請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51288
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王根樹(Gen-Shuh Wang) | |
dc.contributor.author | Dexter Leong | en |
dc.contributor.author | 梁幃杰 | zh_TW |
dc.date.accessioned | 2021-06-15T13:29:32Z | - |
dc.date.available | 2021-02-24 | |
dc.date.copyright | 2016-02-24 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-02-04 | |
dc.identifier.citation | Akbal, F. (2005). 'Photocatalytic degradation of organic dyes in the presence of titanium dioxide under UV and solar light: Effect of operational parameter.' Environmental Progress 24(3): 317-322.
Aleboyeh, A. M., Y. and H. Aleboyeh (2005). 'The effect of operational parameters on UV/H2O2 decolourisation of Acid Blue 74.' Dyes and Pigments 66(129-134). Autin, O., et al. (2013). 'Evaluation of a UV-light emitting diodes unit for the removal of micropollutants in water for low energy advanced oxidation processes.' Chemosphere 92: 745-751. Beukers, R. and W. Berends (1960). 'Isolation and identification of the irradiation product of thymine.' Biochim Biophys Acta 41: 550-551. Bond, T. and J. T. Huang, M. R. Graham, N. (2011). 'Occurrence and control of nitrogenous disinfection by-products in drinking water - A review.' Water Research 45: 4331-4354. Bond, T. T., M. R. Graham, N. (2012). 'Precursors of nitrogenous disinfection by-products in drinking water––A critical review and analysis.' Journal of Hazardous Materials 235-236: 1-16. Bull, R. J. M., J. R. Robinson, M. Ringhand, H. P. Laurie, R. D. Stober, J. A. (1985). 'Evaluation of mutagenic and carcinogenic properties of brominated and chlorinated acetonitriles: by-products of chlorination.' Fundamental and Applied Toxicoly 5: 1065-1074. Buxton, G. V. G., C. L. Helman, W. P. and A. B. Ross (1988). 'Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals OH/O- in Aqueous Solution.' The journal of physical chemistry A 17: 513. Cater, S. R., et al. (2000). 'UV/H2O2 treatment of methyl tert-butyl ether in contaminated waters.' Environmental Science & Technology 34: 659-662. Chang, E. E. C., P. C. Koc, Y. W. Lan, W. H. (2001). 'Characteristics of organic precursors and their relationship with disinfection by-products.' Chemosphere 44(5): 1231-1236. Chang, E. E. L., Y. P. Chiang, P. C. (2001). 'Effects of bromide on the formation of THMs and HAAs.' Water Research 43(8). Chang, H. C., C. Wang, G. S. (2011). 'Identification of potential nitrogenous organic precursors for C-, N-DBPs and characterization of their DBPs formation.' Water Research 45: 3753-3764. Chen, H. W. C., C. Y. Wang, G. S. (2011). 'Performance evaluation of the UV/H2O2 process on selected nitrogenous organic compounds: Reductions of organic contents vs. corresponding C-, N-DBPs formations.' Chemosphere 85(4): 591-597. Chena, B. and P. Westerhoff (2010). 'Predicting disinfection by-product formation potential in water.' Water Research 44(13): 3755-3762. Chin, A. and P. R. Berube (2005). 'Removal of disinfection by-product precursors with ozone-UV advanced oxidation process.' Water Research 39: 2136-2144. Chuang, Y. H. L., A. Y. C. Wang, X. H. Tung, H. H. (2013). 'The contribution of dissolved organic nitrogen and chloramines to nitrogenous disinfection byproduct formation from natural organic matter.' Water Research 37(3): 1308-1316. Crepeau, K. L., et al. (2004). 'Method of Analysis by the U.S. Geological Survey California District Sacramento Laboratory—Determination of Trihalomethane Formation Potential, Method Validation, and Quality-Control Practices.' U.S. Geological Survey : Scientific Investigations Report 2004-5003. Dobbs, R. A., et al. (1972). 'The use of ultra-violet absorbance for monitoring the total organic carbon content of water and wastewater.' Water Research 6(10): 1173-1180. Dorfman, L. M. and G. E. Adams (1973). 'Reactivity of the hydroxyl radical in aqueas solution.' National Standard Reference Data System No. NSRDS-NBS-46. Dotson, A., et al. (2009). 'Nitrogen enriched dissolved organic matter (DOM) isolates and their affinity to form emerging disinfection by-products.' Water Science & Technology 60(1): 135-143. Dotsona, A. D. K., V. S., et al. (2010). 'UV/H2O2 treatment of drinking water increases post-chlorination DBP formation.' Water Research 44(12): 3703-3713. Downes, A. B., T. P. (1877). 'The influence of light upon the development of bacteria.' Nature 16: 218. Dwyer, J. and P. Lant (2008). 'Biodegradability of DOC and DON for UV/H2O2 pre-treated melanoidin based wastewater.' Biochemical Engineering Journal 42(1): 47-54. Edzwald, J. K., et al. (1985). 'Surrogate parameters for monitoring organic matter and THM precursors.' Journal (American Water Works Association) 77(4): 122-132. Farkas, L., et al. (1988). 'The reaction between hypochlorite and bromides.' Journal of the American Chemical Society 71: 1988-1991. Gates, F. L. (1930). 'A study of the bactericidal action of ultra violet light: III. The absorption of ultra violet light by bacteria.' The Journal of General Physiology 14: 31-42. Geisler, T. (1892). 'Frage über die Wirkung des Licht auf Bakterien.' Centralblatt für Bakteriologie und Parasitenkunde 11: 161-173. Glaze, W. H., et al. (1987). 'The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation.' Ozone Science & Engineering 9: 335-352. Gultekin, I. I., N. H. (2004). 'Degradation of reactive azo dyes by UV/H2O2: Impact of radical scavengers.' Journal of Environmental Science and Health A39(4): 1069-1081. Hoigné, J. B., H. (1988). 'The formation of trichloronitromethane (chloropicrin) and chloroform in a combined ozonation/chlorination treatment of drinking water.' Water Research 22(3): 313-319. Hua, G. and D. A. Reckhow (2008). 'DBP formation during chlorination and chloramination: Effect of reaction time, pH, dosage, and temperature.' Journal (American Water Works Association) 100(8): 82-95. Huang, C. P. D., C. and Z. Tang (1993). 'Advanced chemical oxidation: its present role and potential future in hazardous waste treatment.' Waste management 13: 361-377. Huang, J. G., N. Templeton, M. R. Zhang, Y. Collins, C. Nieuwenhuijsen, M. (2009). 'A comparison of the role of two blue–green algae in THM and HAA formation.' Water Research 43(12): 3009-3018. Jung, C. W. S., H. J. (2008). 'The relationship between disinfection by-products formation and characteristics of natural organic matter in raw water.' Korean Journal of Chemical Engineering 25: 714-720. Kampioti, A. A. S., E. G. (2002). 'The impact of bromide on the formation of neutral and acidic disinfection by-products (DBPs) in Mediterranean chlorinated drinking water.' Water Research 36(10): 2596-2606. Kleiser, G. and F. H. Frimmel (2000). 'Removal of precursors for disinfection by-products (DBPs) - differences between ozone- and OH-radical-induced oxidation.' The Science of the Total Environment 256: 1-9. Kneissl, M., et al. (2010). 'Development of UV-LED Disinfection.' TECHNEAU 2010 Report. Krasner, S. W., et al. (2006). 'Occurrence of a new generation of disinfection byproducts.' Environmental Science & Technology 40: 7175-7185. Legrini, O., E. Braun, A. M. (1993). 'Photochemical Processes for Water Treatment ' Chemical Reviews 93: 671-698. Leitner, N. K. B., P. and B. Legube (2002). 'Oxidation of Amino Groups by Hydroxyl Radicals in Relation to the Oxidation Degree of the alpha-Carbon.' Environmental Science & Technology 36: 3083-3089. Liang, L. and P. C. Singer (2003). 'Factors Influencing the Formation and Relative Distribution of Haloacetic Acids and Trihalomethanes in Drinking Water.' Environmental Science & Technology 37: 2920-2928. Liu, W. C., L. M. Yang, X. Shang, C. (2006). 'THM, HAA and CNCl formation from UV irradiation and chlor(am)ination of selected organic waters.' Water Research 40(10): 2033-2043. Liu, Y. X. and J. Zhang (2011). 'Photochemical oxidation removal of NO and SO2 from simulated flue gas of coal-fired power plants by wet scrubbing using UV/H2O2 advanced oxidation process.' Industrial & Engineering Chemistry Research 50: 3836-3841. Mills, C. J. B., R. J. Cantor, K.P. Reif, J. Hrudey, S. E. Huston, P. (1998). 'Workshop report. Health risks of drinking water chlorination by-products: report of an expert working group.' Chronic Diseases in Canada 19(3): 91-102. Mitch, W. A. and S. I. M. (2008). 'Degradation of Tertiary Alkylamines during Chlorination/Chloramination: Implications for Formation of Aldehydes, Nitriles, Halonitroalkanes, and Nitrosamines.' Environmental Science and Technology 42: 4811-4817. Munch, D. J. and D. P. Hautman (1995). 'Method 551.1 Determination of chlorination disinfection byproducts, chlorinated solvents, and halogenated pesticide/herbicides in drinking water by liquid-liquid extraction and gas chromatography with electron-capture detection.' U.S.E.P.A. Munter, R. (2001). 'Advanced oxidation processes - current status and prospects.' Proc. Estonian Acad. Sci. Chem. 50(2): 59-80. Novak, J. M. M., G. L. Bertsch, P. M. (1991). 'Estimating the Percent Aromatic Carbon in Soil and Aquatic Humic Substances Using Ultraviolet Absorbance Spectrometry.' Journal of Environmental Quality 21: 144-147. Plewa, M. W., E. (2009). 'Mammalian cell cytotoxicity and genotoxicity of Disinfection by-products.' Water Research Foundation. Rahn, R. O. (1997). 'Potassium Iodide as a Chemical Actinometer for 254 nm Radiation: Use of Iodate as an Electron Scavenger.' Photochemistry and Photobiology 66(4): 450-455. Reckchow, D. A., et al. (2010). 'Effect of UV treatment on DBP formation.' Journal (American Water Works Association) 102(6): 100. Reckhow, D. A. S., P. C. (1984). 'The removal of organic halide precursors by preozonation and alum coagulation.' Journal (American Water Works Association) 76(4): 151-157. Richardson, S. D. (2002). 'The role of GC-MS and LC-MS in the discovery of drinking water disinfection by-products.' Journal of Environmental Monitoring 4(1): 1-9. Richardson, S. D. and A. D. Thruston (2003). 'Tribromopyrrole, brominated acids, and other disinfection byproducts produced by disinfection of drinking Water Rich in Bromide.' Environmental Science & Technology 37: 3782-3793. Rodriguez, M. J., et al. (2007). 'Chlorinated disinfection by-products in drinking water according to source, treatment, season, and distribution location.' Journal of Environmental Engineering and Science 6(4): 355-365. Rook, J. J. (1974). 'Formation of Haloforms during Chlorination of natural Waters.' Water Treat. Exam. 23: 234-243. Rook, J. J., et al. (1978). 'Bromide oxidation and organic substitution in water treatment.' Journal of Environmental Science and Health 13(2): 91-116. Sánchez-Poloa, M. A., M. M. Ocampo-Péreza, R. and J. M. Rivera-Utrillaa, A. J. (2013). 'Comparative study of the photodegradation of bisphenol A by HO radical, SO4 radical and CO3 radical/HCO3 radical radicals in aqueous phase.' Science of the total Environment 463-464: 423-431. Sarathy, S. R. and M. Mohseni (2007). 'The Impact of UV/H2O2 Advanced Oxidation on Molecular Size Distribution of Chromophoric Natural Organic Matter.' Environmental Science & Technology 41: 8315-8320. Sellers, R. M. (1980). 'Spectrophotometric determination of hydrogen peroxide using potassium titanium( IV) oxalate.' Analyst 105: 950-954. Shen, R. and S. A. Andrews (2011). 'Demonstration of 20 pharmaceuticals and personal care products (PPCPs) as nitrosamine precursors during chloramine disinfection.' Water Research 45(2): 944-952. Singer, P. C. (1994). 'Control of disinfection by-products in drinking water.' Journal of Environmental Engineering 120(4): 727-744. Spinks, J. W. T. and R. J. Woods (1990). 'An introduction to Radiation Chemistry.' WILEY-INTERSCIENCE PUBLICATION. Symons, J. M., et al. (1993). 'Measurement of THM and precursor concentrations revisited: The effect of bromide ion.' Journal of the American Chemical Society 51-62. Tayade, R. J., et al. (2009). 'Photocatalytic degradation of methylene blue dye using ultraviolet light emitting diodes.' Industrial & Engineering Chemistry Research 48: 10262-10267. Technologies, S. E. 'ISO 21348 definitions of solar irradiance spectral categories.' Thibaud, H. and J. D. Laat (1988). 'Effect of bromide concentration on the production of chloropicrin during chlorination of surface waters. Formation of brominated trihalonitromethanes.' Water Research 22(3): 381-390. Toor, R. and M. Mohseni (2007). 'UV-H2O2 based AOP and its integration with biological activated carbon treatment for DBP reduction in drinking water.' Chemosphere 66: 2087-2095. Vickers, J. C. T., M. A. Kelkar, U. G. (1995). 'The use of membrane filtration in conjunction with coagulation processes for improved NOM removal.' Desalination 102(1-3): 57-61. Vilhunen, S. H. S., M. E. T. (2009). 'Ultraviolet light emitting diodes and hydrogen peroxide in the photodegradation of aqueous phenol.' Journal of Hazardous Materials 161: 1530-1534. Vilhunen, S. S., H. Sillanpää, M. (2009). 'Ultraviolet light-emitting diodes in water disinfection.' Environmental Science and Pollution Research 16: 439-332. Villanueva, C. M., et al. (2004). 'Disinfection byproducts and bladder cancer: a pooled analysis.' Epidemiology 15(3): 357-367. Wang, G. S. and S. T. Hsieh (2001). 'Monitoring natural organic matter in water with scanning spectrophotometer.' Environment International 26: 205-212. Whitea, D. M. G., D. S. Narrb, J. Woolard, C. R. (2003). 'Natural organic matter and DBP formation potential in Alaskan water supplies.' Water Research 37(4): 939-947. Whitea, D. M. G., D. S. Narrb, J. Woolardc, C. R. (2003). 'Natural organic matter and DBP formation potential in Alaskan water supplies.' Water Research 37(939-947). Wurtele, M. A., et al. (2011). 'Application of GaN-based ultraviolet-C light emitting diodes e UV LEDs e for water disinfection.' Water Research 45: 1481-1489. Yang, X. and C. Shang (2004). 'Chlorination byproduct formation in the presence of humic acid, model nitrogenous organic compounds, ammonia, and bromide.' Environmental Science & Technology 38: 4995-5001. Yu, L. A., G. and C. H. Langford (2012). 'Photocatalytic Degradation of 2,4-D with a LED-based photoreactor.' 12th International Environmental Specialty Conference. Zhang, W., et al. (2003). 'Kinetics, degradation pathway and reaction mechanism of advanced oxidation of 4-nitrophenol in water by a UV/H2O2 process.' Journal of Chemical Technology and Biotechnology 78(7). Zhou, H. and D. W. Smith (2000). 'Advanced Technologies in Water and Wastewater Treatment.' Canadian Journal of Civil Engineering 28(S1): 49-66. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51288 | - |
dc.description.abstract | 在多數淨水處理流程中,一般都會選擇添加氯作為消毒劑,以達成去活化水中致病微生物的功能,餘氯則可以持續抑制配水系統中微生物的生長。但是在加氯消毒的過程中,氯與水中有機物質會反應生成各種消毒副產物(disinfectant by-products), 例如三鹵甲烷(Trihalomethanes)和鹵乙酸 (Haloacetic acid)等。這些消毒副產物在過去很多文獻中已被指出可能對人類有致癌性和產生不良健康反應。因此,為了有效控制消毒副產物的生成,必須在水處理流程中採取有效的去除水中有機前質的處理程序。
在水處理系統中,高級氧化處理是一種有效處理水中有機化學物質的方法。其中,UV/H2O2的方法是利用H2O2經紫外燈照射後產生具有高氧化能力的氫氧自由基,此自由基可以不選擇性地與水中的有機物質反應,有效降解有機物,在特定控制條件下甚至達成礦化的階段。因此,當水中的污染物無法有效地被傳統淨水流程去除時,UV/H2O2是一種進階處理方法。已有研究指出UV/H2O2能有效地降低地表水的DOC濃度,同時可在後端加氯消毒時間接性地降低消毒副產物的生成量。 本研究探討以UV/H2O2對特定含氮有機物降解,以及含氮有機物經過高級氧化處理後消毒副產物的生成特性。本研究選取的物質包括N-[3-(Dimethylamino)propyl]methacrylamide (DMAPMA),(+)-cis-Diltiazem Hydrocloride (Diltiazem) 和 Benzalkonium chloride (BKC)這三種化學物質。 實驗結果顯示這三種化學物質在經過UV/H2O2的處理後,會改變其消毒副產物生成的特性。其中以BKC產生的消毒副產物濃度最高。這三種物質在UV/H2O2處理後皆會產生高濃度的三鹵甲烷、鹵乙酸和三氯硝基甲烷(Trichloronitromethane)。研究也發現消毒副產物的生成量與UV-254吸光度有很高的關聯性,其次是DOC和DON。在進行UV/H2O2的過程中,氫氧自由基的形成效率與水中物質特性有關,對於紫外光具高吸收度的物質會與H2O2造成對紫外光吸收的競爭效應。 本研究的另一部分是要探討以發光二極體 (Light-emitting diode)作為紫外燈光源,對於傳統使用水銀燈效能上的比較。實驗結果顯示,發光二極體在UV/H2O2具有降解高紫外光吸收度的物質的能力,但礦化的效果會比使用一般水銀燈來的差。經過耗能計算公式得出,此實驗中使用的發光二極體裝置並沒有比使用水銀燈節能。 | zh_TW |
dc.description.abstract | In water treatment processes, chlorination has been widely used as a disinfectant method to oxidize the pollutants or control microorganism growth in water including in distribution systems. Various disinfectant by-products (DBPs) could be formed when chlorine reacts with the organic compounds in the water. Among these, DBPs such as trihalomethanes (THMs) and haloacetic acids (HAAs) are proved to have carcinogenicities and can cause adverse health effects on human health. In order to control the DBPs concentration, it is very important for the water treatment plants to include effective water treatment procedures to remove organic precursors in water.
The advanced oxidation process (AOP) is a chemical oxidation based method use in the water treatments to remove certain organic chemical materials. In the UV/H2O2 method, it create hydroxyl radicals through the dissociation of H2O2 when it received UV irradiance at the O-O double bonds, which gave it a very high oxidation potential to react with all kinds of organic compounds in non-selectively way. Thus, it shows a great solution to treat polluted water which cannot be treated well with traditional water treatment process. Some studies show effectiveness of UV/H2O2 to reduce dissolved organic compound in the natural water, which resulting in DBPFPs reduction after disinfection, but the complexity of the organic matter in natural water making it hard to clarify the source of DBP precursors. This study intended to assess the effects of UV/H2O2 towards DBP precursors reduction from nitrogen containing chemicals. The chemicals studied include N-[3-(Dimethylamino)propyl]methacrylamide (DMAPMA),(+)-cis-Diltiazem Hydrocloride (Diltiazem) and Benzalkonium chloride (BKC) . The results showed that UV/H2O2 treatments can alter the DBPs formation trends of the three chemicals tested. These chemicals have high potentials to form DBPs including trihalomethane, haloacetic acids, and trichloronitromethane. The amounts of DBPs formed have strong correlations with values of UV-254 absorbance, followed by DOC and DON. During the UV/H2O2 process, the efficacy of hydroxyl radicals formation rely on the concentration of H2O2 which also act as scavengers to UV light. This study also discussed the efficiency of UV/H2O2 process using LED as alternative UV light source and compare the results with low pressure mercury lamp. Results showed that UV-LED were capable of degrading substances which have high absorbance on 254 nm, but it was ineffective in mineralizing the NPDOC when compared with low pressured mercury lamp. The UV-LED apparatus used in this study are also found to be more energy consuming when the results were compared with low pressure mercury lamp in term of AOP efficiency. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:29:32Z (GMT). No. of bitstreams: 1 ntu-105-R02844007-1.pdf: 2381457 bytes, checksum: b973d19f6efc9d0cec6f14d84af7f345 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 中文摘要................................................................................................................ I
Abstract ................................................................................................................ III Contents ................................................................................................................ V List of Figures ................................................................................................... VIII List of Tables ..................................................................................................... XII Chapter 1 Introduction ........................................................................................... 1 1.1 Background ........................................................................................ 1 1.2 Objectives .......................................................................................... 3 Chapter 2 Study background .................................................................................. 5 2.1 DBPs in drinking water ...................................................................... 5 2.1.1 Introduction to DBPs ................................................................. 5 2.1.2 Parameters related to DBP formation ........................................ 7 2.1.3 AOPs to remove DBP precursors .............................................. 9 2.2 Advanced Oxidation Processes ........................................................ 11 2.2.1 Applications of UV/H2O2 ....................................................... 11 2.2.2 Parameters that affect the efficiency of UV/H2O2 processes ... 16 2.3 Light Sources used in AOPs ............................................................ 18 2.3.1 UV light sources ...................................................................... 18 2.3.2 Mercury Lamp ......................................................................... 19 2.3.3 Light-emitting Dioxide (LED) ................................................. 19 2.3.4 Comparisons of mercury lamps and light-emitting dioxide .... 20 Chapter 3 Materials and methods ........................................................................ 22 3.1 Study Framework ............................................................................. 22 3.2 Reaction sample ............................................................................... 28 3.3 UV/H2O2 advanced oxidation process ............................................. 30 3.3.1 The equipment of UV/H2O2 oxidation system......................... 30 3.3.2 Ultra-violet light source: .......................................................... 32 3.3.3 The procedure of UV/H2O2 advanced oxidation process ........ 32 3.4 DBPs formation potential tests (DBPFP tests) ................................ 33 3.5 Sample analysis ................................................................................ 34 3.5.1 H2O2 analysis ........................................................................... 34 3.5.2 Non-purgeable dissolved organic carbon (NPDOC) analysis . 35 3.5.3 Dissolved organic nitrogen (DON) analysis ............................ 36 3.5.4 Total dissolved nitrogen (TDN) analysis ................................. 37 3.5.5 NH4+–N analysis ...................................................................... 38 3.5.6 NO3-N analysis ........................................................................ 39 3.5.7 Trihalomethanes (THMs), haloketones (HKs), haloacetonitriles (HANs) and trichloronitromethane (TCNM) analysis ......................... 40 3.5.8 Haloacetic acids (HAA) analysis ............................................. 42 Chapter 4 Results and Discussions ...................................................................... 46 4.1 Results of UV/H2O2 treatment on chemical solutions ..................... 46 4.1.1 The effects of UV/H2O2 on DMAPMA, Diltiazem and BKC solutions ............................................................................................... 46 4.1.2 Formation of DBP after chlorination ....................................... 54 4.2 Results of effects from different parameters .................................... 62 4.2.1 Comparison of the effects of direct UV and UV/H2O2 ............ 62 4.2.2 The effects of initial concentrations ......................................... 70 4.2.3 The effects of Bromide ........................................................... 74 4.2.4 The effects of matrix in raw water ........................................... 82 4.3 Comparisons on results between UV-LED and LPUV lamps ......... 91 4.3.1 Determination of UV Irradiance .............................................. 91 4.3.2 Comparisons of UV-LED and LPUV lamps in UV/H2O2 efficiency.............................................................................................. 94 Chapter 5 Conclusions ......................................................................................... 99 5.1 The effect of UV/H2O2 to selected chemical ................................... 99 5.2 The effects of operation parameters related to UV/H2O2 .............. 100 5.3 The comparisons of UV-LED and low pressured mercury lamp .. 101 5.4 Suggestions and recommendations ................................................ 101 References .......................................................................................................... 102 | |
dc.language.iso | en | |
dc.title | UV/H2O2程序對含氮有機前質生成消毒副產物特性之研究 | zh_TW |
dc.title | Effects of UV/H2O2 Process on Characteristics of Disinfection By-products (DBPs) Formation from Nitrogenous Organic Precursors | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林財富(Tsair-Fuh Lin),童心欣(Hsin-hsin Tung) | |
dc.subject.keyword | 消毒副產物,含氮有機物,發光二級體, | zh_TW |
dc.subject.keyword | Disinfection by-products,nitrogenous organic chemical,UV-LED, | en |
dc.relation.page | 108 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-02-04 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 環境衛生研究所 | zh_TW |
顯示於系所單位: | 環境衛生研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 2.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。