to resolve the first issue. For the second issue, we propose a new method that uses the sign coherence factor to distinguish reverberation artifacts. To implement the above two methods in real-time, we perform software beamforming on a programmable ultrasound imaging system. With the current hardware, the imaging frame rate can reach 17 frames per second and 24 frames per second, respectively. Both simulations and metal phantom experiments were done to verify the feasibility of the above methods.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:30:45Z (GMT). No. of bitstreams: 1
U0001-0502202115492300.pdf: 5812331 bytes, checksum: 2fdda17155b890d6dab06a1423546c83 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 xi
Chapter 1 序論 1
1.1 非破壞性檢測 1
1.2 超音波影像應用於非破壞性檢測 3
1.2.1 超音波檢測方法 3
1.2.2 超音波影像發展 4
1.3 超音波陣列成像系統 11
1.3.1 超音波陣列成像系統發展 11
1.3.2 可程式超音波陣列系統 13
1.4 研究動機 14
1.5 論文架構 15
Chapter 2 全圖聚焦法 16
2.1 理論基礎與名詞定義 16
2.1.1 調變 17
2.1.2 延遲聚焦 18
2.1.3 影像處理 20
2.2 實驗方法 22
2.3 聲速量測 25
2.4 實驗結果與討論 28
Chapter 3 多角度全圖聚焦法 30
3.1 缺陷角度與缺陷可視範圍 30
3.2 多角度全圖聚焦法 31
3.3 融合多角度全圖聚焦法 34
3.4 實驗結果與討論 38
Chapter 4 利用符號同調因子判別多重反射假影 42
4.1 多重反射假影 42
4.1.1 多重反射假影的影響 42
4.1.2 多重反射假影的特性 43
4.2 同調因子 45
4.2.1 理論基礎 45
4.2.2 符號同調因子 46
4.3 融合同調因子與全圖聚焦法 49
4.4 實驗結果與討論 50
Chapter 5 以GPU加速成像 52
5.1 異構系統架構 52
5.2 GPU運算效能提升設計 56
5.2.1 理論基礎 57
5.2.2 詳細步驟 60
5.3 實驗結果與討論 63
Chapter 6 結論與未來工作 65
6.1 研究結論 65
6.2 未來工作 67
6.2.1 通用融和多角度全圖聚焦法 67
6.2.2 自動化融和同調因子與全圖聚焦法 68
6.2.3 針尖偵測 69
引用文獻 75
dc.language.isozh-TW
dc.subjectCUDAzh_TW
dc.subject非破壞性檢測zh_TW
dc.subject全圖聚焦法zh_TW
dc.subject多角度全圖聚焦法zh_TW
dc.subject時域窗遮罩zh_TW
dc.subject多重反射假影zh_TW
dc.subject符號同調因子zh_TW
dc.subject即時成像zh_TW
dc.subjectCUDAzh_TW
dc.subject非破壞性檢測zh_TW
dc.subject全圖聚焦法zh_TW
dc.subject多角度全圖聚焦法zh_TW
dc.subject時域窗遮罩zh_TW
dc.subject多重反射假影zh_TW
dc.subject符號同調因子zh_TW
dc.subject即時成像zh_TW
dc.subjectTime-domain windowen
dc.subjectReal-time imagingen
dc.subjectSign coherence factoren
dc.subjectReverberation artifactsen
dc.subjectNondestructive testingen
dc.subjectTotal focusing methoden
dc.subjectMulti-angle total focusing methoden
dc.subjectTime-domain windowen
dc.subjectReverberation artifactsen
dc.subjectSign coherence factoren
dc.subjectReal-time imagingen
dc.subjectNondestructive testingen
dc.subjectTotal focusing methoden
dc.subjectMulti-angle total focusing methoden
dc.title超音波檢測金屬缺陷之提升方法zh_TW
dc.titleImprovements for Defect Detection in Metals Using Ultrasound Imagingen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭耿璽(Geng-Shi Jeng),沈哲州(Che-Chou Shen),劉建宏(Jian-Hung Liu)
dc.subject.keyword非破壞性檢測,全圖聚焦法,多角度全圖聚焦法,時域窗遮罩,多重反射假影,符號同調因子,即時成像,CUDA,zh_TW
dc.subject.keywordNondestructive testing,Total focusing method,Multi-angle total focusing method,Time-domain window,Reverberation artifacts,Sign coherence factor,Real-time imaging,en
dc.relation.page77
dc.identifier.doi10.6342/NTU202100597
dc.rights.note有償授權
dc.date.accepted2021-02-08
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
U0001-0502202115492300.pdf
  未授權公開取用
5.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved