Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5128
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱清良(Ching-Liang Chu)
dc.contributor.authorHsueh-Han Luen
dc.contributor.author呂學翰zh_TW
dc.date.accessioned2021-05-15T17:52:18Z-
dc.date.available2014-10-09
dc.date.available2021-05-15T17:52:18Z-
dc.date.copyright2014-10-09
dc.date.issued2014
dc.date.submitted2014-08-12
dc.identifier.citationArroyo, D. S., Gaviglio, E. A., Peralta Ramos, J. M., Bussi, C., Rodriguez-Galan, M. C., & Iribarren, P. (2014). Autophagy in inflammation, infection, neurodegeneration and cancer. Int Immunopharmacol, 18(1), 55-65. doi: 10.1016/j.intimp.2013.11.001
Bernardes, E. S., Silva, N. M., Ruas, L. P., Mineo, J. R., Loyola, A. M., Hsu, D. K., . . . Roque-Barreira, M. C. (2006). Toxoplasma gondii infection reveals a novel regulatory role for galectin-3 in the interface of innate and adaptive immunity. Am J Pathol, 168(6), 1910-1920. doi: 10.2353/ajpath.2006.050636
Bjorck, P., Leong, H. X., & Engleman, E. G. (2011). Plasmacytoid dendritic cell dichotomy: identification of IFN-alpha producing cells as a phenotypically and functionally distinct subset. J Immunol, 186(3), 1477-1485. doi: 10.4049/jimmunol.1000454
Blanco, P., Palucka, A. K., Gill, M., Pascual, V., & Banchereau, J. (2001). Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science, 294(5546), 1540-1543. doi: 10.1126/science.1064890
Blasius, A. L., Cella, M., Maldonado, J., Takai, T., & Colonna, M. (2006). Siglec-H is an IPC-specific receptor that modulates type I IFN secretion through DAP12. Blood, 107(6), 2474-2476. doi: 10.1182/blood-2005-09-3746
Blasius, A. L., Giurisato, E., Cella, M., Schreiber, R. D., Shaw, A. S., & Colonna, M. (2006). Bone marrow stromal cell antigen 2 is a specific marker of type I IFN-producing cells in the naive mouse, but a promiscuous cell surface antigen following IFN stimulation. J Immunol, 177(5), 3260-3265.
Blois, S. M., Ilarregui, J. M., Tometten, M., Garcia, M., Orsal, A. S., Cordo-Russo, R., . . . Arck, P. C. (2007). A pivotal role for galectin-1 in fetomaternal tolerance. Nat Med, 13(12), 1450-1457. doi: 10.1038/nm1680
Brawand, P., Fitzpatrick, D. R., Greenfield, B. W., Brasel, K., Maliszewski, C. R., & De Smedt, T. (2002). Murine plasmacytoid pre-dendritic cells generated from Flt3 ligand-supplemented bone marrow cultures are immature APCs. J Immunol, 169(12), 6711-6719.
Cabezon, R., Sintes, J., Llinas, L., & Benitez-Ribas, D. (2011). Analysis of HLDA9 mAbs on plasmacytoid dendritic cells. Immunol Lett, 134(2), 167-173. doi: 10.1016/j.imlet.2010.09.020
Cortegano, I., del Pozo, V., Cardaba, B., de Andres, B., Gallardo, S., del Amo, A., . . . Lahoz, C. (1998). Galectin-3 down-regulates IL-5 gene expression on different cell types. J Immunol, 161(1), 385-389.
Cummings, R. D., & Liu, F. T. (2009). Essential of Glycobiology Second Edition. NY: Cold Spring Harbor Laboratory Press.
Decker, T., Muller, M., & Stockinger, S. (2005). The yin and yang of type I interferon activity in bacterial infection. Nat Rev Immunol, 5(9), 675-687. doi: 10.1038/nri1684
Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S., & Reis e Sousa, C. (2004). Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science, 303(5663), 1529-1531. doi: 10.1126/science.1093616
Fermin Lee, A., Chen, H. Y., Wan, L., Wu, S. Y., Yu, J. S., Huang, A. C., . . . Liu, F. T. (2013). Galectin-3 modulates Th17 responses by regulating dendritic cell cytokines. Am J Pathol, 183(4), 1209-1222. doi: 10.1016/j.ajpath.2013.06.017
Georgiadis, V., Stewart, H. J., Pollard, H. J., Tavsanoglu, Y., Prasad, R., Horwood, J., . . . Lawrence-Watt, D. J. (2007). Lack of galectin-1 results in defects in myoblast fusion and muscle regeneration. Dev Dyn, 236(4), 1014-1024. doi: 10.1002/dvdy.21123
Gilliet, M., Cao, W., & Liu, Y. J. (2008). Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol, 8(8), 594-606. doi: 10.1038/nri2358
Guiducci, C., Ghirelli, C., Marloie-Provost, M. A., Matray, T., Coffman, R. L., Liu, Y. J., . . . Soumelis, V. (2008). PI3K is critical for the nuclear translocation of IRF-7 and type I IFN production by human plasmacytoid predendritic cells in response to TLR activation. J Exp Med, 205(2), 315-322. doi: 10.1084/jem.20070763
Hacker, H., Redecke, V., Blagoev, B., Kratchmarova, I., Hsu, L. C., Wang, G. G., . . . Karin, M. (2006). Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature, 439(7073), 204-207. doi: 10.1038/nature04369
Harman, A. N., Bye, C. R., Nasr, N., Sandgren, K. J., Kim, M., Mercier, S. K., . . . Cameron, P. U. (2013). Identification of lineage relationships and novel markers of blood and skin human dendritic cells. J Immunol, 190(1), 66-79. doi: 10.4049/jimmunol.1200779
Hemmi, H., Kaisho, T., Takeda, K., & Akira, S. (2003). The roles of Toll-like receptor 9, MyD88, and DNA-dependent protein kinase catalytic subunit in the effects of two distinct CpG DNAs on dendritic cell subsets. J Immunol, 170(6), 3059-3064.
Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., . . . Akira, S. (2000). A Toll-like receptor recognizes bacterial DNA. Nature, 408(6813), 740-745. doi: 10.1038/35047123
Henault, J., Martinez, J., Riggs, J. M., Tian, J., Mehta, P., Clarke, L., . . . Sanjuan, M. A. (2012). Noncanonical autophagy is required for type I interferon secretion in response to DNA-immune complexes. Immunity, 37(6), 986-997. doi: 10.1016/j.immuni.2012.09.014
Hoshino, K., Sugiyama, T., Matsumoto, M., Tanaka, T., Saito, M., Hemmi, H., . . . Kaisho, T. (2006). IkappaB kinase-alpha is critical for interferon-alpha production induced by Toll-like receptors 7 and 9. Nature, 440(7086), 949-953. doi: 10.1038/nature04641
Ideo, H., Hoshi, I., Yamashita, K., & Sakamoto, M. (2013). Phosphorylation and externalization of galectin-4 is controlled by Src family kinases. Glycobiology, 23(12), 1452-1462. doi: 10.1093/glycob/cwt073
Ilarregui, J. M., Croci, D. O., Bianco, G. A., Toscano, M. A., Salatino, M., Vermeulen, M. E., . . . Rabinovich, G. A. (2009). Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nat Immunol, 10(9), 981-991. doi: 10.1038/ni.1772
Juszczynski, P., Ouyang, J., Monti, S., Rodig, S. J., Takeyama, K., Abramson, J., . . . Shipp, M. A. (2007). The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc Natl Acad Sci U S A, 104(32), 13134-13139. doi: 10.1073/pnas.0706017104
Kaisho, T. (2012). Pathogen sensors and chemokine receptors in dendritic cell subsets. Vaccine, 30(52), 7652-7657. doi: 10.1016/j.vaccine.2012.10.043
Kaisho, T., & Akira, S. (2006). Toll-like receptor function and signaling. J Allergy Clin Immunol, 117(5), 979-987; quiz 988. doi: 10.1016/j.jaci.2006.02.023
Kawai, T., Sato, S., Ishii, K. J., Coban, C., Hemmi, H., Yamamoto, M., . . . Akira, S. (2004). Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol, 5(10), 1061-1068. doi: 10.1038/ni1118
Kim, T. W., Staschke, K., Bulek, K., Yao, J., Peters, K., Oh, K. H., . . . Li, X. (2007). A critical role for IRAK4 kinase activity in Toll-like receptor-mediated innate immunity. J Exp Med, 204(5), 1025-1036. doi: 10.1084/jem.20061825
Lande, R., Gregorio, J., Facchinetti, V., Chatterjee, B., Wang, Y. H., Homey, B., . . . Gilliet, M. (2007). Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature, 449(7162), 564-569. doi: 10.1038/nature06116
Latz, E., Verma, A., Visintin, A., Gong, M., Sirois, C. M., Klein, D. C., . . . Golenbock, D. T. (2007). Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nat Immunol, 8(7), 772-779. doi: 10.1038/ni1479
Lee, H. K., Lund, J. M., Ramanathan, B., Mizushima, N., & Iwasaki, A. (2007). Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science, 315(5817), 1398-1401. doi: 10.1126/science.1136880
Li, Q., Xu, B., Michie, S. A., Rubins, K. H., Schreriber, R. D., & McDevitt, H. O. (2008). Interferon-alpha initiates type 1 diabetes in nonobese diabetic mice. Proc Natl Acad Sci U S A, 105(34), 12439-12444. doi: 10.1073/pnas.0806439105
Liu, Y. J. (2005). IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol, 23, 275-306. doi: 10.1146/annurev.immunol.23.021704.115633
Mach, N., Gillessen, S., Wilson, S. B., Sheehan, C., Mihm, M., & Dranoff, G. (2000). Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte-macrophage colony-stimulating factor or Flt3-ligand. Cancer Res, 60(12), 3239-3246.
Mazurek, N., Conklin, J., Byrd, J. C., Raz, A., & Bresalier, R. S. (2000). Phosphorylation of the beta-galactoside-binding protein galectin-3 modulates binding to its ligands. J Biol Chem, 275(46), 36311-36315. doi: 10.1074/jbc.M003831200
Mobergslien, A., & Sioud, M. (2012). Galectin-1 and -3 gene silencing in immature and mature dendritic cells enhances T cell activation and interferon-gamma production. J Leukoc Biol, 91(3), 461-467. doi: 10.1189/jlb.0711361
Narita, M., Watanabe, N., Yamahira, A., Hashimoto, S., Tochiki, N., Saitoh, A., . . . Takahashi, M. (2009). A leukemic plasmacytoid dendritic cell line, PMDC05, with the ability to secrete IFN-alpha by stimulation via Toll-like receptors and present antigens to naive T cells. Leuk Res, 33(9), 1224-1232. doi: 10.1016/j.leukres.2009.03.047
Onai, N., & Manz, M. G. (2008). The STATs on dendritic cell development. Immunity, 28(4), 490-492. doi: 10.1016/j.immuni.2008.03.006
Osawa, Y., Iho, S., Takauji, R., Takatsuka, H., Yamamoto, S., Takahashi, T., . . . Fujieda, S. (2006). Collaborative action of NF-kappaB and p38 MAPK is involved in CpG DNA-induced IFN-alpha and chemokine production in human plasmacytoid dendritic cells. J Immunol, 177(7), 4841-4852.
Pauli, E. K., Schmolke, M., Wolff, T., Viemann, D., Roth, J., Bode, J. G., & Ludwig, S. (2008). Influenza A virus inhibits type I IFN signaling via NF-kappaB-dependent induction of SOCS-3 expression. PLoS Pathog, 4(11), e1000196. doi: 10.1371/journal.ppat.1000196
Pisetsky, D. S., & Fairhurst, A. M. (2007). The origin of extracellular DNA during the clearance of dead and dying cells. Autoimmunity, 40(4), 281-284. doi: 10.1080/08916930701358826
Pisitkun, P., Deane, J. A., Difilippantonio, M. J., Tarasenko, T., Satterthwaite, A. B., & Bolland, S. (2006). Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science, 312(5780), 1669-1672. doi: 10.1126/science.1124978
Rabinovich, G. A., Liu, F. T., Hirashima, M., & Anderson, A. (2007). An emerging role for galectins in tuning the immune response: lessons from experimental models of inflammatory disease, autoimmunity and cancer. Scand J Immunol, 66(2-3), 143-158. doi: 10.1111/j.1365-3083.2007.01986.x
Rabinovich, G. A., & Toscano, M. A. (2009). Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat Rev Immunol, 9(5), 338-352. doi: 10.1038/nri2536
Saegusa, J., Hsu, D. K., Chen, H. Y., Yu, L., Fermin, A., Fung, M. A., & Liu, F. T. (2009). Galectin-3 is critical for the development of the allergic inflammatory response in a mouse model of atopic dermatitis. Am J Pathol, 174(3), 922-931. doi: 10.2353/ajpath.2009.080500
Sakaguchi, M., Shingo, T., Shimazaki, T., Okano, H. J., Shiwa, M., Ishibashi, S., . . . Okano, H. (2006). A carbohydrate-binding protein, Galectin-1, promotes proliferation of adult neural stem cells. Proc Natl Acad Sci U S A, 103(18), 7112-7117. doi: 10.1073/pnas.0508793103
Shinohara, M. L., Lu, L., Bu, J., Werneck, M. B., Kobayashi, K. S., Glimcher, L. H., & Cantor, H. (2006). Osteopontin expression is essential for interferon-alpha production by plasmacytoid dendritic cells. Nat Immunol, 7(5), 498-506. doi: 10.1038/ni1327
Sjolin, H., Robbins, S. H., Bessou, G., Hidmark, A., Tomasello, E., Johansson, M., . . . Dalod, M. (2006). DAP12 signaling regulates plasmacytoid dendritic cell homeostasis and down-modulates their function during viral infection. J Immunol, 177(5), 2908-2916.
Soumelis, V., & Liu, Y. J. (2006). From plasmacytoid to dendritic cell: morphological and functional switches during plasmacytoid pre-dendritic cell differentiation. Eur J Immunol, 36(9), 2286-2292. doi: 10.1002/eji.200636026
Sundblad, V., Croci, D. O., & Rabinovich, G. A. (2011). Regulated expression of galectin-3, a multifunctional glycan-binding protein, in haematopoietic and non-haematopoietic tissues. Histol Histopathol, 26(2), 247-265.
Takaoka, A., Yanai, H., Kondo, S., Duncan, G., Negishi, H., Mizutani, T., . . . Taniguchi, T. (2005). Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature, 434(7030), 243-249. doi: 10.1038/nature03308
Than, N. G., Pick, E., Bellyei, S., Szigeti, A., Burger, O., Berente, Z., . . . Sumegi, B. (2004). Functional analyses of placental protein 13/galectin-13. Eur J Biochem, 271(6), 1065-1078.
Thurston, T. L., Wandel, M. P., von Muhlinen, N., Foeglein, A., & Randow, F. (2012). Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature, 482(7385), 414-418. doi: 10.1038/nature10744
Toscano, M. A., Bianco, G. A., Ilarregui, J. M., Croci, D. O., Correale, J., Hernandez, J. D., . . . Rabinovich, G. A. (2007). Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nat Immunol, 8(8), 825-834. doi: 10.1038/ni1482
Uematsu, S., Sato, S., Yamamoto, M., Hirotani, T., Kato, H., Takeshita, F., . . . Akira, S. (2005). Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-{alpha} induction. J Exp Med, 201(6), 915-923. doi: 10.1084/jem.20042372
Waskow, C., Liu, K., Darrasse-Jeze, G., Guermonprez, P., Ginhoux, F., Merad, M., . . . Nussenzweig, M. (2008). The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol, 9(6), 676-683. doi: 10.1038/ni.1615
Watarai, H., Sekine, E., Inoue, S., Nakagawa, R., Kaisho, T., & Taniguchi, M. (2008). PDC-TREM, a plasmacytoid dendritic cell-specific receptor, is responsible for augmented production of type I interferon. Proc Natl Acad Sci U S A, 105(8), 2993-2998. doi: 10.1073/pnas.0710351105
Wu, L., & Liu, Y. J. (2007). Development of dendritic-cell lineages. Immunity, 26(6), 741-750. doi: 10.1016/j.immuni.2007.06.006
Wu, S. Y., Yu, J. S., Liu, F. T., Miaw, S. C., & Wu-Hsieh, B. A. (2013). Galectin-3 negatively regulates dendritic cell production of IL-23/IL-17-axis cytokines in infection by Histoplasma capsulatum. J Immunol, 190(7), 3427-3437. doi: 10.4049/jimmunol.1202122
Xu, D., Meyer, F., Ehlers, E., Blasnitz, L., & Zhang, L. (2011). Interferon regulatory factor 4 (IRF-4) targets IRF-5 to regulate Epstein-Barr virus transformation. J Biol Chem, 286(20), 18261-18267. doi: 10.1074/jbc.M110.210542
Yang, K., Puel, A., Zhang, S., Eidenschenk, C., Ku, C. L., Casrouge, A., . . . Casanova, J. L. (2005). Human TLR-7-, -8-, and -9-mediated induction of IFN-alpha/beta and -lambda Is IRAK-4 dependent and redundant for protective immunity to viruses. Immunity, 23(5), 465-478. doi: 10.1016/j.immuni.2005.09.016
Yang, M. L., Chen, Y. H., Wang, S. W., Huang, Y. J., Leu, C. H., Yeh, N. C., . . . Shiau, A. L. (2011). Galectin-1 binds to influenza virus and ameliorates influenza virus pathogenesis. J Virol, 85(19), 10010-10020. doi: 10.1128/JVI.00301-11
Yang, R. Y., Rabinovich, G. A., & Liu, F. T. (2008). Galectins: structure, function and therapeutic potential. Expert Rev Mol Med, 10, e17. doi: 10.1017/S1462399408000719
Zuberi, R. I., Hsu, D. K., Kalayci, O., Chen, H. Y., Sheldon, H. K., Yu, L., . . . Liu, F. T. (2004). Critical role for galectin-3 in airway inflammation and bronchial hyperresponsiveness in a murine model of asthma. Am J Pathol, 165(6), 2045-2053. doi: 10.1016/S0002-9440(10)63255-5
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5128-
dc.description.abstract半乳糖凝集素 (Galectins) 是一種動物性凝集素,可以專一地辨識β-半乳糖 (β-galactosides)。 在免疫系統中,galctin-1 和 -3已經被報導可以調控各種不同的免疫細胞的免疫反應,然而galectin-1和 -3對於漿狀樹突細胞 (plasmacytoid dendritic cell, pDC) 之生長與功能的影響尚未釐清。 pDC在受到病毒感染時,能夠分泌大量的第一型干擾素 (type I Interferon, IFN-I) 並引發各種抗病毒的活性。因此,我們除了研究galectin-1和 -3對於pDC的生長影響外,也用類鐸受體7/9的配體,R848或CpG刺激pDC,以研究pDC產生IFN-I的能力是否會受到galectin-1和 -3的影響。在初步的實驗結果中,我們發現不論是活體外 (in vitro) 或是活體內 (in vivo) 的試驗,皆發現galectin-1和 -3對於pDC的生長沒有顯著的影響。此外,半乳糖凝集素-3基因剔除 (lgals3-/-) pDC在CpG刺激後,其第一型干擾素IFN-I (ifnα, ifnα4, ifnβ)和干擾素調控因子7 (Interferon regulatory factor 7, IRF7) 的基因表現量的增加顯著高於野生型 (wild type, WT) pDC。而且,lgals3-/- pDC在R848或CpG刺激後所產生的IFN-I也比WT pDC來的高。與lgals3-/- pDC相反的是lgals1-/- pDC,在R848或CpG刺激後,其IFN-I 基因表現量的增加顯著低於WT pDC,另外產生的IFN-I 也較WT pDC來的低。因此,我們推測galectin-3 在pDC中可能是扮演了負向調控其產生IFN-I 功能的角色,而galectin-1 則是扮演了正向調控的角色。然而,galectin-1和 -3是經由何種機轉調控IFN-I 的產生,仍然需要進一步的研究。zh_TW
dc.description.abstractGalectins are animal lectins that can bind to β-galactosides. In the immune system, galectin-1 and galectin-3 have been shown to modulate immune responses in various types of immune cell. However, the role of galectin-1 and galectin-3 in the development and the function of plasmacytoid dendritic cell (pDC) has not yet been studied. pDCs produce type-1-interferon (IFN-I) in response to viral infection and then enhance antiviral activities. Thus, we examined the effect of galectin-1 and galectin-3 on pDC development and IFN-I production by pDCs upon the stimulation of R848 or CpG through TLR7/9. In preliminary results, we show that galectin-1 and galectin-3 didn’t influence the development of pDC in vitro or in vivo. In addition, we found that CpG or R848-induced mRNA levels of IFN-I (ifnα, ifnα4, ifnβ) and interferon regulatory factor (IRF7) were significantly higher in gal-3-/- Flt3L-BMDCs and in the contrast, significantly lower in gal-1-/- Flt3L-BMDCs when compared to that in WT Flt3L-BMDCs. Moreover, at the protein level, the production of IFNα by gal-3-/- Flt3L-BMDCs stimulated with CpG or R848 is higher than WT Flt3L-BMDCs. And, the production of IFNα by gal-3-/- Flt3L-BMDCs is lower than WT Flt3L-BMDCs. Our data suggested that galectin-3 may negatively regulate the function of pDCs, on the other hand that galectin-1 may positively regulate the function of pDC. However, the mechanism of how galectin-3 and galectin-1 involved in IFN-I production need to be further explored.en
dc.description.provenanceMade available in DSpace on 2021-05-15T17:52:18Z (GMT). No. of bitstreams: 1
ntu-103-R01449010-1.pdf: 3926646 bytes, checksum: 9f681fd554d256546e8c8441ccb4e2e9 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
Abbreviations iv
Table of contents v
List of figures viii
Chapter I Introduction 1
1.1 The role of galectin-1 and galectin-3 in DC 2
1.2 pDC 3
1.3 Development of pDC 4
1.4 The main function of pDC 5
1.5 TLR7/9 dependent signaling pathway 6
1.6 Specific aims 7
Chapter II Materials and Methods 11
2.1 Mice 12
2.2 In vitro pDC culture and DC subsets analysis 12
2.3 In vivo expansion of pDCs 13
2.4 Splenic DC isolation and DC subsets analysis 13
2.5 Functional assays of pDCs 13
2.6 qPCR 14
2.7 Bioassay for IFN-I 14
2.8 Assessment of cytokine production by ELISA 15
2.9 Flow cytometry 15
2.10 PMDC05 cell line 15
2.11 Statistical analysis 15
Chapter III Results 16
3.1 Establishing in vitro pDC culture system 17
3.2 Expansion of pDC in vivo 17
3.3 Positive control of IFNα intracellular staining 17
3.4 Galectins expression in pDC 18
3.5 Galectin expression profile in human pDC cell line, PMDC05 18
3.6 Galectin-3 doesn’t get involved in mouse pDC development 19
3.7 Gal-3-/- Flt3L-BMDCs exhibit augmented IFN-I and IL-12 production in response to CpG or R848 19
3.8 Sorted Flt3L-BMpDC from Gal-3-/- mice had higher IFN-I production after stimulation with CpG or R848 21
3.9 Sorted splenic pDC from Gal-3-/- mice had higher IFN-I production after stimulation with R848 22
3.10 Galectin-1 doesn’t get involved in mouse pDC development 22
3.11 Gal-1-/- Flt3L-BMDCs exhibit an impaired IFN-I response after CpG or R848 stimulation 23
Chapter IV Discussion 24
4.1 Distinct roles of galectin-1 and -3 in regulating the production of IFN-I by pDC 25
4.2 Galectin expression profile of human pDC cell line, PMDC05 27
4.3 Autophagosome involved in transferring the nucleic-acid to TLR 27
4.4 Functionless sorted splenic pDC 28
4.5 phosphorylation of galectin 28
Figures 30
References 62
dc.language.isoen
dc.subject第一型干擾素zh_TW
dc.subject類鐸受體7/9zh_TW
dc.subject漿狀樹突細胞zh_TW
dc.subject半乳糖凝集素-1zh_TW
dc.subject半乳糖凝集素-3zh_TW
dc.subjecttype-I-IFNen
dc.subjectplasmacytoid dendritic cellen
dc.subjectgalectin-1en
dc.subjectgalectin-3en
dc.subjectTLR7/9en
dc.title半乳糖凝集素-1和半乳糖凝集素-3在調控漿狀樹突細胞發育及功能之角色zh_TW
dc.titleThe Role of Galectin-1 and Galectin-3 in Development and Function of Plasmacytoid Dendritic Cellsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉扶東(Fu-Tong Liu),李建國(Chien-Kuo Lee)
dc.subject.keyword漿狀樹突細胞,半乳糖凝集素-1,半乳糖凝集素-3,第一型干擾素,類鐸受體7/9,zh_TW
dc.subject.keywordplasmacytoid dendritic cell,galectin-1,galectin-3,type-I-IFN,TLR7/9,en
dc.relation.page74
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-08-12
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf3.83 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved