請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51290完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱麗珠(Lih-Chu Chiou) | |
| dc.contributor.author | Yao-An Chuang | en |
| dc.contributor.author | 莊曜安 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:29:35Z | - |
| dc.date.available | 2021-02-26 | |
| dc.date.copyright | 2016-02-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-02-04 | |
| dc.identifier.citation | Aggarwal S, Shavalian B, Kim E, Rawls SM (2009) Agmatine enhances cannabinoid action in the hot-plate assay of thermal nociception. Pharmacology, biochemistry, and behavior 93:426-432.
Agurell S, Halldin M, Lindgren JE, Ohlsson A, Widman M, Gillespie H, Hollister L (1986) Pharmacokinetics and metabolism of delta 1-tetrahydrocannabinol and other cannabinoids with emphasis on man. Pharmacological reviews 38:21-43. Alfarez DN, Joels M, Krugers HJ (2003) Chronic unpredictable stress impairs long-term potentiation in rat hippocampal CA1 area and dentate gyrus in vitro. The European journal of neuroscience 17:1928-1934. Alger BE, Pitler TA, Wagner JJ, Martin LA, Morishita W, Kirov SA, Lenz RA (1996) Retrograde signalling in depolarization-induced suppression of inhibition in rat hippocampal CA1 cells. The Journal of physiology 496 ( Pt 1):197-209. Ameri A (1999) The effects of cannabinoids on the brain. Progress in neurobiology 58:315-348. Ankier SI (1974) New hot plate tests to quantify antinociceptive and narcotic antagonist activities. European journal of pharmacology 27:1-4. Bandler R, Shipley MT (1994) Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? Trends in neurosciences 17:379-389. Bardin L, Malfetes N, Newman-Tancredi A, Depoortere R (2009) Chronic restraint stress induces mechanical and cold allodynia, and enhances inflammatory pain in rat: Relevance to human stress-associated painful pathologies. Behavioural brain research 205:360-366. Basbaum AI, Fields HL (1978) Endogenous pain control mechanisms: review and hypothesis. Annals of neurology 4:451-462. Beitz AJ, Shepard RD (1985) The midbrain periaqueductal gray in the rat. II. A Golgi analysis. The Journal of comparative neurology 237:460-475. Bisogno T, Howell F, Williams G, Minassi A, Cascio MG, Ligresti A, Matias I, Schiano-Moriello A, Paul P, Williams EJ, Gangadharan U, Hobbs C, Di Marzo V, Doherty P (2003) Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. The Journal of cell biology 163:463-468. Bortolato M, Mangieri RA, Fu J, Kim JH, Arguello O, Duranti A, Tontini A, Mor M, Tarzia G, Piomelli D (2007) Antidepressant-like activity of the fatty acid amide hydrolase inhibitor URB597 in a rat model of chronic mild stress. Biological psychiatry 62:1103-1110. Bridges D, Ahmad K, Rice AS (2001) The synthetic cannabinoid WIN55,212-2 attenuates hyperalgesia and allodynia in a rat model of neuropathic pain. British journal of pharmacology 133:586-594. Butler RK, Finn DP (2009) Stress-induced analgesia. Progress in neurobiology 88:184-202. Campolongo P, Roozendaal B, Trezza V, Hauer D, Schelling G, McGaugh JL, Cuomo V (2009) Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory. Proceedings of the National Academy of Sciences of the United States of America 106:4888-4893. Carlson G, Wang Y, Alger BE (2002) Endocannabinoids facilitate the induction of LTP in the hippocampus. Nature neuroscience 5:723-724. Caulfield MP, Brown DA (1992) Cannabinoid receptor agonists inhibit Ca current in NG108-15 neuroblastoma cells via a pertussis toxin-sensitive mechanism. British journal of pharmacology 106:231-232. Chameau P, Qin Y, Spijker S, Smit AB, Joels M (2007) Glucocorticoids specifically enhance L-type calcium current amplitude and affect calcium channel subunit expression in the mouse hippocampus. Journal of neurophysiology 97:5-14. Chen K, Ratzliff A, Hilgenberg L, Gulyas A, Freund TF, Smith M, Dinh TP, Piomelli D, Mackie K, Soltesz I (2003) Long-term plasticity of endocannabinoid signaling induced by developmental febrile seizures. Neuron 39:599-611. Chen X, Green PG, Levine JD (2011) Stress enhances muscle nociceptor activity in the rat. Neuroscience 185:166-173. Chiou LC, Chou HH (2000) Characterization of synaptic transmission in the ventrolateral periaqueductal gray of rat brain slices. Neuroscience 100:829-834. Coddington E, Lewis C, Rose JD, Moore FL (2007) Endocannabinoids mediate the effects of acute stress and corticosterone on sex behavior. Endocrinology 148:493-500. Compton DR, Aceto MD, Lowe J, Martin BR (1996) In vivo characterization of a specific cannabinoid receptor antagonist (SR141716A): inhibition of delta 9-tetrahydrocannabinol-induced responses and apparent agonist activity. The Journal of pharmacology and experimental therapeutics 277:586-594. Compton DR, Rice KC, De Costa BR, Razdan RK, Melvin LS, Johnson MR, Martin BR (1993) Cannabinoid structure-activity relationships: correlation of receptor binding and in vivo activities. The Journal of pharmacology and experimental therapeutics 265:218-226. Costa A, Smeraldi A, Tassorelli C, Greco R, Nappi G (2005) Effects of acute and chronic restraint stress on nitroglycerin-induced hyperalgesia in rats. Neuroscience letters 383:7-11. Devane WA, Dysarz FA, 3rd, Johnson MR, Melvin LS, Howlett AC (1988) Determination and characterization of a cannabinoid receptor in rat brain. Molecular pharmacology 34:605-613. Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946-1949. Di S, Malcher-Lopes R, Marcheselli VL, Bazan NG, Tasker JG (2005) Rapid glucocorticoid-mediated endocannabinoid release and opposing regulation of glutamate and gamma-aminobutyric acid inputs to hypothalamic magnocellular neurons. Endocrinology 146:4292-4301. Diana MA, Marty A (2003) Characterization of depolarization-induced suppression of inhibition using paired interneuron--Purkinje cell recordings. The Journal of neuroscience : the official journal of the Society for Neuroscience 23:5906-5918. Diana MA, Levenes C, Mackie K, Marty A (2002) Short-term retrograde inhibition of GABAergic synaptic currents in rat Purkinje cells is mediated by endogenous cannabinoids. The Journal of neuroscience : the official journal of the Society for Neuroscience 22:200-208. Drew GM, Mitchell VA, Vaughan CW (2008) Glutamate spillover modulates GABAergic synaptic transmission in the rat midbrain periaqueductal grey via metabotropic glutamate receptors and endocannabinoid signaling. The Journal of neuroscience : the official journal of the Society for Neuroscience 28:808-815. Engler B, Freiman I, Urbanski M, Szabo B (2006) Effects of exogenous and endogenous cannabinoids on GABAergic neurotransmission between the caudate-putamen and the globus pallidus in the mouse. The Journal of pharmacology and experimental therapeutics 316:608-617. Fereidoni M, Javan M, Semnanian S, Ahmadiani A (2007) Chronic forced swim stress inhibits ultra-low dose morphine-induced hyperalgesia in rats. Behavioural pharmacology 18:667-672. Fields HL, Heinricher MM, Mason P (1991) Neurotransmitters in nociceptive modulatory circuits. Annual review of neuroscience 14:219-245. Fujisawa H, Ohtani-Kaneko R, Naiki M, Okada T, Masuko K, Yudoh K, Suematsu N, Okamoto K, Nishioka K, Kato T (2008) Involvement of post-translational modification of neuronal plasticity-related proteins in hyperalgesia revealed by a proteomic analysis. Proteomics 8:1706-1719. Gamaro GD, Xavier MH, Denardin JD, Pilger JA, Ely DR, Ferreira MB, Dalmaz C (1998) The effects of acute and repeated restraint stress on the nociceptive response in rats. Physiology & behavior 63:693-697. Gao Y et al. (2010) Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in diacylglycerol lipase knock-out mice. The Journal of neuroscience : the official journal of the Society for Neuroscience 30:2017-2024. Glitsch M, Llano I, Marty A (1996) Glutamate as a candidate retrograde messenger at interneurone-Purkinje cell synapses of rat cerebellum. The Journal of physiology 497 ( Pt 2):531-537. Glitsch M, Parra P, Llano I (2000) The retrograde inhibition of IPSCs in rat cerebellar purkinje cells is highly sensitive to intracellular Ca2+. The European journal of neuroscience 12:987-993. Gregg LC, Jung KM, Spradley JM, Nyilas R, Suplita RL, 2nd, Zimmer A, Watanabe M, Mackie K, Katona I, Piomelli D, Hohmann AG (2012) Activation of type 5 metabotropic glutamate receptors and diacylglycerol lipase-alpha initiates 2-arachidonoylglycerol formation and endocannabinoid-mediated analgesia. The Journal of neuroscience : the official journal of the Society for Neuroscience 32:9457-9468. Hajos N, Katona I, Naiem SS, MacKie K, Ledent C, Mody I, Freund TF (2000) Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. The European journal of neuroscience 12:3239-3249. Henry DJ, Chavkin C (1995) Activation of inwardly rectifying potassium channels (GIRK1) by co-expressed rat brain cannabinoid receptors in Xenopus oocytes. Neuroscience letters 186:91-94. Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. The Journal of neuroscience : the official journal of the Society for Neuroscience 11:563-583. Herman JP, Adams D, Prewitt C (1995) Regulatory changes in neuroendocrine stress-integrative circuitry produced by a variable stress paradigm. Neuroendocrinology 61:180-190. Herman JP, Tasker JG, Ziegler DR, Cullinan WE (2002) Local circuit regulation of paraventricular nucleus stress integration: glutamate-GABA connections. Pharmacology, biochemistry, and behavior 71:457-468. Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC, Cullinan WE (2003) Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Frontiers in neuroendocrinology 24:151-180. Hill MN, Gorzalka BB (2005) Is there a role for the endocannabinoid system in the etiology and treatment of melancholic depression? Behavioural pharmacology 16:333-352. Hill MN, Patel S, Carrier EJ, Rademacher DJ, Ormerod BK, Hillard CJ, Gorzalka BB (2005) Downregulation of endocannabinoid signaling in the hippocampus following chronic unpredictable stress. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 30:508-515. Ho YC, Lee HJ, Tung LW, Liao YY, Fu SY, Teng SF, Liao HT, Mackie K, Chiou LC (2011) Activation of orexin 1 receptors in the periaqueductal gray of male rats leads to antinociception via retrograde endocannabinoid (2-arachidonoylglycerol)-induced disinhibition. The Journal of neuroscience : the official journal of the Society for Neuroscience 31:14600-14610. Hoffman AF, Lupica CR (2001) Direct actions of cannabinoids on synaptic transmission in the nucleus accumbens: a comparison with opioids. Journal of neurophysiology 85:72-83. Hohmann AG, Suplita RL, Bolton NM, Neely MH, Fegley D, Mangieri R, Krey JF, Walker JM, Holmes PV, Crystal JD, Duranti A, Tontini A, Mor M, Tarzia G, Piomelli D (2005) An endocannabinoid mechanism for stress-induced analgesia. Nature 435:1108-1112. Howlett AC (1984) Inhibition of neuroblastoma adenylate cyclase by cannabinoid and nantradol compounds. Life sciences 35:1803-1810. Howlett AC (1985) Cannabinoid inhibition of adenylate cyclase. Biochemistry of the response in neuroblastoma cell membranes. Molecular pharmacology 27:429-436. Howlett AC, Fleming RM (1984) Cannabinoid inhibition of adenylate cyclase. Pharmacology of the response in neuroblastoma cell membranes. Molecular pharmacology 26:532-538. Howlett AC, Qualy JM, Khachatrian LL (1986) Involvement of Gi in the inhibition of adenylate cyclase by cannabimimetic drugs. Molecular pharmacology 29:307-313. Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacological reviews 54:161-202. Iversen L, Chapman V (2002) Cannabinoids: a real prospect for pain relief? Current opinion in pharmacology 2:50-55. Jaferi A, Bhatnagar S (2006) Corticosterone can act at the posterior paraventricular thalamus to inhibit hypothalamic-pituitary-adrenal activity in animals that habituate to repeated stress. Endocrinology 147:4917-4930. Kamprath K, Romo-Parra H, Haring M, Gaburro S, Doengi M, Lutz B, Pape HC (2011) Short-term adaptation of conditioned fear responses through endocannabinoid signaling in the central amygdala. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 36:652-663. Katona I, Sperlagh B, Sik A, Kafalvi A, Vizi ES, Mackie K, Freund TF (1999) Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 19:4544-4558. Katona I, Rancz EA, Acsady L, Ledent C, Mackie K, Hajos N, Freund TF (2001) Distribution of CB1 cannabinoid receptors in the amygdala and their role in the control of GABAergic transmission. The Journal of neuroscience : the official journal of the Society for Neuroscience 21:9506-9518. Kawanishi C, Fukuda M, Tamura R, Nishijo H, Ono T (1997) Effects of repeated cold stress on feeding, avoidance behavior, and pain-related nerve fiber activity. Physiology & behavior 62:849-855. Korte SM, Koolhaas JM, Wingfield JC, McEwen BS (2005) The Darwinian concept of stress: benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. Neuroscience and biobehavioral reviews 29:3-38. Kreitzer AC, Regehr WG (2001a) Cerebellar depolarization-induced suppression of inhibition is mediated by endogenous cannabinoids. The Journal of neuroscience : the official journal of the Society for Neuroscience 21:RC174. Kreitzer AC, Regehr WG (2001b) Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron 29:717-727. Lau BK, Vaughan CW (2008) Muscarinic modulation of synaptic transmission via endocannabinoid signalling in the rat midbrain periaqueductal gray. Molecular pharmacology 74:1392-1398. Lenz RA, Wagner JJ, Alger BE (1998) N- and L-type calcium channel involvement in depolarization-induced suppression of inhibition in rat hippocampal CA1 cells. The Journal of physiology 512 ( Pt 1):61-73. Liao HT, Lee HJ, Ho YC, Chiou LC (2011) Capsaicin in the periaqueductal gray induces analgesia via metabotropic glutamate receptor-mediated endocannabinoid retrograde disinhibition. British journal of pharmacology 163:330-345. Llano I, Leresche N, Marty A (1991) Calcium entry increases the sensitivity of cerebellar Purkinje cells to applied GABA and decreases inhibitory synaptic currents. Neuron 6:565-574. Lomazzo E, Bindila L, Remmers F, Lerner R, Schwitter C, Hoheisel U, Lutz B (2015) Therapeutic potential of inhibitors of endocannabinoid degradation for the treatment of stress-related hyperalgesia in an animal model of chronic pain. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 40:488-501. Mackie K, Hille B (1992) Cannabinoids inhibit N-type calcium channels in neuroblastoma-glioma cells. Proceedings of the National Academy of Sciences of the United States of America 89:3825-3829. Mackie K, Devane WA, Hille B (1993) Anandamide, an endogenous cannabinoid, inhibits calcium currents as a partial agonist in N18 neuroblastoma cells. Molecular pharmacology 44:498-503. Mackie K, Lai Y, Westenbroek R, Mitchell R (1995) Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium currents in AtT20 cells transfected with rat brain cannabinoid receptor. The Journal of neuroscience : the official journal of the Society for Neuroscience 15:6552-6561. Malcher-Lopes R, Di S, Marcheselli VS, Weng FJ, Stuart CT, Bazan NG, Tasker JG (2006) Opposing crosstalk between leptin and glucocorticoids rapidly modulates synaptic excitation via endocannabinoid release. The Journal of neuroscience : the official journal of the Society for Neuroscience 26:6643-6650. Martin BR (1986) Cellular effects of cannabinoids. Pharmacological reviews 38:45-74. Martin WJ, Tsou K, Walker JM (1998) Cannabinoid receptor-mediated inhibition of the rat tail-flick reflex after microinjection into the rostral ventromedial medulla. Neuroscience letters 242:33-36. Matsuda LA, Bonner TI, Lolait SJ (1993) Localization of cannabinoid receptor mRNA in rat brain. The Journal of comparative neurology 327:535-550. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561-564. Mechoulam R (1970) Marihuana chemistry. Science 168:1159-1166. Mechoulam R, Gaoni Y (1967) The absolute configuration of delta-1-tetrahydrocannabinol, the major active constituent of hashish. Tetrahedron letters 12:1109-1111. Mechoulam R, Braun P, Gaoni Y (1967) A stereospecific synthesis of (-)-delta 1- and (-)-delta 1(6)-tetrahydrocannabinols. Journal of the American Chemical Society 89:4552-4554. Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR, et al. (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochemical pharmacology 50:83-90. Meng ID, Manning BH, Martin WJ, Fields HL (1998) An analgesia circuit activated by cannabinoids. Nature 395:381-383. Mitchell VA, Kawahara H, Vaughan CW (2009) Neurotensin inhibition of GABAergic transmission via mGluR-induced endocannabinoid signalling in rat periaqueductal grey. The Journal of physiology 587:2511-2520. Morishita W, Kirov SA, Alger BE (1998) Evidence for metabotropic glutamate receptor activation in the induction of depolarization-induced suppression of inhibition in hippocampal CA1. The Journal of neuroscience : the official journal of the Society for Neuroscience 18:4870-4882. Nasu T, Taguchi T, Mizumura K (2010) Persistent deep mechanical hyperalgesia induced by repeated cold stress in rats. Eur J Pain 14:236-244. Ohno-Shosaku T, Sawada S, Yamamoto C (1998) Properties of depolarization-induced suppression of inhibitory transmission in cultured rat hippocampal neurons. Pflugers Archiv : European journal of physiology 435:273-279. Ohno-Shosaku T, Maejima T, Kano M (2001) Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron 29:729-738. Ohno-Shosaku T, Tsubokawa H, Mizushima I, Yoneda N, Zimmer A, Kano M (2002) Presynaptic cannabinoid sensitivity is a major determinant of depolarization-induced retrograde suppression at hippocampal synapses. The Journal of neuroscience : the official journal of the Society for Neuroscience 22:3864-3872. Osborne PB, Vaughan CW, Wilson HI, Christie MJ (1996) Opioid inhibition of rat periaqueductal grey neurones with identified projections to rostral ventromedial medulla in vitro. The Journal of physiology 490 ( Pt 2):383-389. Pan ZZ, Williams JT, Osborne PB (1990) Opioid actions on single nucleus raphe magnus neurons from rat and guinea-pig in vitro. The Journal of physiology 427:519-532. Patel S, Roelke CT, Rademacher DJ, Hillard CJ (2005) Inhibition of restraint stress-induced neural and behavioural activation by endogenous cannabinoid signalling. The European journal of neuroscience 21:1057-1069. Patel S, Roelke CT, Rademacher DJ, Cullinan WE, Hillard CJ (2004) Endocannabinoid signaling negatively modulates stress-induced activation of the hypothalamic-pituitary-adrenal axis. Endocrinology 145:5431-5438. Pertwee RG (1999) Pharmacology of cannabinoid receptor ligands. Current medicinal chemistry 6:635-664. Pertwee RG (2001) Cannabinoid receptors and pain. Progress in neurobiology 63:569-611. Piomelli D (2003) The molecular logic of endocannabinoid signalling. Nature reviews Neuroscience 4:873-884. Pitler TA, Alger BE (1992) Postsynaptic spike firing reduces synaptic GABAA responses in hippocampal pyramidal cells. The Journal of neuroscience : the official journal of the Society for Neuroscience 12:4122-4132. Pitler TA, Alger BE (1994) Depolarization-induced suppression of GABAergic inhibition in rat hippocampal pyramidal cells: G protein involvement in a presynaptic mechanism. Neuron 13:1447-1455. Rademacher DJ, Meier SE, Shi L, Ho WS, Jarrahian A, Hillard CJ (2008) Effects of acute and repeated restraint stress on endocannabinoid content in the amygdala, ventral striatum, and medial prefrontal cortex in mice. Neuropharmacology 54:108-116. Razdan RK (1986) Structure-activity relationships in cannabinoids. Pharmacological reviews 38:75-149. Sanudo-Pena MC, Tsou K, Walker JM (1999) Motor actions of cannabinoids in the basal ganglia output nuclei. Life sciences 65:703-713. Schlicker E, Kathmann M (2001) Modulation of transmitter release via presynaptic cannabinoid receptors. Trends in pharmacological sciences 22:565-572. Shi M, Qi WJ, Gao G, Wang JY, Luo F (2010) Increased thermal and mechanical nociceptive thresholds in rats with depressive-like behaviors. Brain research 1353:225-233. Smith PB, Compton DR, Welch SP, Razdan RK, Mechoulam R, Martin BR (1994) The pharmacological activity of anandamide, a putative endogenous cannabinoid, in mice. The Journal of pharmacology and experimental therapeutics 270:219-227. Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A, Waku K (1995) 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochemical and biophysical research communications 215:89-97. Tanimura A, Yamazaki M, Hashimotodani Y, Uchigashima M, Kawata S, Abe M, Kita Y, Hashimoto K, Shimizu T, Watanabe M, Sakimura K, Kano M (2010) The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase alpha mediates retrograde suppression of synaptic transmission. Neuron 65:320-327. Trettel J, Levine ES (2003) Endocannabinoids mediate rapid retrograde signaling at interneuron right-arrow pyramidal neuron synapses of the neocortex. Journal of neurophysiology 89:2334-2338. Tsou K, Brown S, Sanudo-Pena MC, Mackie K, Walker JM (1998a) Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 83:393-411. Tsou K, Nogueron MI, Muthian S, Sanudo-Pena MC, Hillard CJ, Deutsch DG, Walker JM (1998b) Fatty acid amide hydrolase is located preferentially in large neurons in the rat central nervous system as revealed by immunohistochemistry. Neuroscience letters 254:137-140. Vaughan CW, Ingram SL, Connor MA, Christie MJ (1997) How opioids inhibit GABA-mediated neurotransmission. Nature 390:611-614. Vaughan CW, Connor M, Bagley EE, Christie MJ (2000) Actions of cannabinoids on membrane properties and synaptic transmission in rat periaqueductal gray neurons in vitro. Molecular pharmacology 57:288-295. Vincent P, Armstrong CM, Marty A (1992) Inhibitory synaptic currents in rat cerebellar Purkinje cells: modulation by postsynaptic depolarization. The Journal of physiology 456:453-471. Walker JM, Huang SM, Strangman NM, Tsou K, Sanudo-Pena MC (1999a) Pain modulation by release of the endogenous cannabinoid anandamide. Proceedings of the National Academy of Sciences of the United States of America 96:12198-12203. Walker JM, Hohmann AG, Martin WJ, Strangman NM, Huang SM, Tsou K (1999b) The neurobiology of cannabinoid analgesia. Life sciences 65:665-673. Wang J, Zucker RS (2001) Photolysis-induced suppression of inhibition in rat hippocampal CA1 pyramidal neurons. The Journal of physiology 533:757-763. Wang M, Hill MN, Zhang L, Gorzalka BB, Hillard CJ, Alger BE (2012) Acute restraint stress enhances hippocampal endocannabinoid function via glucocorticoid receptor activation. J Psychopharmacol 26:56-70. Wilson RI, Nicoll RA (2001) Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410:588-592. Wilson RI, Nicoll RA (2002) Endocannabinoid signaling in the brain. Science 296:678-682. Wilson RI, Kunos G, Nicoll RA (2001) Presynaptic specificity of endocannabinoid signaling in the hippocampus. Neuron 31:453-462. Yanovsky Y, Mades S, Misgeld U (2003) Retrograde signaling changes the venue of postsynaptic inhibition in rat substantia nigra. Neuroscience 122:317-328. Yoshida T, Hashimoto K, Zimmer A, Maejima T, Araishi K, Kano M (2002) The cannabinoid CB1 receptor mediates retrograde signals for depolarization-induced suppression of inhibition in cerebellar Purkinje cells. The Journal of neuroscience : the official journal of the Society for Neuroscience 22:1690-1697. Zheng G, Hong S, Hayes JM, Wiley JW (2015) Chronic stress and peripheral pain: Evidence for distinct, region-specific changes in visceral and somatosensory pain regulatory pathways. Experimental neurology 273:301-311. Zhong P, Liu Y, Hu Y, Wang T, Zhao YP, Liu QS (2015) BDNF interacts with endocannabinoids to regulate cocaine-induced synaptic plasticity in mouse midbrain dopamine neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 35:4469-4481. Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo V, Julius D, Hogestatt ED (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400:452-457. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51290 | - |
| dc.description.abstract | 內生性大麻酯 (endocannabinoids; eCBs)系統是由大麻酯1受體 (cannabinoid 1 receptors; CB1Rs),大麻酯2受體 (cannabinoid 2 receptors; CB2Rs)以及其內生性之配體花生四烯乙醇胺 (anandamide; AEA),花生四烯酸甘油酯 (2-arachidonoyl glycerol; 2-AG)所組成,而且,經由神經解剖的方式驗證了eCBs系統對於痛的刺激具有調節的功能。CB1Rs分布於許多腦區,包括:杏仁核 (amygdale)、海馬迴 (hippocampus)、小腦 (cerebellum)以及中腦環導水管灰質 (periaqueductal gray; PAG)。在cerebellum以及hippocampus中, eCBs已被證實在突觸間作為逆行信使,具有調節突觸間訊息傳導之功能。在大腦中,去極化壓抑抑制作用 (Depolarization-induced suppression of inhibition; DSI)是一種典型的以電生理學的方式去探討eCBs功能的例子。當突觸後神經元發生動作電位或去極化時,鈣離子流入,使胞內鈣離子濃度上升,誘發eCBs從突觸後神經元細胞膜的合成及釋放,隨後作用於位在突觸前神經元末梢的CB1Rs,抑制氨基丁酸 (aminobutyric acid; GABA)的釋放,進而降低對突觸後神經元的抑制性傳導訊息的輸入,此稱為DSI。直到現在,已在許多腦核區發現DSI的現象,包括:紋狀體 (striatum)、黑質 (substantia nigra)、amygdala以及下視丘 (hypothalamus),但還未在PAG上探討。另一方面,許多研究指出,在長期接受壓力的情況下,會導致許多腦核區內eCBs訊息傳導的改變,包括:海馬迴 (hippocampus) 、前額葉 (prefrontal cortex)、striatum、丘腦 (thalamus)以及PAG,且伴隨著對於疼痛感受性的改變。因此,我們在這篇論文中透過電生理以及行為等研究法,探討在大鼠的掌管疼痛的中腦環導水管灰質腹外側區 (venrolateral periaqueductal gray; vlPAG)中是否存在由eCBs所調控的DSI現象,且在大鼠接受長期壓力之下,DSI如何被改變以及對於疼痛感受性的變化為何。
首先,我們發現在被記錄的vlPAG神經元上分別給予一個1、3、5秒的-70至0毫伏特的去極化後,發現IPSCs隨即被抑制,而且此抑制的程度大小與去極化的時間長短成正相關,代表DSI現象確實存在於vlPAG中。在mIPSCs的實驗中,我們發現去極化會減少mIPSCs的頻率但不改變振福,代表DSI的作用是經由突觸前的機制而來。接著,在大鼠腦薄片分別加入CB1R拮抗劑AM251、DAGL抑制劑THL、L型鈣離子通道阻斷劑nifedipine或PLC抑制劑U73122皆可顯著抑制DSI現象,代表在vlPAG中,DSI的作用是經由Ca2+–PCL–DAGL的途徑,進而合成2-AG而來。第二,在我們給予大鼠一個每天1小時且連續10天的束縛壓力(retrain stress)後,發現DSI顯著的減少。然而此現象即使再給予一個較密集的刺激,即給予連續3個去極化,也無法回復。此外,在大鼠腦薄片加入CB1R致效劑WIN 55,212-2後,發現在給予壓力的組別中,WIN 55,212-2抑制IPSCs的效果與控制組相比有顯著性的降低。這些結果指出在長期壓力下,vlPAG中的CB1Rs功能下降,進而導致DSI現象的損害。第三,在腳掌熱痛行為測試 (hot-plate test)的實驗中,我們發現在給予壓力的組別其縮腳潛伏期 (withdrawal latency)的時間與控制組相比有顯著性的降低。接著,以腹腔注射WIN 55,212-2,發現其止痛效果在給予壓力的組別也有顯著性的較差。這些結果指出vlPAG中的CB1Rs功能下降,進而導致DSI現象的損害可能為暴露在長期壓力下的大鼠產生過度疼痛且對於大麻酯類止痛劑效力降低的原因之一。 本篇論文的實驗結果指出經由Ca2+–PCL–DAGL的途徑,進而合成2-AG所媒介的DSI現象存在於大鼠的vlPAG中。而大鼠連續暴露在束縛壓力下,發現vlPAG中的CB1Rs功能下降,進而導致DSI現象的損害,以及過度疼痛且對於大麻酯類止痛劑效力降低的現象。這些發現與先前被提出的概念─長期壓力導致過度疼痛 (chronic stress-induced hyperalgesia)一致,且在vlPAG中的DSI現象可能在其中扮演重要的角色。 | zh_TW |
| dc.description.abstract | The endocannabinoid (eCB) system consists of cannabinoid 1 receptors (CB1Rs) and CB2 receptors (CB2Rs), and their endogenous ligands, such as N-arachidonylethanolamide (anandamide) and 2-arachidonoyl glycerol (2-AG), and is present throughout the central nervous system, including the ventrolateral periaqueductal gray (vlPAG), an midbrain region for initiating desceding pain inhibition. eCBs are synthesized on demand and, especially 2-AG, are believed to function as retrograde inhibitory messengers at glutamatergic and GABAergic synapses in the brain. Depolarization-induced suppression of inhibition (DSI) is a classical and original electrophysiological example of eCB function in the brain. It is initiated postsynaptically by an elevation of intracellular Ca2+ concentration following action potential firing or depolarization, and is expressed presynaptically as a suppression of the GABAergic transmission through activating the CB1R on presynaptic GABAergic terminals. DSI has been reported in various brain regions such as the hippocampus, cerebellum, striatum, substantia nigra, amygdala, and hypothalamus, but not yet in the PAG. On the other hand, it has been reported that repeated exposures to stress modulates pain responses and alters eCB signalings in several brain regions, including the PAG. We, therefore, investigated whether eCB-mediated DSI exists in the vlPAG and is involved in pain regulation, and how chronic stress affects DSI in the vlPAG and the nociceptive response in the rat hot-plate test.
Visualized whole cell patch-clamp recordings were conducted in vlPAG slices of rats (P14-P18). Inhibitory postysynaptic currents (IPSCs) and excitatory PSCs (EPSCs) evoked at 0.05 Hz (but evoked at 0.33 Hz in DSI and DSE experiments) were recorded at -70 mV. IPSCs and EPSCs were recorded in the presence of 2 mM kynurenic acid and 10 M bicuculline, respectively. Miniature IPSCs (mIPSCs) were recroded in the presence of 1 M tetrodotoxin and kynurenic acid. The hot-plate test was used to measure the nociceptive threshold and the antinociceptive response of rats. First, we found that when the membrane potential of the recorded vlPAG neuron was depolarized from -70 to 0 mV for 1, 3, 5 s, IPSCs were suppressed in a manner depending on the duration of depolarization, suggesting DSI indeed can be induced in vlPAG slices. The postsynaptic depolarizing pulse (-70 to 0 mV, 5 s) that reliably induced DSI significantly reduced the frequency, but not amplitude, of mIPSCs, suggesting that DSI in vlPAG slices is mediated through a pre-synaptic mechanism. When the vlPAG slice was in the presence of AM251, a CB1R antagonist, tetrahydrolipstatin (THL) that inhibits 2-AG synthesizing enzyme, diacylglycerolipase (DAGL), nifedipine, an inhibitor of L-type voltage-dependent calcium channels (L-VDCC), or U73122, a PLC inhibitor, DSI was significantly abolished. These results suggest that DSI in the vlPAG is an eCB-mediated retrograde inhibition of IPSCs. This eCB is 2-AG that was synthesized via a Ca2+–phospholipase C–DAGL enzymatic cascade, which is activated postsynaptically following depolarization-induced L-VDCC activation. When the rat was exposed to a restraint stress for 1 hour every day for 10 consecutive days, the DSI in the vlPAG was significantly decreased, even a more intensive stimulation (with 3 depolarizing pulses) was given. In the stress group, WIN 55,212-2, a CB1R agonist, produced a smaller IPSC depression in vlPAG slices than in the naïve group. These results suggest that chronic stress impairs DSI in the rat vlPAG, and this may result from a hypofunction of CB1Rs in the vlPAG. In the stress group of rats, the hot-plate withdrawal latency was significantly lower than the naïve group. Besides, the antinociception effect of WIN 55,212-2 (i.p., 2 mg/kg) in the stress group was also significantly smaller than naïve rats, suggesting that the hypofunction of CB1R leads to the impairment of DSI in the vlPAG of rats after chronic stress may contribute to hyperalgesia and smaller sensitivity to the antinociception of cannabinoid, WIN 55,212-2. In summary, we found that DSI exists in the vlPAG of rats and is mediated by 2-AG generated postsyantpically through a Ca2+–PCL–DAGL cascade following depolarization-induced L-VDCC activation. This DSI in the vlPAG may serve as an endogenous analgesic protector to maintain the function of descending analgesic pathway. Chronic stress can lead to an impairment of DSI and the decreased CB1R response in the vlPAG as well as a lower nociceptive threshold and a smaller antinocicpeitve effect of WIN 55,212-2. Thus, DSI impairment in the vlPAG, possibly due to down regulation of CB1Rs, may contribute to chronic stress-induced hyperalgesia. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:29:35Z (GMT). No. of bitstreams: 1 ntu-105-R02443022-1.pdf: 4289086 bytes, checksum: aa75f57f3e172580ce6a533bda564a5a (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書…………………………………………………………i
致謝…………………………………………………………………...……ii Abbreviation…………………………………………………..………...…iv 中文摘要……………………………………………………………….….vi Abstract…………………………………………………………………..viii Introduction………………………………………………..……………….1 Aim………………………………………………………………………. 17 Materials and Methods…………………………………………………... 18 Results…………………………………………………………………… 24 Discussion……………………………………………………………...... 33 Conclusions……………………………………………………………….40 Figures and Tables...……………………………………………………....41 Reference………………………………………………………….…...….62 | |
| dc.language.iso | en | |
| dc.subject | 慢性壓力 | zh_TW |
| dc.subject | 慢性壓力 | zh_TW |
| dc.subject | 中腦環導水管灰質 | zh_TW |
| dc.subject | 內生性大麻酯 | zh_TW |
| dc.subject | 內生性大麻酯 | zh_TW |
| dc.subject | 中腦環導水管灰質 | zh_TW |
| dc.subject | depolarization-induced suppression of inhibition | en |
| dc.subject | depolarization-induced suppression of inhibition | en |
| dc.subject | chronic stress | en |
| dc.subject | ventrolateral periaqueductal gray | en |
| dc.subject | endocannabinoid | en |
| dc.subject | endocannabinoid | en |
| dc.subject | ventrolateral periaqueductal gray | en |
| dc.subject | chronic stress | en |
| dc.title | 長期壓力導致過度疼痛之機制:環導水管灰質中內生性大麻酯所媒介之去極化壓抑抑制作用缺損 | zh_TW |
| dc.title | A mechanism of chronic stress-induced hyperalgesia: Impairment of endocannabinoid-mediated depolarization-induced suppression of inhibition in the periaqueductal gray | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 簡伯武(Po-Wu Gean),閔明源(Ming-Yuan Min),陳志成,梁淑鈴(Shu-Ling Liang) | |
| dc.subject.keyword | 內生性大麻酯,中腦環導水管灰質,慢性壓力, | zh_TW |
| dc.subject.keyword | endocannabinoid,ventrolateral periaqueductal gray,chronic stress,depolarization-induced suppression of inhibition, | en |
| dc.relation.page | 82 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-02-04 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 4.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
