Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51319
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賈儀平(Yeeping Chia)
dc.contributor.authorTung-Lin Taien
dc.contributor.author戴東霖zh_TW
dc.date.accessioned2021-06-15T13:30:24Z-
dc.date.available2016-03-14
dc.date.copyright2016-03-08
dc.date.issued2016
dc.date.submitted2016-02-03
dc.identifier.citation丹桂之助 (1939) 台北盆地之地質,矢部教授還曆紀念論文,第一卷。
內政部營建署 (2007) 金門烈嶼海岸地質地形調查。
台灣電力公司 (2013) 用過核子燃料最終處置計畫潛在母岩特性調查與評估階段。
江協堂 (2010) 台灣東北部宜蘭平原及龜山島之地熱研究,國立台灣大學海洋研究所博士論文,共106頁。
江協堂、徐春田、曹恕中、陳棋炫 (2009) 從地溫週期性變化推估地層原地之熱擴散係數,鑛冶工程學會研討會論文集。
江新春 (1976) 宜蘭平原之震測,礦業技術,第14期,第6 號,第215-221頁。
行政院環保署 (2003) 地下水採樣方法(NIEAW103.52B)。
李在平 (2012) 熱脈衝流速儀試驗與地層透水性分布之研究,國立台灣大學地質科學研究所博士論文,共177頁。
李佳慧 (2013) 高頻地下水位監測系統之設置與地下水位分析,國立台灣大學地質科學研究所碩士論文,共65頁。
林銘軒 (2012) 台北盆地水文地質架構及地層下陷之探討,國立台灣大學地質科學研究所碩士論文,共116頁。
洪如江 (1996) 初等工程地質大綱,地工技術叢書,共231頁。
洪有仁 (2006) 金門地區地面水與地下水聯合運用,國立台灣大學生物環境系統工程研究所碩士論文,共180頁。
張良正、黃金維、陳文福、張竝瑜 (2013) 地下水水文地質與補注模式研究補注區劃設與資源量評估(1/4),經濟部中央地質調查所,102-5226904000-7-01,共358頁。
張閔翔 (1996) 台北盆地地下水系統之研究,國立台灣大學地質科學研究所碩士論文,共61頁。
陳文山 (2000) 台灣地區地下水觀測網整體計畫第二期-沉積物與沉積物環境分析及地層對比研究-蘭陽平原,經濟部中央地質調查所,共130頁。
陳培源 (1970) 金門島及烈嶼地質說明書。
陸挽中、陳瑞娥、黃智昭、賴慈華 (2014) 蘭陽平原水文地質架構與主要地下水補注區,經濟部中央地質調查所特刊,第二十七號,水文地質研究專輯(一),第151-185頁。
曾弘志、黃道強 (1981) 宜蘭平原羅東(溶)一號井地下地質報告,台灣油礦探勘總處測勘處。
經濟部中央地質調查所 (2014) 地下水補注地質敏感區劃定計畫書-宜蘭平原,G0003,共25頁。
經濟部水利署 (2004) 規劃、設計及監造「九十三年度地下水觀測站井建置維護計畫」與地下水試驗分析計畫。
國立台灣大學生物環境系統工程學系 (2004) 金門地區地下水水質、水量之監測與安全出水量及污染潛勢之評估(1/2),經濟部水利署。
詹宛真 (2014) 應用示蹤劑試驗調查裂隙岩層中優勢地下水流路徑,國立台灣大學地質科學研究所碩士論文,共62頁。
歐晉德、李延恭、鄭在仁 (1983) 台北盆地松山層地下水位及水壓分布對基礎工程影響,土木水利,第10卷,第3期,第89-102頁。
水文地質資料庫 http://hydro.moeacgs.gov.tw/
地質資料整合查詢 http://gis.moeacgs.gov.tw/gwh/gsb97-1/sys8/index.cfm
Anderson, M.P., (2005). Heat as a ground water tracer. Groundwater 43, 951–968.
Becker, M.W., Georgian, T., Ambrose, H., Siniscalchi, J., and Fredrick, K., (2004). Estimating flow and flux of ground water discharge using water temperature and velocity. Journal of Hydrology, 296, 221–233.
Bredehoeft, J.D., and Papadopulos I.S., (1965). Rates of vertical groundwater movement estimated form the Earth’s thermal profile. Water Resources Research 1, 325–328.
Carslaw, H.S., and Jaeger J.C., (1959). Conduction of heat in solids, 2nd ed. New York: Oxford University Press.
Chatelier, M., Ruelleu, S., Bour, O., Porel, G., and Delay, F., (2011). Combined fluid temperature and flow logging for the characterization of hydraulic structure in a fractured karst aquifer. Journal of Hydrology 400, 377–386.
Clark, S. P., (1966). Thermal conductivity. Geological Society of America Memoirs 97, 459–482.
Collins, J. R., (1925). Change in the infra-red absorption spectrum of water with temperature. Physical Review 26, 771.
Conaway, J. G., (1987). Temperature logging as an aid to understanding groundwater flow in boreholes. Los Alamos National Lab.
Deming, D., (2002). Introduction to hydrogeology. McGraw-Hill College.
Diment, W. H., (1967). Thermal regime of a large diameter borehole: instability of the water column and comparison of air and water-filled conditions. Geophysics 32, 720–726.
Domenico, P.A., and Palciauskas. V.V., (1973). Theoretical analysis of forced convective heat transfer in regional groundwater flow. Geological Society of America Bulletin 84, 3803–3814.
Domenico, P.A., and Schwartz, F.W., (1998). Physical and Chemical Hydrogeology, 2nd ed. New York: John Wiley & Sons Inc.
Drury, M. J., Jessop, A. M., and Lewis, T. J., (1984). The detection of groundwater flow by precise temperature measurements in boreholes. Geothermics 13, 163–174.
Forster, C., and Smith L., (1989). The influence of groundwater flow on thermal regimes in mountainous terrain. Journal of Geophysical Research 94, 9439–9451.
Garven, G., and Freeze R.A., (1984). Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits. I. Mathematical and numerical model. American Journal of Science 284, 1085–1124.
Ge, S., (1998). Estimation of groundwater velocity in localized fracture zones from well temperature profiles. Journal of Volcanology and Geothermal Research 84, 93–101.
Jaeger, J. C., (1961). The effect of the drilling fluid on temperatures measured in boreholes. Journal of Geophysical Research 66, 563–569.
Jaynes, D.B., (1990). Temperature variations effects on field measured infiltration. Journal of the Soil Science Society of America 54, 305–312.
Jessop, A. M., (1987). Estimation of lateral water flow in an aquifer by thermal logging. Geothermics 16, 117–126.
King, F. H., and Slichter, C. S., (1899). Principles and conditions of the movements of ground water. Cambridge Journals, Government publications.
Klepikova, M. V., Le Borgne, T., Bour, O., and Davy, P., (2011). A methodology for using borehole temperature-depth profiles under ambient, single and cross-borehole pumping conditions to estimate fracture hydraulic properties. Journal of Hydrology 407, 145–152.
Liou, T.S. , Lee, Y.H. , Chiang, L.W. , Lin, W. Guo, T.R., Chen, W.S. and Chien, J.M., (2009). Alternative water resources in granitic rock: a case study from Kinmen Island, Taiwan. Environmental Earth Sciences.
Liou, T.S. , Lu, H.Y. , Lin, C.K. , Lin, W. , Chang, Y.T. , Chien, J.M. , and Chen, W.F., (2008). Geochemical investigation of groundwater in a granitic island: a case study from Kinmen island, Taiwan. Environmental Geology 58, 1575–1585.
Luheshi, M. N., (1983). Estimation of formation temperature from borehole measurements. Geophysical Journal International 74, 747–776.
Michalski, A., (1989). Application of temperature and electrical‐conductivity logging in groundwater monitoring. Groundwater Monitoring and Remediation 9, 112–118.
Niswonger, R.G., and Prudic D.E., (2003). Modeling heat as a tracer to estimate streambed seepage and hydraulic conductivity. In heat as a tool for studying the movement of groundwater near streams, 1st ed. D.A. Stonestrom and J. Constantz, 81–89. U.S. Geological Survey.
Ohtani1, T., Mizuno1, T., Kouda, A., and Kojima, S., (2015). Seasonal change of underground temperature and the use of geothermal in Gifu City, Japan. Proceedings World Geothermal Congress 2015. Melbourne, Australia, 19–25.
Pehme, P., Parker, B. L., Cherry, J. A., and Blohm, D., (2014). Detailed measurement of the magnitude and orientation of thermal gradients in lined boreholes for characterizing groundwater flow in fractured rock. Journal of Hydrology 513, 101–114.
Robertson Geologging Ltd., (2012). User’s guide for temperature probe.
Senate Department for Urban Development (SenStadt)., (2011). Groundwater temperature, edition, Berlin Environmental Atlas.
Sharp, J. M., and Kyle, J. R., (1988). Role of groundwater processes in the formation of ore deposits. Hydrogeology. The Geological Society of North America, Boulder Colorado.
Sibuet, J. C., Deffontaines, B., Hsu, S. K., Thareau, N., Formal, L., and Liu, C. S., (1998). Okinawa trough back arc basin: early tectonic and magmatic evolution. Journal of Geophysical Research: Solid Earth 103, 30245–30267.
Silliman, S., and Robinson, R., (1989). Identifying fracture interconnections between boreholes using natural temperature profiling. Groundwater 27, 393–402.
Stallman R. W., (1965). Steady one-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature. Journal of Geophysical Research 70, 2821–2827.
Stonestrom, D. A., and Constantz, J., (2003). Heat as a tool for studying the movement of ground water near streams. U.S. Geological Survey.
Taniguchi, M., Shimada, J., Tanaka, T., Kayane, I., Sakura, Y., Shimano, Y., Dapaah-Siakwan, S. and Kawashima, S., (1999). Disturbances of temperature‐depth profiles due to surface climate change and subsurface water flow: An effect of linear increase in surface temperature caused by global warming and urbanization in the Tokyo Metropolitan Area, Japan. Water Resources Research 35, 1507–1517.
Wang, T. T., Zhan, S. S., and Huang, T. H. (2015). Determining transmissivity of fracture sets with statistical significance using single-borehole hydraulic tests: methodology and implementation at Heshe well site in central Taiwan. Engineering Geology, 198, 1-15.
Yeskis, D., and Zavala, B., (2002). Groundwater sampling guidelines for superfund and RCRA project managers. In Ground Water Forum Issue Paper, EPA, 1–53.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51319-
dc.description.abstract地下水溫度變化會受到氣溫、地層溫度、地溫梯度、季節性補注、水文地質特性與井水流動等因素影響,本研究藉由地下水位/水溫計在金門井場與和社試驗井場進行地下水溫監測,監測記錄指出,造成地下水溫的季節性變化主要受控於側向地下水流,從補注區流到監測井的時間會延遲水溫變化,呈現夏季水溫較低,冬季水溫卻較高之現象。
本研究藉由溫度探測儀進行井測,調查井孔垂向地下水溫度之分布情形,地下水在孔隙介質中的主要熱傳輸機制為傳導與對流,井孔內地下水溫度的改變受控於不同地層的熱傳導係數,但其變化也受到地下水流動而產生對流效應所影響。本研究嘗試在台大農場60公尺深的觀測井進行礫石含水層的溫度量測先導試驗,井孔溫度剖面顯示在42公尺處,開篩段的頂端有明顯轉折,此現象為地下水流入井中產生的強制對流效應,將造成孔溫剖面出現異常,故孔溫剖面可能顯示出井內的透水帶位置。此外,井內量測值並不能代表井外的含水層溫度,必須藉由抽出井內的滯留水,使井水逐漸被含水層中的地下水置換,當水溫隨著抽水過程逐漸趨於穩定,此時的觀測值才代表鄰近的含水層溫度。
本研究嘗試利用井孔溫度搭配熱脈衝流速儀量測之透水性指標,在和社試驗井場調查裂隙岩體的透水裂隙,相互比對發現在特定條件下量測的孔溫,可指示透水性較高的裂隙區段,特別是流速較快的情況。另外,為改進過去以井孔溫度分布估算地溫梯度的方式,本研究選定宜蘭縣龍德站四口觀測井,藉由抽水與水溫監測方式,量測出較正確的含水層溫度,進而估算出地溫梯度為89 ℃/km,比過去經由井孔溫度量測估算之地溫梯度高出7 ℃/km,建議未來採用抽水方式量測實際地層溫度,做為地溫梯度估算之依據。
zh_TW
dc.description.abstractVariations of groundwater temperature are affected by a variety of factors, such as surface temperature change, formation temperature, geothermal gradient, seasonal groundwater recharge, hydrogeologic characterization, and water flows inside the borehole. In this study, we use groundwater level/temperature monitoring to study the factors of temperature variations over time. The Kinmen and Heshe monitoring data indicates that seasonal changes of the groundwater temperature are mainly resulted from lateral flow of the deep recharge water, causing about 3-6 months’ time delay from the recharge area, which means groundwater temperature may become lower in summer and higher in winter.
We use the logging device, temperature probe, to investigate the vertical distribution of borehole temperature. The major groundwater heat transfer in porous medium are conduction and convection. The temperature distribution in geological formation is primarily controlled by conduction, while heat convection due to flow can also modify the distribution. Then the pilot test of field measurement is conducted at a NTU 60m deep well in a gravelly aquifer to characterize the temperature profile of screened zone. However, the slope of temperature profile changes at approximately 42m deep, the top of well screen, and it points out the effects of forced convection in the aquifer. In addition, the measure borehole temperature may not represent the aquifer temperature near the observation well. The measure temperature in the screened section changes continuously in response to pumping, but stabilizes when borehole water volume is extracted, which represents the true aquifer temperature.
Another field test is conducted at Heshe test site in the fractured rock formation to characterize the preferential flow area. Detection of the borehole temperature anomaly often indicates the lateral water flow inside the open holes. Compared with results of permeable index by using heat-pulse flowmeter, we find that temperature logging in certain condition is possible to locate some permeable fracture zones, especially the high flow velocity. The other application is the improved estimate of geothermal gradient at Lungte well station, the traditional way is often based on the measurement of borehole temperature. Consequently, we adopt pumping and temperature monitoring approach in 4 wells at the Lungte station to obtain a more precise formation temperature, and the geothermal gradient estimates from formation temperatures is about 89 ℃/km, which is 7 ℃/km higher than that obtained from the borehole temperature. Our test results suggest that it is essential to measure the true formation temperature in order to improve the calculation of geothermal gradient.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:30:24Z (GMT). No. of bitstreams: 1
ntu-105-R02224114-1.pdf: 9082604 bytes, checksum: 7209a2f5508d01f866f6cbd132ea74fc (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xii
第一章 緒論 1
1.1 研究動機及目的 1
1.2 文獻回顧 2
1.3 研究方法 5
第二章 地下水溫度量測儀器及操作方式 7
2.1 溫度探測儀 7
2.1.1 現地量測配置與操作方法 9
2.2 地下水位/水溫計 11
2.2.1 現地監測配置與應用 11
第三章 地下水溫監測 14
3.1 金門監測井 14
3.1.1 區域背景 14
3.1.2 井場概述 16
3.1.3 地下水溫監測結果 18
3.2 和社監測井 23
3.3 地下水補注機制 25
第四章 先導試驗 26
4.1 台大觀測井 26
4.2 水文地質 28
4.3 井孔溫度量測及分析 29
4.4 含水層溫度與導電度量測及分析 31
4.4.1 井水置換法現地試驗 31
4.4.2 試驗結果分析及討論 33
第五章 現地試驗:透水裂隙調查 38
5.1 和社試驗井場 38
5.2 地質 42
5.3 區域井孔溫度分布 44
5.3.1 季節性變化 46
5.4 透水裂隙調查 49
5.4.1 三號井 50
5.4.2 七號井 52
5.4.3 八號井 54
5.5 跨孔抽水裂隙調查 56
5.5.1 複井抽水試驗 57
5.5.2 透水區段分析 59
5.6 綜合探討 61
第六章 現地試驗:地溫梯度量測 62
6.1 龍德站觀測井 62
6.2 地質 64
6.3 水文地質 66
6.4 井孔溫度量測及分析 69
6.5 含水層溫度 71
6.5.1 含水層溫度量測試驗 71
6.5.2 試驗結果分析及討論 72
6.5.3 儀器量測深度之含水層溫度校正式 75
6.6 地溫梯度 78
第七章 討論 81
7.1 地下水溫之波動 81
7.2 含水層溫度之量測應用及限制 82
7.2.1 利澤站觀測井 82
第八章 結論與建議 84
參考文獻 85
附錄A 和社試驗井場透水性分布量測數據 91
dc.language.isozh-TW
dc.subject含水層zh_TW
dc.subject地下水溫度zh_TW
dc.subject井孔zh_TW
dc.subject透水帶zh_TW
dc.subject地溫梯度zh_TW
dc.subject地下水溫度zh_TW
dc.subject井孔zh_TW
dc.subject含水層zh_TW
dc.subject透水帶zh_TW
dc.subject地溫梯度zh_TW
dc.subjectpermeable zonesen
dc.subjectboreholeen
dc.subjectaquiferen
dc.subjectpermeable zonesen
dc.subjectgeothermal gradienten
dc.subjectboreholeen
dc.subjectaquiferen
dc.subjectgroundwater temperatureen
dc.subjectgeothermal gradienten
dc.subjectgroundwater temperatureen
dc.title地下水溫度變化之研究zh_TW
dc.titleResearch on the Variation of Groundwater Temperatureen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee邱永嘉(Yung-Chia Chiu),陳文福(Wen-Fu Chen),王泰典(Tai-Tien Wang)
dc.subject.keyword地下水溫度,井孔,含水層,透水帶,地溫梯度,zh_TW
dc.subject.keywordgroundwater temperature,borehole,aquifer,permeable zones,geothermal gradient,en
dc.relation.page95
dc.rights.note有償授權
dc.date.accepted2016-02-03
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
8.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved