請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51271完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖秀娟(Vivian Hsiu-Chuan Liao) | |
| dc.contributor.author | Chan-Wei Yu | en |
| dc.contributor.author | 游展維 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:29:05Z | - |
| dc.date.available | 2021-03-08 | |
| dc.date.copyright | 2016-03-08 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-02-04 | |
| dc.identifier.citation | Abernathy CO, Liu YP, Longfellow D, Aposhian HV, Beck B, Fowler B, Goyer R, Menzer R, Rossman T, Thompson C, Waalkes M (1999) Arsenic: Health effects, mechanisms of actions, and research issues. Environ. Health Perspect. 107: 593-597.
Ahmed K, Akhand AA, Hasan M, Islam M, Hasan A (2008) Toxicity of Arsenic (Sodium Arsenite) to Fresh Water Spotted Snakehead Channa punctatus (Bloch) on Cellular Death and DNA Content. Am Eurasian J Agric Environ Sci 4: 18-22. Ahmad SA, Sayed MH, Barua S, Khan MH, Faruquee MH, Jalil A, Hadi SA, Talukder HK (2001) Arsenic in drinking water and pregnancy outcomes. Environ. Health Perspect. 109: 629-631. Anderson GL, Boyd WA, Williams PL (2001) Assessment of sublethal endpoints for toxicity testing with the nematode Caenorhabditis elegans. Environ. Toxicol. Chem. 20: 833-838. Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308: 1466-1469. Anway MD, Leathers C, Skinner MK (2006) Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology 147: 5515-5523. Anderson GL, Boyd WA, Williams PL (2001) Assessment of sublethal endpoints for toxicity testing with the nematode Caenorhabditis elegans. Environ. Toxicol. Chem. 20: 833-838. Ayyadevara S, Engle MR, Singh SP, Dandapat A, Lichti CF, Benes H, Shmookler Reis RJ, Liebau E, Zimniak P (2005) Lifespan and stress resistance of Caenorhabditis elegans are increased by expression of glutathione transferases capable of metabolizing the lipid peroxidation product 4-hydroxynonenal. Aging Cell 4: 257-271. Bansal A, Kwon ES, Conte D, Jr., Liu H, Gilchrist MJ, MacNeil LT, Tissenbaum HA (2014) Transcriptional regulation of Caenorhabditis elegans FOXO/DAF-16 modulates lifespan. Longev Healthspan 3: 5. Beckett WS, Moore JL, Keogh JP, Bleecker ML (1986) Acute encephalopathy due to occupational exposure to arsenic. Br J Ind Med 43: 66-67. Bengmark S (2006) Curcumin, an atoxic antioxidant and natural NFkappaB, cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: a shield against acute and chronic diseases. JPEN J Parenter Enteral Nutr 30: 45-51. Bolanowski MA, Russell RL, Jacobson LA (1981) Quantitative measures of aging in the nematode Caenorhabditis elegans. I. Population and longitudinal studies of two behavioral parameters. Mech. Ageing Dev. 15: 279-295. Borzsonyi M, Bereczky A, Rudnai P, Csanady M, Horvath A (1992) Epidemiological studies on human subjects exposed to arsenic in drinking water in southeast Hungary. Arch. Toxicol. 66: 77-78. Brenner, S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71-94. Brinkel J, Khan MH, Kraemer A (2009) A systematic review of arsenic exposure and its social and mental health effects with special reference to Bangladesh. Int J Environ Res Public Health 6: 1609-1619. Calixto A, Jara JS, Court FA (2012) Diapause formation and downregulation of insulin-like signaling via DAF-16/FOXO delays axonal degeneration and neuronal loss. PLoS Genet. 8: e1003141. Calderon J, Navarro ME, Jimenez-Capdeville ME, Santos-Diaz MA, Golden A, Rodriguez-Leyva I, Borja-Aburto V, Diaz-Barriga F (2001) Exposure to arsenic and lead and neuropsychological development in Mexican children. Environ. Res. 85: 69-76. Cassata G, Kagoshima H, Andachi Y, Kohara Y, Durrenberger MB, Hall DH, Burglin TR. (2000) The LIM homeobox gene ceh-14 confers thermosensory function to the AFD neurons in Caenorhabditis elegans. Neuron 25: 587-597. Cesani MF, Orden B, Zucchi M, Mune MC, Oyhenart EE, Pucciarelli HM. (2003) Effect of undernutrition on the cranial growth of the rat. An intergenerational study. Cells Tissues Organs 174: 129-135. Chattopadhyay S, Pal S, Ghosh D, Debnath J (2003) Effect of dietary co-administration of sodium selenite on sodium arsenite-induced ovarian and uterine disorders in mature albino rats. Toxicol. Sci. 75: 412-422. Chiba CM, Rankin CH (1990) A developmental analysis of spontaneous and reflexive reversals in the nematode Caenorhabditis elegans. J. Neurobiol. 21: 543-554. Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B (2015) Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci 9: 124. Coburn CM, Bargmann CI (1996) A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans. Neuron 17: 695-706. Collins JJ, Huang C, Hughes S, Kornfeld K (2008) The measurement and analysis of age-related changes in Caenorhabditis elegans. WormBook: 1-21. Croll NA (1975) Behavioural analysis of nematode movement. Adv. Parasitol. 13: 71-122. Das AK, Dewanjee S, Sahu R, Dua TK, Gangopadhyay M, Sinha MK. (2010) Protective effect of Corchorus olitorius leaves against arsenic-induced oxidative stress in rat brain. Environ. Toxicol. Pharmacol. 29: 64-69. Das TK, Mani V, Kaur H, Kewalramani N, De S, Hossain A, Banerjee D, Datta BK (2012) Effect of vitamin E supplementation on arsenic induced oxidative stress in goats. Bull Environ Contam Toxicol 89: 61-66. Darr D, Fridovich I (1995) Adaptation to oxidative stress in young, but not in mature or old, Caenorhabditis elegans. Free Radic. Biol. Med. 18: 195-201. David DC (2012) Aging and the aggregating proteome. Front Genet 3: 247. Del Razo LM, Styblo M, Cullen WR, Thomas DJ (2001). Determination of trivalent methylated arsenicals in biological matrices. Toxicol. Appl. Pharmacol. 174, 282-293. DeSesso JM (2001) Teratogen update: Inorganic arsenic. Teratology 64: 170-173. Drummen GP, van Liebergen LC, Op den Kamp JA, Post JA (2002) C11-BODIPY(581/591), an oxidation-sensitive fluorescent lipid peroxidation probe: (micro)spectroscopic characterization and validation of methodology. Free Radic. Biol. Med. 33: 473-490. Flora SJ, Bhadauria S, Pant SC, Dhaked RK (2005) Arsenic induced blood and brain oxidative stress and its response to some thiol chelators in rats. Life Sci. 77: 2324-2337. Frankel S, Concannon J, Brusky K, Pietrowicz E, Giorgianni S, Thompson WD, Currie DA (2009) Arsenic exposure disrupts neurite growth and complexity in vitro. Neurotoxicology 30: 529-537. Fridovich I (1998) Oxygen toxicity: a radical explanation. J. Exp. Biol. 201, 1203–9 Garigan D, Hsu AL, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161: 1101-1112. Gerstbrein B, Stamatas G, Kollias N, Driscoll M (2005) In vivo spectrofluorimetry reveals endogenous biomarkers that report healthspan and dietary restriction in Caenorhabditis elegans. Aging Cell 4: 127-137. Golden TR, Melov S (2004) Microarray analysis of gene expression with age in individual nematodes. Aging Cell 3: 111-124. Glorieux C, Dejeans N, Sid B, Beck R, Calderon PB, Verrax J (2011) Catalase overexpression in mammary cancer cells leads to a less aggressive phenotype and an altered response to chemotherapy. Biochem Pharmacol 82: 1384-1390. Golub MS, Macintosh MS, Baumrind N (1998) Developmental and reproductive toxicity of inorganic arsenic: animal studies and human concerns. J Toxicol Environ Health B Crit Rev 1: 199-241. Gomez M, De Castro E, Guarin E, Sasakura H, Kuhara A, Mori I, Bartfai T, Bargmann CI, Nef P (2001) Ca2+ signaling via the neuronal calcium sensor-1 regulates associative learning and memory in C. elegans. Neuron 30: 241-248. Golub MS, Macintosh MS, Baumrind N (1998) Developmental and reproductive toxicity of inorganic arsenic: animal studies and human concerns. J Toxicol Environ Health B Crit Rev 1: 199-241. Halliwell B, and Gutteridge JMC (1999) Free Radicals in Biology and Medicine. New York: Oxford Univ. Press Harada H, Kurauchi M, Hayashi R, Eki T (2007) Shortened lifespan of nematode Caenorhabditis elegans after prolonged exposure to heavy metals and detergents. Ecotoxicol. Environ. Saf. 66: 378-383. Harman D (1956) Ageing: a theory based on free radical and radiation chemistry. J Gerontol 2: 298–300. Hedgecock EM, Russell RL (1975) Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A. 72: 4061-4065. Henderson ST, Johnson TE (2001) daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr. Biol. 11: 1975-1980. Herndon LA, Schmeissner PJ, Dudaronek JM, Brown PA, Listner KM, Sakano Y, Paupard MC, Hall DH, Driscoll M (2002) Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419: 808-814. Heydari AR, Wu B, Takahashi R, Strong R, Richardson A (1993) Expression of heat shock protein 70 is altered by age and diet at the level of transcription. Mol. Cell. Biol. 13: 2909-2918. Hill RC, de Carvalho CE, Salogiannis J, Schlager B, Pilgrim D, Haag ES (2006) Genetic flexibility in the convergent evolution of hermaphroditism in Caenorhabditis nematodes. Dev. Cell 10: 531-538. Hobert O (2005) Specification of the nervous system. WormBook: 1-19. Holson JF, Desesso JM, Jacobson CF, Farr CH (2000) Appropriate use of animal models in the assessment of risk during prenatal development: An illustration using inorganic arsenic. Teratology 62: 51-71. Hopenhayn-Rich C, Browning SR, Hertz-Picciotto I, Ferreccio C, Peralta C, Gibb H (2000) Chronic arsenic exposure and risk of infant mortality in two areas of Chile. Environ. Health Perspect. 108: 667-673. Huang C, Xiong C, Kornfeld K (2004) Measurements of age-related changes of physiological processes that predict lifespan of Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A. 101: 8084-8089. Hu YO, Sun Y, Ye BP, Wang DY (2007) Computational analysis of genetic loci required for amphid structure and functions and their possibly corresponding microRNAs in C. elegans. Neurosci Bull 23: 9-20. Itoh T, Zhang YF, Murai S, Saito H, Nagahama H, Miyate H, Saito Y, Abe E (1990) The effect of arsenic trioxide on brain monoamine metabolism and locomotor activity of mice. Toxicol. Lett. 54: 345-353. Inada H, Ito H, Satterlee J, Sengupta P, Matsumoto K, Mori I (2006) Identification of guanylyl cyclases that function in thermosensory neurons of Caenorhabditis elegans. Genetics 172: 2239-2252. Jensen TJ, Wozniak RJ, Eblin KE, Wnek SM, Gandolfi AJ, Futscher BW (2009) Epigenetic mediated transcriptional activation of WNT5A participates in arsenical-associated malignant transformation. Toxicol. Appl. Pharmacol. 235: 39-46. Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valko M (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31: 95-107. Kannan GM, Tripathi N, Dube SN, Gupta M, Flora SJ (2001) Toxic effects of arsenic (III) on some hematopoietic and central nervous system variables in rats and guinea pigs. J. Toxicol. Clin. Toxicol. 39: 675-682. Kaletta T, Hengartner MO (2006) Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov 5: 387-398. Kalmar B, Greensmith L (2009) Induction of heat shock proteins for protection against oxidative stress. Adv. Drug. Deliv. Rev. 61: 310-318. Kim HM, Do CH, Lee DH (2010) Taurine reduces ER stress in C. elegans. J. Biomed .Sci. 17 Suppl 1: S26. Katz DJ, Edwards TM, Reinke V, Kelly WG (2009) A C. elegans LSD1 Demethylase Contributes to Germline Immortality by Reprogramming Epigenetic Memory. Cell 137: 308-320. Kim S, Govindan JA, Tu ZJ, Greenstein D (2012) SACY-1 DEAD-Box helicase links the somatic control of oocyte meiotic maturation to the sperm-to-oocyte switch and gamete maintenance in Caenorhabditis elegans. Genetics 192: 905-928. Klose RJ, Kallin EM, Zhang Y (2006) JmjC-domain-containing proteins and histone demethylation. Nat. Rev. Genet. 7: 715-727. Komatsu H, Mori I, Rhee JS, Akaike N, Ohshima Y (1996) Mutations in a cyclic nucleotide-gated channel lead to abnormal thermosensation and chemosensation in C. elegans. Neuron 17: 707-718. Lapierre LR, Hansen M (2012) Lessons from C. elegans: signaling pathways for longevity. Trends Endocrinol. Metab. 23: 637-644. Leung MC, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, Meyer JN (2008) Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol. Sci. 106: 5-28. Li WH, Shi YC, Tseng IL, Liao VH (2013) Protective efficacy of selenite against lead-induced neurotoxicity in Caenorhabditis elegans. PLoS One 8: e62387. Liu J, Xie Y, Cooper R, Ducharme DM, Tennant R, Diwan BA, Waalkes MP (2007) Transplacental exposure to inorganic arsenic at a hepatocarcinogenic dose induces fetal gene expression changes in mice indicative of aberrant estrogen signaling and disrupted steroid metabolism. Toxicol. Appl. Pharmacol. 220: 284-291. Li WH, Shi YC, Tseng IL, Liao VH (2013) Protective efficacy of selenite against lead-induced neurotoxicity in Caenorhabditis elegans. PLoS One 8: e62387. Liao VH, Yu CW (2005) Caenorhabditis elegans gcs-1 confers resistance to arsenic-induced oxidative stress. Biometals 18: 519-528. Liao VH, Yu CW, Chu YJ, Li WH, Hsieh YC, et al. (2011) Curcumin-mediated lifespan extension in Caenorhabditis elegans. Mech Ageing Dev 132: 480-487. Liao VH, Liu JT, Li WH, Yu CW, Hsieh YC (2010) Caenorhabditis elegans bicarbonate transporter ABTS-1 is involved in arsenite toxicity and cholinergic signaling. Chem. Res. Toxicol. 23: 926-932. Leung MC, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, Meyer JN (2008) Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol. Sci. 106: 5-28. Lerman SA, Clarkson TW, Gerson RJ (1983) Arsenic uptake and metabolism by liver cells is dependent on arsenic oxidation state. Chem. Biol. Interact. 45: 401-406. Lund J, Tedesco P, Duke K, Wang J, Kim SK, Johnson TE (2002) Transcriptional profile of aging in C. elegans. Curr. Biol. 12: 1566-1573. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta. 58: 201-235. Milton AH, Smith W, Rahman B, Hasan Z, Kulsum U, Dear K, Rakibuddin M, Ali A (2005) Chronic arsenic exposure and adverse pregnancy outcomes in Bangladesh. Epidemiology 16: 82-86. Miyazawa M, Ishii T, Yasuda K, Noda S, Onouchi H, Hartman PS, Ishii N (2009) The role of mitochondrial superoxide anion (O2(-)) on physiological aging in C57BL/6J mice. J. Radiat. Res. 50: 73-83. Mizumura A, Watanabe T, Kobayashi Y, Hirano S (2010) Identification of arsenite-and arsenic diglutathione-binding proteins in human hepatocarcinoma cells. Toxicol. Appl. Pharmacol. 242: 119-125. Mohammed Abdul KS, Jayasinghe SS, Chandana EP, Jayasumana C, De Silva PM (2015) Arsenic and human health effects: A review. Environ. Toxicol. Pharmacol. 40: 828-846. Morgan KL, Estevez AO, Mueller CL, Cacho-Valadez B, Miranda-Vizuete A, Szewczyk NJ, Estevez M (2010) The glutaredoxin GLRX-21 functions to prevent selenium-induced oxidative stress in Caenorhabditis elegans. Toxicol. Sci. 118: 530-543. Mori I, Ohshima Y (1995) Neural regulation of thermotaxis in Caenorhabditis elegans. Nature 376: 344-348. Mori I, Ohshima Y (1997) Molecular neurogenetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans. Bioessays 19: 1055-1064. Mori I, Sasakura H, Kuhara A (2007) Worm thermotaxis: a model system for analyzing thermosensation and neural plasticity. Curr. Opin. Neurobiol. 17: 712-719. Murphy CT (2006) The search for DAF-16/FOXO transcriptional targets: approaches and discoveries. Exp. Gerontol. 41: 910-921. Navarro PAAS, Lin L, Keefe DL (2004) In vivo effects of arsenite on meiosis, preimplantation development, and apoptosis in the mouse. Biol. Reprod. 70: 980-985. Newbold RR, Padilla-Banks E, Jefferson WN (2006) Adverse effects of the model environmental estrogen diethylstilbestrol are transmitted to subsequent generations. Endocrinology 147: S11-17. Nishino H, Tokuda H, Satomi Y, Masuda M, Osaka Y, Yogosawa S, Wada S, Mou XY, Takayasu J, Murakoshi M, Jinnno K, Yano M (2004) Cancer prevention by antioxidants. Biofactors 22: 57-61. Olsen A, Vantipalli MC, Lithgow GJ (2006) Lifespan extension of Caenorhabditis elegans following repeated mild hormetic heat treatments. Biogerontology 7: 221-230. Panacek A, Prucek R, Safarova D, Dittrich M, Richtrova J, Benickova K, Zboril R, Kvitek L (2011) Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster. Environ. Sci. Technol. 45: 4974-4979. Pant N, Murthy RC, Srivastava SP (2004) Male reproductive toxicity of sodium arsenite in mice. Hum Exp Toxicol 23: 399-403. Poux S, Horard B, Sigrist CJ, Pirrotta V (2002) The Drosophila trithorax protein is a coactivator required to prevent re-establishment of polycomb silencing. Development 129: 2483-2493. Prakash C, Soni M, Kumar V (2016) Mitochondrial oxidative stress and dysfunction in arsenic neurotoxicity: A review. J Appl Toxicol 36: 179-788. Qiao Y, Zhao Y, Wu Q, Sun L, Ruan Q, Chen Y, Wang M, Duan J, Wang D (2014) Full toxicity assessment of Genkwa Flos and the underlying mechanism in nematode Caenorhabditis elegans. PLoS One 9: e91825. Quansah R, Armah FA, Essumang DK, Luginaah I, Clarke E, Marfoh K, Cobbina SJ, Nketiah-Amponsah E, Namujju PB, Obiri S, Dzodzomenyo M (2015) Association of arsenic with adverse pregnancy outcomes/infant mortality: a systematic review and meta-analysis. Environ. Health Perspect. 123: 412-421. Rahman A, Persson LA, Nermell B, El Arifeen S, Ekstrom EC, Smith AH, Vahter M (2010) Arsenic exposure and risk of spontaneous abortion, stillbirth, and infant mortality. Epidemiology 21: 797-804. Reichard JF, Puga A (2010) Effects of arsenic exposure on DNA methylation and epigenetic gene regulation. Epigenomics 2: 87-104. Rodriguez-Rodero S, Fernandez-Morera JL, Menendez-Torre E, Calvanese V, Fernandez AF, Fraga MF (2011) Aging genetics and aging. Aging Dis 2: 186-195. Rosado JL, Ronquillo D, Kordas K, Rojas O, Alatorre J, Lopez P, Garcia-Vargas G, Del Carmen Caamaño M, Cebrián ME, Stoltzfus RJ. (2007) Arsenic exposure and cognitive performance in Mexican schoolchildren. Environ. Health Perspect. 115: 1371-1375. Roy RV, Son YO, Pratheeshkumar P, Wang L, Hitron JA, Divya SP, D R, Kim D, Yin Y, Zhang Z, Shi X (2015) Epigenetic targets of arsenic: emphasis on epigenetic modifications during carcinogenesis. J. Environ. Pathol. Toxicol. Oncol. 34: 63-84. Sahu SN, Lewis J, Patel I, Bozdag S, Lee JH, Sprando R, Cinar HN (2013) Genomic analysis of stress response against arsenic in Caenorhabditis elegans. PLoS One 8: e66431. Satterlee JS, Sasakura H, Kuhara A, Berkeley M, Mori I, Sengupta P (2001) Specification of thermosensory neuron fate in C. elegans requires ttx-1, a homolog of otd/Otx. Neuron 31: 943-956. Sauve S, Desrosiers M (2014) A review of what is an emerging contaminant. Chem Cent J 8: 15. Schmeisse S, Schmeisser K, Weimer S, Groth M, Priebe S, Fazius E, Kuhlow D, Pick D, Einax JW, Guthke R, Platzer M, Zarse K, Ristow M (2013) Mitochondrial hormesis links low-dose arsenite exposure to lifespan extension. Aging Cell 12: 508-517. Schulz H, Nagymajtenyi L, Institoris L, Papp A, Siroki O (2002) A study on behavioral, neurotoxicological, and immunotoxicological effects of subchronic arsenic treatment in rats. J Toxicol Environ Health A 65: 1181-1193. Sharma C, Suhalka P, Sukhwal P, Jaiswal N, Bhatnagar M (2014) Curcumin attenuates neurotoxicity induced by fluoride: An in vivo evidence. Pharmacogn Mag 10: 61-65. Shen J, Liu J, Xie Y, Diwan BA, Waalkes MP (2007) Fetal onset of aberrant gene expression relevant to pulmonary carcinogenesis in lung adenocarcinoma development induced by in utero arsenic exposure. Toxicol. Sci. 95: 313-320. Sinczuk-Walczak H, Szymczak M, Halatek T (2010) Effects of occupational exposure to arsenic on the nervous system: clinical and neurophysiological studies. Int J Occup Med Environ Health 23: 347-355. Shi H, Shi X, Liu KJ (2004) Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol. Cell. Biochem. 255: 67-78. Shila S, Kokilavani V, Subathra M, Panneerselvam C (2005a) Brain regional responses in antioxidant system to alpha-lipoic acid in arsenic intoxicated rat. Toxicology 210: 25-36. Shila S, Subathra M, Devi MA, Panneerselvam C (2005b) Arsenic intoxication-induced reduction of glutathione level and of the activity of related enzymes in rat brain regions: reversal by DL-alpha-lipoic acid. Arch. Toxicol. 79: 140-146. Sinha M, Manna P, Sil PC (2008) Arjunolic acid attenuates arsenic-induced nephrotoxicity. Pathophysiology 15: 147-156. Smith JV, Luo Y (2003) Elevation of oxidative free radicals in Alzheimer's disease models can be attenuated by Ginkgo biloba extract EGb 761. J. Alzheimers Dis. 5: 287-300. Soukas AA, Carr CE, Ruvkun G (2013) Genetic regulation of Caenorhabditis elegans lysosome related organelle function. PLoS Genet. 9: e1003908. Squier TC (2001) Oxidative stress and protein aggregation during biological aging. Exp. Gerontol. 36: 1539-1550. Sulston J, Hodgkin J (1998) Methods. In: Wood. WB, editor. The Nematode Caenorhabditis elegans. New York: Cold Spring Harbor Laboratory Press. 587-606. Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and ageing. Science 273: 59–63. Sutphin GL, Kaeberlein M (2009) Measuring Caenorhabditis elegans life span on solid media. J Vis Exp 24: 1152. Swain SC, Keusekotten K, Baumeister R, Sturzenbaum SR (2004) C. elegans metallothioneins: new insights into the phenotypic effects of cadmium toxicosis. J. Mol. Biol. 341: 951-959. Tan L, Wang S, Wang Y, He M, Liu D (2015) Bisphenol A exposure accelerated the aging process in the nematode Caenorhabditis elegans. Toxicol. Lett. 235: 75-83. Tawe WN, Eschbach ML, Walter RD, Henkle-Duhrsen K (1998) Identification of stress-responsive genes in Caenorhabditis elegans using RT-PCR differential display. Nucleic Acids Res. 26: 1621-1627. Tchounwou PB, Wilson B, Ishaque A (1999) Important considerations in the development of public health advisories for arsenic and arsenic-containing compounds in drinking water. Rev Environ Health 14: 211-229. Tissenbaum HA (2015) Using for aging research. Invertebr. Reprod. Dev. 59: 59-63. Tullet JM (2015) DAF-16 target identification in C. elegans: past, present and future. Biogerontology 16: 221-234. Thomas DJ, Li J, Waters SB, Xing W, Adair BM, Drobna Z, Devesa V, Styblo M (2007) Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals. Exp. Biol. Med. (Maywood) 232: 3-13. Tsalik EL, Hobert O (2003) Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. J. Neurobiol. 56: 178-197. Tsai SY, Chou HY, The HW, Chen CM, Chen CJ (2003) The effects of chronic arsenic exposure from drinking water on the neurobehavioral development in adolescence. Neurotoxicology 24: 747-753. Tseng CH (2008) Cardiovascular disease in arsenic-exposed subjects living in the arseniasis-hyperendemic areas in Taiwan. Atherosclerosis 199: 12-18. Tseng YY, Yu CW, Liao VH (2007) Caenorhabditis elegans expresses a functional ArsA. FEBS J. 274: 2566-2572. Vahter M, Concha G (2001) Role of metabolism in arsenic toxicity. Pharmacol. Toxicol. 89: 1-5. Vahidnia A, van der Voet GB, de Wolff FA (2007) Arsenic neurotoxicity--a review. Hum Exp Toxicol 26: 823-832. Von Ehrenstein OS, Poddar S, Yuan Y, Mazumder DG, Eskenazi B, Basu A, Hira-Smith M, Ghosh N, Lahiri S, Haque R, Ghosh A, Kalman D, Das S, Smith AH (2007) Children's intellectual function in relation to arsenic exposure. Epidemiology 18: 44-51. Voss P, Siems W (2006) Clinical oxidation parameters of aging. Free Radic. Res. 40: 1339-1349. Wallace DC, Melov S (1998) Radicals r'aging. Nat. Genet. 19: 105-106. Wasserman GA, Liu X, Parvez F, Ahsan H, Factor-Litvak P, van Geen A, Slavkovich V, LoIacono NJ, Cheng Z, Hussain I, Momotaj H, Graziano JH (2004) Water arsenic exposure and children's intellectual function in Araihazar, Bangladesh. Environ. Health Perspect. 112: 1329-1333. Wang D, Xing X (2008) Assessment of locomotion behavioral defects induced by acute toxicity from heavy metal exposure in nematode Caenorhabditis elegans. J Environ Sci (China) 20: 1132-1137. Wang D, Liu P, Yang Y, Shen L (2010) Formation of a combined Ca/Cd toxicity on lifespan of nematode Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 73: 1221-1230. Wong A, Boutis P, Hekimi S (1995) Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing. Genetics 139: 1247-1259. Wu Q, Yin L, Li X, Tang M, Zhang T, Wang D (2013) Contributions of altered permeability of intestinal barrier and defecation behavior to toxicity formation from graphene oxide in nematode Caenorhabditis elegans. Nanoscale 5: 9934-9943. WHO, Geneva, Guidelines for Drinking Water Quality 2nd edition. 1993. ISBN 924 154460. Xing X, Du M, Xu X, Rui Q, Wang D (2009) Exposure to metals induces morphological and functional alteration of AFD neurons in nematode Caenorhabditis elegans. Environ. Toxicol. Pharmacol. 28: 104-110. Yadav RS, Sankhwar ML, Shukla RK, Chandra R, Pant AB, Islam F, Khanna VK (2009) Attenuation of arsenic neurotoxicity by curcumin in rats. Toxicol. Appl. Pharmacol. 240: 367-376. Yang CY, Chang CC, Tsai SS, Chuang HY, Ho CK, Wu TN (2003) Arsenic in drinking water and adverse pregnancy outcome in an arseniasis-endemic area in northeastern Taiwan. Environ. Res. 91: 29-34. Yamanaka K, Hasegawa A, Sawamura R, Okada S (1991) Cellular response to oxidative damage in lung induced by the administration of dimethylarsinic acid, a major metabolite of inorganic arsenics, in mice. Toxicol. Appl. Pharmacol. 108: 205-213. Ye H, Ye B, Wang D (2008) Trace administration of vitamin E can retrieve and prevent UV-irradiation- and metal exposure-induced memory deficits in nematode Caenorhabditis elegans. Neurobiol Learn Mem 90: 10-18. Yu CW, Liao VH (2014) Arsenite induces neurotoxic effects on AFD neurons via oxidative stress in Caenorhabditis elegans. Metallomics 6: 1824-1831. Yu Z, Chen X, Zhang J, Wang R, Yin D (2013) Transgenerational effects of heavy metals on L3 larva of Caenorhabditis elegans with greater behavior and growth inhibitions in the progeny. Ecotoxicol. Environ. Saf. 88: 178-184. Zhang Z, Wang X, Cheng S, Sun L, Son YO, Yao H, Li W, Budhraja A, Li L, Shelton BJ, Tucker T, Arnold SM, Shi X (2011) Reactive oxygen species mediate arsenic induced cell transformation and tumorigenesis through Wnt/beta-catenin pathway in human colorectal adenocarcinoma DLD1 cells. Toxicol. Appl. Pharmacol. 256: 114-121. Zhao B, Khare P, Feldman L, Dent JA (2003) Reversal frequency in Caenorhabditis elegans represents an integrated response to the state of the animal and its environment. J. Neurosci. 23: 5319-5328. Zhang H, He X, Zhang Z, Zhang P, Li Y, et al. (2011) Nano-CeO2 exhibits adverse effects at environmental relevant concentrations. Environ. Sci. Technol. 45: 3725-3730. Zhou X, Sun H, Ellen TP, Chen H, Costa M (2008) Arsenite alters global histone H3 methylation. Carcinogenesis 29: 1831-1836. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51271 | - |
| dc.description.abstract | 砷為一自然環境中存在的物質,因此人類有很高的機率暴露到。本研究目的為探討砷在Caenorhabditis elegans (C. elegans)中的毒理機制,包括以下3個研究目標:(1)探討砷是否造成神經毒性並探討其相關作用機制;(2)探討砷是否加速老化並探討其相關作用機制;(3)探討砷造成的生殖毒性是否會傳遞至子代並探討其相關作用機制。
研究目標1,探討在C. elegans中氧化壓力於砷所造成的神經毒性中扮演的角色。研究結果顯示暴露砷(100 µM)造成C. elegans運動行為(body bends, head thrashes及reversals的頻率)的降低。此外砷(100 µM)也造成熱感應行為的改變,並造成AFD感覺神經元的結構特性損壞。此外砷(100 µM)造成C. elegans體內氧化壓力的增加。預處理抗氧化劑薑黃素(curcumin) (100 μM)則能改善其不利效應。研究結果顯示氧化壓力在砷所造成的神經毒性中扮演關鍵的角色。 研究目標2,探討慢性暴露砷是否造成C. elegans老化加速及其相關機制。結果顯示長期暴露砷(100、500、1000 μM)造成C. elegans壽命顯著的降低。此外砷暴露(100 μM)也造成C. elegans與老化相關的生物指標顯著的變化,包括減少排便次數,腸脂褐質和脂質過氧化的積累過多的現象。進一步的證據顯示,暴露砷造成老化的C. elegans體內氧化壓力顯著增加。此外暴露砷(100 μM)亦造成與老化相關的熱擊蛋白 (HSP-16.1,HSP-16.49,和HSP-70)之mRNA表達量顯著增加。最後,daf-16轉錄因子突變株中對於砷(100 μM)所造成加速老化效應更為顯著,並且在砷暴露(100 μM)下無法誘導超氧化物歧化酶(SOD-3)之mRNA的表達。研究顯示慢性砷暴露造成C. elegans老化加速。此外體內氧化壓力的增加以及轉錄因子DAF-16/ FOXO在砷暴露所造成加速老化作用中扮演關鍵角色。 在研究目標3中,以C. elegans探討母代(F0)暴露砷所造成的繁殖毒性是否會傳遞到子代(F1至F4)。結果顯示母代(F0)暴露砷(1 mM)造成C. elegans產卵數顯著降低,並且觀察到在後代世代(F1至F4)即使沒有暴露砷也造成產卵數顯著減少。此外在母代(F0)幼蟲時期(L4)於1 mM砷暴露24小時後,在F0和F1都發現體內砷的累積。母代暴露砷(1 mM)後,spr-5 (H3K4me2 demethylase LSD/KDM1)之mRNA表達量亦顯著降低。同樣結果亦可以在F1至F3子代中發現,母代暴露造成F1至F3子代spr-5的mRNA之表達量顯著降低。此外在F0至F3之C. elegans體內H3K4me2之含量亦顯著提高。此結果顯示母代暴露砷後,經由影響組蛋白H3K4甲基化作用,因而造成的表觀遺傳的改變可能是砷造成繁殖毒性傳遞的因素。 | zh_TW |
| dc.description.abstract | Arsenic (As) permeates the environment. As a result, humans are continually exposed to it. This study investigates the toxicity regulation of arsenic in Caenorhabditis elegans. The specific aims of the research in this study are: (1) to determine whether or not arsenic exerts neurotoxic effects and what factors and mechanisms are involved; (2) to determine whether or not arsenic accelerates aging process and what factors and mechanisms are involve; and (3) to determine whether or not arsenic exerts transgenerational reproductive toxicity and what factors and mechanisms are involved.
For specific aim 1, we investigated the possible roles of oxidative stress in arsenite (As(III))-induced neurotoxicity in C. elegans The results showed that exposure to As(III) (100μM) caused a decrease in locomotor behaviors (frequencies of body bends, head thrashes, and reversals) of C. elegans. In addition, As (III) (100 μM) exposure decreased thermotactic behaviors, and induced severe deficits in the structural properties of the amphid finger neuron (AFD). Exposure to As(III) (100 μM) also caused an elevated production of reactive oxygen species (ROS). Pretreatment with the antioxidant curcumin (100 µM) ameliorated the decrease in locomotor and thermotactic behavior, and the formation of deficits in the structural properties of AFD sensory neurons in As(III)-exposed nematodes. Our study suggests that oxidative stress plays a crucial role in the As(III)-induced neurotoxic effects on locomotor behavior and the structures and function of AFD sensory neurons in As(III)-exposed nematodes. For specific aim 2, we investigated the effects and the underlying mechanisms of chronic arsenite exposure on the aging process in C. elegans. The results showed that prolonged arsenite (100, 500, and 1000 μM) exposure caused significantly decreased lifespan compared to non-exposed ones. In addition, arsenite exposure (100 μM) caused significant changes of age-dependent biomarkers, including a decrease of defecation frequency, accumulations of intestinal lipofuscin and lipid peroxidation in age-dependent manner in C. elegans. Further evidence revealed that intracellular reactive oxygen species (ROS) level was significantly increased in age-dependent manner upon arsenite exposure (100 μM). Moreover, the mRNA levels of transcriptional makers of aging (hsp-16.1, hsp-16.49, and hsp-70) were increased in aged worms under arsenite exposure (100 μM). Finally, we showed that daf-16 mutant worms were more sensitive to arsenite exposure on lifespan and failed to induce the expression of its target gene sod-3 in aged daf-16 mutant under arsenite exposure (100 μM). Our study demonstrated that chronic arsenite exposure resulted in accelerated aging in C. elegans. The overproduction of intracellular ROS and the transcription factor DAF-16/FOXO play key roles in mediating the accelerated aging process by arsenite exposure in C. elegans. This study implicates a potential exoctoxicological and health risk of arsenic in the environment. For specific aim 3, the transgenerational reproduction defects of arsenite on C. elegans were investigated by examining the parental generation (F0) to the fourth offspring generation (F4). The results showed that the total brood size of the C. elegans was significantly reduced (33%) in the F0 by arsenite exposure (1 mM), and the reduction of the brood size was also observed in the offspring generations (F1 to F4), after the arsenite exposure was removed. In addition, both adult worms from F0 and F1 generation accumulated arsenite and arsenate when L4 larvae of F0 were exposed to 1mM arsenite for 24h. Moreover, the mRNA level of the H3K4me2 demethylase LSD/KDM1, spr-5, was significantly reduced in F0 by arsenic exposure (1 mM). Likewise, the mRNA level of spr-5 was also significantly reduced in F1 to F3 generations. In addition, di-methylation of global H3K4 was increased in F0 to F3 generations. Our study suggests that prenatal arsenic exposure causes transgenerational reproduction defects in C. elegans which might be attributed to epigenetic change via Histone H3K4 di-methylation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:29:05Z (GMT). No. of bitstreams: 1 ntu-105-D99622003-1.pdf: 2830932 bytes, checksum: 59b0c3effef6e9403995b55fcec6e529 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 致謝 i
ABSTRACT ii 中文摘要 v TABLE OF CONTENTS vii LIST OF FIGURES xii LIST OF TABLES xiv ABBREVIATION xv Chapter 1. Motivation of Study 1 Chapter 2. Literatures Review 2 2.1 Arsenic 2 2.2 Oxidative stress 4 2.3 Caenorhabditis elegans 5 2.4 Arsenic and neurotoxicity 6 2.5 Arsenic and aging 8 2.6 Arsenic and transgenerational reproductive toxicity 10 Chapter 3. Research Goals 12 3.1 Specific Aim 1:Effects of arsenic on neurotoxicity 12 3.2 Specific Aim 2:Effects of arsenic on aging process 12 3.3 Specific Aim 3:Effects of arsenic on transgenerational reproductive toxicity 13 3.4 Flowcharts of research 14 Chapter 4. Materials and Methods 15 4.1 Chemicals and C. elegans strains 15 4.2 Measurement of growth endpoint 15 4.3 Measurement of reproduction endpoint 16 4.4 Head thrash frequency assays 17 4.5 Body bends frequency assays 17 4.6 Reversal frequency assays 18 4.7 Thermotaxis assay 19 4.8 Analysis of fluorescence level in transgenic DA1267 19 4.9 C. elegans lifespan assays 20 4.10 C. elegans defecation frequency assays 21 4.11 C. elegans intestinal lipofuscin assays 21 4.12 C. elegans lipid peroxidation assays 22 4.13 Intracellular reactive oxygen species assays 23 4.14 Arsenic accumulation assays 24 4.15 Histone extraction and Di-methyl Histone H3K4 quantification 24 4.16 Real-time quantitative RT-PCR analysis 25 4.17 Data analysis 25 Chapter 5. Results and Discussion 27 5.1 Effects of arsenic on neurotoxicity 27 5.1.1 As(III) exposure causues locomotor behavior defects in C. elegans. 27 5.1.2 As(III) increases the intracellular reactive oxygen species level in C. elegans. 29 5.1.3 Effects of antioxidant treatment on locomotor behaviors in C. elegans exposed to As(III). 30 5.1.4 Effects of As(III) exposure on thermotaxis in C. elegans. 32 5.1.5 Effects of As(III) exposure on AFD thermosensory neurons in C. elegans. 33 5.1.6 Total of Graphic 38 5.2 Effects of arsenic on aging 39 5.2.1 Effects of arsenite exposure on lifespan of wild-type N2 C. elegans. 39 5.2.2 Effects of arsenite exposure on defecation frequency in aged wild-type N2 C. elegans. 40 5.2.3 Effects of arsenite on intestinal lipofuscin and lipid peroxidation in aged wild-type N2 C. elegans. 41 5.2.4 Effects of arsenite on intracellular ROS level in aged wild-type N2 C. elegans. 42 5.2.5 Effects of arsenite exposure on heat shock protein mRNA levels in aged wild-type N2 C. elegans. 44 5.2.6 The role of DAF-16 on accelerated aging process upon arsenite exposure. 45 5.2.7 Total of Graphic 48 5.3 Effects of arsenic on transgenerational reproduction toxicity 49 5.3.1 Exposure to arsenite causes significant growth and reproductive defects in C. elegans. 49 5.3.2 Reproductive toxicity of arsenite exposure in F0, F1, F2, F3, and F4 generations of C. elegans. 50 5.3.3 Arsenic accumulation by arsneite exposure in F0 and F1 generation C. elegans. 52 5.3.4 Mutigenerational effect of arsenite exposure on mRNA level of spr-5 and H3K4ne2 level in C. elegans. 54 5.3.7 Total of Graphic 57 Chapter 6. Conclusions 58 References 60 Figures 83 Tables 103 Supplementary Tables 108 Curriculum Vitae 110 | |
| dc.language.iso | en | |
| dc.subject | 表觀遺傳 | zh_TW |
| dc.subject | 砷 | zh_TW |
| dc.subject | 氧化壓力 | zh_TW |
| dc.subject | 神經毒性作用 | zh_TW |
| dc.subject | AFD神經元 | zh_TW |
| dc.subject | 老化 | zh_TW |
| dc.subject | 繁殖毒性 | zh_TW |
| dc.subject | spr-5 | zh_TW |
| dc.subject | 砷 | zh_TW |
| dc.subject | 氧化壓力 | zh_TW |
| dc.subject | 神經毒性作用 | zh_TW |
| dc.subject | AFD神經元 | zh_TW |
| dc.subject | 老化 | zh_TW |
| dc.subject | 繁殖毒性 | zh_TW |
| dc.subject | spr-5 | zh_TW |
| dc.subject | 表觀遺傳 | zh_TW |
| dc.subject | epigenetic | en |
| dc.subject | transgenerational reproduction toxicity | en |
| dc.subject | spr-5 | en |
| dc.subject | arsenite | en |
| dc.subject | arsenite | en |
| dc.subject | oxidative stress | en |
| dc.subject | neurotoxic effects | en |
| dc.subject | AFD neurons | en |
| dc.subject | aging | en |
| dc.subject | transgenerational reproduction toxicity | en |
| dc.subject | spr-5 | en |
| dc.subject | epigenetic | en |
| dc.subject | oxidative stress | en |
| dc.subject | neurotoxic effects | en |
| dc.subject | AFD neurons | en |
| dc.subject | aging | en |
| dc.title | 秀麗隱桿線蟲砷的毒理機制 | zh_TW |
| dc.title | Mechanisms of arsenic toxicity in the nematodes Caenorhabditis elegans | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 潘子明(Tzu-Ming Pan),吳益群(Yi-Chun Wu),吳焜裕(Kuen-Yuh Wu),潘敏雄(Min-Hsiung Pan) | |
| dc.subject.keyword | 砷,氧化壓力,神經毒性作用,AFD神經元,老化,繁殖毒性,spr-5,表觀遺傳, | zh_TW |
| dc.subject.keyword | arsenite,oxidative stress,neurotoxic effects,AFD neurons,aging,transgenerational reproduction toxicity,spr-5,epigenetic, | en |
| dc.relation.page | 113 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-02-04 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 2.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
