Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51278
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor華國泰
dc.contributor.authorMing-Wei Chuen
dc.contributor.author褚名尉zh_TW
dc.date.accessioned2021-06-15T13:29:16Z-
dc.date.available2021-02-26
dc.date.copyright2016-02-26
dc.date.issued2016
dc.date.submitted2016-02-04
dc.identifier.citationAlves, R., Alves, D., Guz, B., Matos, C., Viana, M., Harriz, M., Terrabuio, D., Kondo, M., Gampel, O., and Polletti, P. (2011). Advanced hepatocellular carcinoma. Review of targeted molecular drugs. Ann Hepatol 10, 21-27.
Ban, K.C., Singh, H., Krishnan, R., and Seow, H.F. (2003). GSK-3β phosphorylation and alteration of β-catenin in hepatocellular carcinoma. Cancer letters 199, 201-208.
Chang, M.H. (2003). Decreasing incidence of hepatocellular carcinoma among children following universal hepatitis B immunization. Liver international 23, 309-314.
de La Coste, A., Romagnolo, B., Billuart, P., Renard, C.-A., Buendia, M.-A., Soubrane, O., Fabre, M., Chelly, J., Beldjord, C., and Kahn, A. (1998). Somatic mutations of the β-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proceedings of the National Academy of Sciences 95, 8847-8851.
El-Serag, H.B. (2011). Hepatocellular Carcinoma. New England Journal of Medicine 365, 1118-1127.
Farazi, P.A., and DePinho, R.A. (2006). Hepatocellular carcinoma pathogenesis: from genes to environment. Nature Reviews Cancer 6, 674-687.
Gack, M.U., Kirchhofer, A., Shin, Y.C., Inn, K.-S., Liang, C., Cui, S., Myong, S., Ha, T., Hopfner, K.-P., and Jung, J.U. (2008). Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction. Proceedings of the National Academy of Sciences 105, 16743-16748.
Hou, J., Zhou, Y., Zheng, Y., Fan, J., Zhou, W., Ng, Irene O.L., Sun, H., Qin, L., Qiu, S., Lee, Joyce M.F., et al. (2014). Hepatic RIG-I Predicts Survival and Interferon-α Therapeutic Response in Hepatocellular Carcinoma. Cancer Cell 25, 49-63.
Ishizaki, Y., Ikeda, S., Fujimori, M., Shimizu, Y., Kurihara, T., Itamoto, T., Kikuchi, A., Okajima, M., and Asahara, T. (2004). Immunohistochemical analysis and mutational analyses of β-catenin, axin family and APC genes in hepatocellular carcinomas. International journal of oncology 24, 1077-1083.
Jiang, F., Ramanathan, A., Miller, M.T., Tang, G.-Q., Gale, M., Patel, S.S., and Marcotrigiano, J. (2011). Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature 479, 423-427.
Jordan, C.T., Guzman, M.L., and Noble, M. (2006). Cancer stem cells. New England Journal of Medicine 355, 1253-1261.
Kato, H., Sato, S., Yoneyama, M., Yamamoto, M., Uematsu, S., Matsui, K., Tsujimura, T., Takeda, K., Fujita, T., and Takeuchi, O. (2005). Cell type-specific involvement of RIG-I in antiviral response. Immunity 23, 19-28.
Kato, H., Takeuchi, O., Mikamo-Satoh, E., Hirai, R., Kawai, T., Matsushita, K., Hiiragi, A., Dermody, T.S., Fujita, T., and Akira, S. (2008). Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid–inducible gene-I and melanoma differentiation–associated gene 5. The Journal of Experimental Medicine 205, 1601-1610.
Kumar, M., Zhao, X., and Wang, X.W. (2011). Molecular carcinogenesis of hepatocellular carcinoma and intrahepatic cholangiocarcinoma: one step closer to personalized medicine? Cell & Bioscience 1, 1-13.
Lee, H.C., Kim, M., and Wands, J.R. (2006). Wnt/Frizzled signaling in hepatocellular carcinoma. Front Biosci 11, 1901-1915.
Li, X.-Y., Jiang, L.-J., Chen, L., Ding, M.-L., Guo, H.-Z., Zhang, W., Zhang, H.-X., Ma, X.-D., Liu, X.-Z., Xi, X.-D., et al. (2014). RIG-I Modulates Src-Mediated AKT Activation to Restrain Leukemic Stemness. Molecular Cell 53, 407-419.
Lim, K.-C., Chow, P.K.-H., Allen, J.C., Chia, G.-S., Lim, M., Cheow, P.-C., Chung, A.Y., Ooi, L.L., and Tan, S.-B. (2011). Microvascular invasion is a better predictor of tumor recurrence and overall survival following surgical resection for hepatocellular carcinoma compared to the Milan criteria. Annals of surgery 254, 108-113.
Liu, J., Guo, Y.-M., Hirokawa, M., Iwamoto, K., Ubukawa, K., Michishita, Y., Fujishima, N., Tagawa, H., Takahashi, N., Xiao, W., et al. (2012). A synthetic double-stranded RNA, poly I:C, induces a rapid apoptosis of human CD34+ cells. Experimental Hematology 40, 330-341.
Liu, W., Dong, X., Mai, M., Seelan, R.S., Taniguchi, K., Krishnadath, K.K., Halling, K.C., Cunningham, J.M., Qian, C., and Christensen, E. (2000). Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating β-catenin/TCF signalling. Nature genetics 26, 146-147.
Llovet, J.M., Burroughs, A., and Bruix, J. (2003). Hepatocellular carcinoma. The Lancet 362, 1907-1917.
Miller, J.R., Hocking, A.M., Brown, J.D., and Moon, R.T. (1999). Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathways. Oncogene 18, 7860-7872.
Minagawa, M., Ikai, I., Matsuyama, Y., Yamaoka, Y., and Makuuchi, M. (2007). Staging of hepatocellular carcinoma: assessment of the Japanese TNM and AJCC/UICC TNM systems in a cohort of 13,772 patients in Japan. Annals of surgery 245, 909.
Monga, S.P.S. (2011). Role of Wnt/Beta-Catenin Signaling in Liver Metabolism and Cancer. The international journal of biochemistry & cell biology 43, 1021-1029.
Nitta, S., Sakamoto, N., Nakagawa, M., Kakinuma, S., Mishima, K., Kusano‐Kitazume, A., Kiyohashi, K., Murakawa, M., Nishimura‐Sakurai, Y., and Azuma, S. (2013). Hepatitis C virus NS4B protein targets STING and abrogates RIG‐I–mediated type I interferon‐dependent innate immunity. Hepatology 57, 46-58.
Nordenstedt, H., White, D.L., and El-Serag, H.B. (2010). The changing pattern of epidemiology in hepatocellular carcinoma. Digestive and Liver Disease 42, S206-S214.
Oishi, N., and Wang, X.W. (2011). Novel therapeutic Strategies for Targeting Liver Cancer Stem Cells. International Journal of Biological Sciences 7, 517-535.
Oyagbemi, A., Azeez, O., and Saba, A. (2010). Hepatocellular carcinoma and the underlying mechanisms. African health sciences 10, 93.
Park, J.W. (2004). [Practice guideline for diagnosis and treatment of hepatocellular carcinoma]. The Korean journal of hepatology 10, 88-98.
Rahbari, N.N., Mehrabi, A., Mollberg, N.M., Müller, S.A., Koch, M., Büchler, M.W., and Weitz, J. (2011). Hepatocellular carcinoma: current management and perspectives for the future. Annals of surgery 253, 453-469.
Satoh, S., Daigo, Y., Furukawa, Y., Kato, T., Miwa, N., Nishiwaki, T., Kawasoe, T., Ishiguro, H., Fujita, M., and Tokino, T. (2000). AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nature genetics 24, 245-250.
Selimovic, D., El-Khattouti, A., Ghozlan, H., Haikel, Y., Abdelkader, O., and Hassan, M. (2012). Hepatitis C virus-related hepatocellular carcinoma: an insight into molecular mechanisms and therapeutic strategies. World journal of hepatology 4, 342.
Seth, R.B., Sun, L., and Chen, Z.J. (2006). Antiviral innate immunity pathways. Cell Res 16, 141-147.
Siegel, R., Naishadham, D., and Jemal, A. (2012). Cancer statistics, 2012. CA: a cancer journal for clinicians 62, 10-29.
Takebe, N., Miele, L., Harris, P.J., Jeong, W., Bando, H., Kahn, M., Yang, S.X., and Ivy, S.P. (2015). Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol 12, 445-464.
Thompson, M.D., and Monga, S.P. (2007). WNT/β‐catenin signaling in liver health and disease. Hepatology 45, 1298-1305.
Vabret, N., and Blander, J.M. (2013). Sensing Microbial RNA in the Cytosol. Frontiers in Immunology 4, 468.
W.H., O. (2008). International Agency for Research on cancer. GLOBOCAN 2008. Cancer Incidence and Mortality World Wide.
Wang, R., Wang, J., Paul, A.M., Acharya, D., Bai, F., Huang, F., and Guo, Y.-L. (2013). Mouse embryonic stem cells are deficient in type I interferon expression in response to viral infections and double-stranded RNA. Journal of Biological Chemistry 288, 15926-15936.
Yamamoto, J., Kosuge, T., Takayama, T., Shimada, K., Yamasaki, S., Ozaki, H., Yamaguchi, N., and Makuuchi, M. (1996). Recurrence of hepatocellular carcinoma after surgery. British journal of surgery 83, 1219-1222.
Yamashita, T., and Wang, X.W. (2013). Cancer stem cells in the development of liver cancer. The Journal of Clinical Investigation 123, 1911-1918.
Yang, K., Wang, J., Xiang, A.P., Zhan, X., Wang, Y., Wu, M., and Huang, X. (2013). Functional RIG-I-like receptors control the survival of mesenchymal stem cells. Cell Death & Disease 4, e967.
Yang, K., Wang, X., Zhang, H., Wang, Z., Nan, G., Li, Y., Zhang, F., Mohammed, M.K., Haydon, R.C., and Luu, H.H. (2015). The evolving roles of canonical WNT signaling in stem cells and tumorigenesis: implications in targeted cancer therapies. Laboratory Investigation.
Yoneyama, M., Kikuchi, M., Matsumoto, K., Imaizumi, T., Miyagishi, M., Taira, K., Foy, E., Loo, Y.-M., Gale, M., and Akira, S. (2005). Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. The Journal of Immunology 175, 2851-2858.
Zhang, H.-X., Liu, Z.-X., Sun, Y.-P., Zhu, J., Lu, S.-Y., Liu, X.-S., Huang, Q.-H., Xie, Y.-Y., Zhu, H.-B., Dang, S.-Y., et al. (2013). Rig-I regulates NF-κB activity through binding to Nf-κb1 3′-UTR mRNA. Proceedings of the National Academy of Sciences 110, 6459-6464.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51278-
dc.description.abstract肝細胞癌 (Hepatocellular carcinoma ; HCC) 是全球好發率排名第五位的癌症,由於治療後肝癌復發的比率高居不下,手術後五年存活率僅介於35%及65%之間。其中有 80-90 % 的肝癌是由於B型、C型肝炎病毒的感染導致。癌症幹細胞 (Cancer stem cell) 是一群具有自我更新、增殖與分化特性的細胞,並具有球體形成 (sphere formation) 能力。近年研究也證實癌症幹細胞與癌症的復發、轉移以及對化療藥物的抗藥性有極大的關聯性。視黃酸誘導基因-1 (Retinoic acid-inducible gene I; RIG-I) 是體內先天性免疫系統的重要成員,當RIG-I偵測到外來RNA病毒例如C型肝炎病毒入侵後,會活化mitochondrial antiviral-signaling protein (MAVS),同時促使nuclear factor kappa B (NF-κB) 等免疫相關轉錄因子活化,最終產生第一型干擾素及前發炎性細胞激素。在過去許多研究指出 RIG-I 在肝癌細胞中表現量較其正常細胞中低;而在沒有外來病毒感染的情況下, RIG-I 的表現已知會影響胚胎發育及細胞分化的過程。另一方面, RIG-I 已發現會抑制間質幹細胞 (Mesenchymal stem cell) 及造血幹細胞 (hematopoietic stem/progenitor cells) 的生長,在老鼠的胚胎幹細胞中也有 RIG-I 表現下降的情況。然而 RIG-I 在肝癌幹細胞中扮演的角色仍不清楚,因此本研究欲探討 RIG-I 在肝癌中參與的生物功能及其調控癌症幹細胞機轉。首先在細胞實驗我們發現sphere cell和貼附細胞相比 RIG-I 的表現量較低且癌症幹細胞標記 Oct4和 OV6 表現量較高,透過人工合成的雙股RNA poly I:C活化 RIG-I 後能降低sphere的數量及大小,而抑制 RIG-I的表現後則會使肝癌幹細胞的標記蛋白表現量上升,同時伴隨 sphere 增加的情況。在細胞株轉染 RIG-I 不同片段的實驗中發現,凋亡蛋白酶募集區域 (capase recruitment domain, CARD domain) 的表現會抑制 sphere 生長。另外,我們發現在抑制 RIG-I 表現後觀察到β-catenin 有入核的現象,顯示RIG-I 可能透過活化 (Wnt signaling pathways) 促使調控細胞生長之基因例如c-myc與cyclin D1過度表現,進而造成細胞轉化成癌細胞 (cell transformation) ,甚至趨使已分化的細胞轉變成癌症幹細胞。在動物實驗中也證實RIG-I的減少會增加腫瘤的發生率,而同時再抑制β-catenin則會使腫瘤發生率再次降低。最後我們進一步RIG-I可能透過NFkB1及DKK1來調控Wnt訊息傳遞路徑。綜合以上觀察,我們希望能證實 RIG-I 在肝癌中抑癌基因及調控癌症幹細胞的角色,並作為未來研究肝癌治療的新方向。zh_TW
dc.description.abstractHepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the third most common cause of cancer mortality. However, high rate of recurrence remains the major cause of death among HCC patients. The 5-year survival rate of HCC after treatment is only 35% to 65%. Approximate 80-90% of HCC patients are HBV or HCV carriers in the world. Cancer stem cells (CSCs) are small population of cells within a tumor. These cells possess the self-renewal ability, sphere formation ability, multilineage differentiation potential, and the potential to proliferate extensively. Recent studies have found cancer stem cells are associates to drug resistant, metastasis and tumor recurrence after therapies. Retinoic acid-inducible gene I (RIG-I), also named DDX58, is an important component of the innate immune response. When the virus, such as HBV or HCV infect host cells, RIG-I may act as a sensor then activates MAVS (mitochondrial antiviral signaling protein) and trigger an antiviral response by inducing interferon-β (IFN-β) production. In the previous studies, RIG-I reduction was found in liver cancer cells compared with normal cells. RIG-I also affects embryo development and cell differentiation without virus infection. On the other hand, the expression of RIG-I may reduce the proliferation rate of mesenchymal stem cell and hematopoietic stem/progenitor cell proliferation. The expression of RIG-I also decreases in mouse embryonic stem cells. However, the role of RIG-I in liver cancer stem cell is still unknown. Accordingly, the aim of our study was to evaluate the role of RIG-I in HCC and the mechanism leading to malignant transformation of liver cancer stem cells. First, we found that sphere cells have lower expression of RIG-I and higher expression of cancer stem cell markers Oct4 and OV6 than adherent cells. Activating RIG-I by poly (I: C) transfection could reduce the number and size of sphere cells. Furthermore, knockdown of RIG-I increase the liver cancer stem cell markers and the number of spheres. After transfection with different domains of RIG-I, RIG-I-full-length (wild type), RIG-I-N (constitutively active), RIG-I-C (dominant negative) constructs, we found that both full-length and N-terminal could inhibit the ability of sphere formation. In addition, we found that knockdown of RIG-I led to a nuclear translocation of β-catenin. This result implied that RIG-I might regulate cancer cell stemness through Wnt signaling pathways. In the in vivo experiment we found RIG-I deficiency increased tumor incidence. Meanwhile, knockdown β-catenin would reduce tumor incidence again. Finally, we further found RIG-I might regulate Wnt signaling through NFkB1 and DKK1. Taken together, we have shown the importance of RIG-I in the initiation and development of HCC and targeting RIG-I may have potential as a therapeutic approach to treat HCC.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:29:16Z (GMT). No. of bitstreams: 1
ntu-105-R02447008-1.pdf: 3210836 bytes, checksum: 294ab3c462a2c395c1a63cda8eb019dc (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsContents
中文摘要 …………………………………………………………….….………….. Ⅰ
Abstract ……………………………………………………………………………... Ⅲ
Chapter 1. Introduction …………………………………………………..…….....… 1
1.1. Hepatocellular carcinoma pathogenesis
1.2. Cancer stem cells (CSCs) and hepatocellular carcinoma
1.3. Mechanism of Retinoic Acid-inducible Gene I ( RIG-I )
1.4. Retinoic Acid-inducible Gene I ( RIG-I ) and stem cell
1.5. Retinoic Acid-inducible Gene I ( RIG-I ) and HBV, HCV
1.6. WNT signaling pathway in HCC
Chapter 2.Materials and methods ……………………………………………….…. 11
2.1. Cell culture
2.2. Lentivirus production and infection
2.3. Plasmids and transfection
2.4. RNA extraction and quantitative reverse transcription-polymerase chain
reaction (RT-qPCR)
2.5. Western blotting analysis
2.6. Sphere formation assay
2.7. Immunofluorescence staining and confocal microscopic analysis
2.8. Cell fractionation assay
2.9. Immunoprecipitation
2.10. Measurement of IFNβ secretion
2.11. TCF/LEF Reporter assay
2.12. In vivo xenograft experiment
2.13. Statistical analysis
Chapter 3. Results ………………………………………………………...………..…19
3.1. RIG-I is differentially expressed in CSC relative to normal HCC
3.2. Overexpression of RIG-I attenuates liver cancer stem cell traits
3.3. HCC could acquire CSC phenotype through knockdown RIG-I
3.4. RIG-I does not affect stemness via traditional RIG-I-MAVS-IFN-β pathway
3.5. Reduction of RIG-I promotes stemness through Wnt β-catenin signaling pathway
3.6. Reduction of RIG-I activates Wnt signaling by way of down-regulation of the Wnt inhibitor DKK1
3.7. RIG-I can directly regulate DKK1 expression through NFKB1
3.8. Decreasing RIG-I expression promotes tumor formation and incidence
3.9. The correlation of RIG-I, cancer stem cell marker and Wnt/β-catenin signaling was analyzed using published human gene array databases
Chapter 4. Discussion ………...............................................................................…... 28
Chapter 5. Figures and figure legends ……….............................................…..….…32
Figure 1.RIG-I is differentially expressed in CSC relative to normal HCC
Figure 2.Overexpression of RIG-I attenuates liver cancer stem cell traits
Figure 3.HCC could acquire CSC phenotype through RIG-I knockdown
Figure 4.RIG-I does not affect stemness via traditional RIG-I-MAVS-IFN-β
pathway
Figure 5.Reduction of RIG-I promotes stemness through Wnt β-catenin signaling
pathway
Figure 6. Reduction of RIG-I activates Wnt signaling by way of down-regulation of the Wnt inhibitor DKK1
Figure 7. RIG-I can directly regulate DKK1 expression through NFKB1
Figure 8. Decreasing RIG-I expression promotes tumor formation and incidence
Figure 9. The correlation of RIG-I, cancer stem cell marker and Wnt/β-catenin
signaling was analyzed using published human gene array databases
Chapter 6. References ………............................................................................……. 64
dc.language.isoen
dc.subject肝細胞癌zh_TW
dc.subject視黃酸誘導性基因-Izh_TW
dc.subject肝細胞癌zh_TW
dc.subject癌幹性zh_TW
dc.subject視黃酸誘導性基因-Izh_TW
dc.subjectWnt訊息傳遞zh_TW
dc.subjectWnt訊息傳遞zh_TW
dc.subject癌幹性zh_TW
dc.subjectRIG-Ien
dc.subjectHepatocellular carcinoma (HCC)en
dc.subjectstemnessen
dc.subjectWnt signalingen
dc.subjectRIG-Ien
dc.subjectHepatocellular carcinoma (HCC)en
dc.subjectstemnessen
dc.subjectWnt signalingen
dc.title視黃酸誘導性基因-I (RIG-I) 透過DKK1抑制肝細胞癌的癌幹性以及Wnt訊息傳遞zh_TW
dc.titleRetinoic Acid-inducible Gene I( RIG-I ) Suppresses Stemness of Hepatocellular Carcinoma and Wnt Signaling by Regulation DKK1en
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee郭明良,蕭宏昇,李明學
dc.subject.keyword視黃酸誘導性基因-I,肝細胞癌,癌幹性,Wnt訊息傳遞,zh_TW
dc.subject.keywordRIG-I,Hepatocellular carcinoma (HCC),stemness,Wnt signaling,en
dc.relation.page69
dc.rights.note有償授權
dc.date.accepted2016-02-04
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
3.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved