Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51245
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳君明(Jiun-Ming Chen)
dc.contributor.authorRicardo Pontazaen
dc.contributor.author龐德沙zh_TW
dc.date.accessioned2021-06-15T13:28:25Z-
dc.date.available2016-03-08
dc.date.copyright2016-03-08
dc.date.issued2016
dc.date.submitted2016-02-09
dc.identifier.citation[Apostol(1971)] T. M. Apostol. Some properties of completely multiplicative arithmetical functions.
American Mathematical Monthly, 78(3)((3)):266–271, March 1971.
[Cohen(1993)] Henri Cohen. A Course in Computational Algebraic Number Theory. Springer-Verlag,
New York, 1993.
[Engel(1976)] Arthur Engel. Problem-Solving Strategies. Springer-Verlag, New York, 1976.
[Hlawka et al.(1991)Hlawka, Schoibengeier, and Taschner] Edmund Hlawka, Johannes
Schoibengeier, and Rudolf Taschner. Geometric and Analytic Number Theory. Springer-
Verlag, New York, 1991.
[Niven and Zuckerman(1976)] Ivan Niven and Herbert Zuckerman. Introduction to Number Theory.
Wiley, New York, 1976.
[Paar and Pelzl(2010)] Christof Paar and Jan Pelzl. Understanding Cryptography. Springer-Verlag,
New York, 2010.
[Papadimitriou(1995)] Christos H. Papadimitriou. Computational Complexity. Addison Wesley
Longman, Reading, Massachusetts, 1995.
[Sipser(2006)] Michael Sipser. Introduction to the Theory of Computation. Thomson Course Technology,
Boston, 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51245-
dc.description.abstractThis thesis introduces the concept of p-vectors and p-arrays, which are algebraic constructions based on multiplicative arithmetic functions and prime numbers. With these concepts we construct several algebraic structures which allows us also to make a proposal for a public key encryption protocol. This public key encryption protocol, which we call p-array public key encryption protocol is a public-private key encryption system that allows the users to encrypt and decrypt messages of vectorial structure whose components are non negative integers upperly bounded. Along this work we present several of the theorems and lemmas that allow us to make the proof of correctness of the aforedmentioned protocol, and also to discuss some of the attacks that could potentially provide information of the private key to anyone performing them on the proposed algorithm.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:28:25Z (GMT). No. of bitstreams: 1
ntu-105-R03221027-1.pdf: 426309 bytes, checksum: 290e35e5b8479d44ae51bf591c78e0c0 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 . . . . . .iii
Acknowledgements . . . . . . v
Abstract . . . . . . vii
List of Symbols . . . . . . xi
Introduction . . . . . . xiii
1 On p-vectors and algebraic structures . . . . . . 1
1.1 Basic concepts . . . . . .1
1.2 p-vectors . . . . . .1
1.3 Operations over Fp and some useful properties . . . . . .2
1.3.1 Componentwise sum . . . . . .2
1.3.2 Componentwise multiplication . . . . . .3
1.3.3 Convoluted multiplication . . . . . .4
2 On p-cuts and p-arrays . . . . . . 7
2.1 Definitions . . . . . .7
2.2 p-cuts and multiplicative functions . . . . . .8
2.3 p-arrays . . . . . .10
2.3.1 Existence of p-arrays . . . . . .11
2.3.2 Operations . . . . . .12
2.3.3 Identity and inverses . . . . . .14
2.3.4 p-arrays over finite fields . . . . . .19
2.3.5 Normalization . . . . . .22
3 On p-arrays and cryptographic protocols . . . . . . 25
3.1 Preliminary theorems . . . . . .25
3.2 p-array public key encryption . . . . . .29
3.3 Proof of correctness . . . . . .33
3.4 Examples . . . . . .37
3.5 Security . . . . . .42
Bibliography . . . . . . 49
dc.language.isoen
dc.subject陣列zh_TW
dc.subject向量zh_TW
dc.subject密碼協定zh_TW
dc.subject向量zh_TW
dc.subject陣列zh_TW
dc.subject密碼協定zh_TW
dc.subjectringen
dc.subjectringen
dc.subjectfielden
dc.subjectcryptographyen
dc.subjectpublic keyen
dc.subjectprivate keyen
dc.subjectlatticeen
dc.subjectencryptionen
dc.subjectdecryptionen
dc.subjectencryptionen
dc.subjectdecryptionen
dc.subjectarrayen
dc.subjectvectoren
dc.subjectarithmetic functionen
dc.subjectalgebraen
dc.subjectfielden
dc.subjectcryptographyen
dc.subjectpublic keyen
dc.subjectprivate keyen
dc.subjectlatticeen
dc.subjectarrayen
dc.subjectvectoren
dc.subjectarithmetic functionen
dc.subjectalgebraen
dc.title"p-向量, p-陣列與密碼協定"zh_TW
dc.titleOn p-vectors, p-arrays and cryptographic protocolsen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭振牟(Chen-Mou Cheng),謝致仁(Jyh-Ren Shieh),呂育道(Yuh-Dauh Lyuu)
dc.subject.keyword向量,陣列,密碼協定,zh_TW
dc.subject.keywordarray,vector,arithmetic function,algebra,ring,field,cryptography,public key,private key,lattice,encryption,decryption,en
dc.relation.page49
dc.rights.note有償授權
dc.date.accepted2016-02-13
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
416.32 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved