請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51241完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭如忠(Ru-Jong Jeng) | |
| dc.contributor.author | Yu-Yi Hsu | en |
| dc.contributor.author | 許有毅 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:28:19Z | - |
| dc.date.available | 2016-03-08 | |
| dc.date.copyright | 2016-03-08 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-02-13 | |
| dc.identifier.citation | 1. Tsumura, A.; Koezuka, H.; Ando, T., Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film. Applied Physics Letters 1986, 49, 1210-1212.
2. Bao, Z.; Dodabalapur, A.; Lovinger, A. J., Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility. Applied Physics Letters 1996, 69, 4108-4110. 3. Huitema, H. E. A.; Gelinck, G. H.; van der Putten, J. B. P. H.; Kuijk, K. E.; Hart, C. M.; Cantatore, E.; Herwig, P. T.; van Breemen, A. J. J. M.; de Leeuw, D. M., Plastic transistors in active-matrix displays. Nature 2001, 414, 599-599. 4. Chen, Y.; Au, J.; Kazlas, P.; Ritenour, A.; Gates, H.; McCreary, M., Electronic paper: Flexible active-matrix electronic ink display. Nature 2003, 423, 136-136. 5. 劉曜彰、曾美榕, OLED照明光源發展現況. 工業材料雜誌 2011, 293. 6. Newman, C. R.; Frisbie, C. D.; da Silva Filho, D. A.; Brédas, J.-L.; Ewbank, P. C.; Mann, K. R., Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chemistry of Materials 2004, 16, 4436-4451. 7. Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D., Semiconducting π-conjugated systems in field-effect transistors: A Material Odyssey of Organic Electronics. Chemical Reviews 2012, 112, 2208-2267. 8. Facchetti, A., Semiconductors for organic transistors. Materials Today 2007, 10, 28-37. 9. Zaumseil, J.; Sirringhaus, H., Electron and ambipolar transport in organic field-effect transistors. Chemical Reviews 2007, 107, 1296-1323. 10. Possanner, S. K.; Zojer, K.; Pacher, P.; Zojer, E.; Schürrer, F., Threshold voltage shifts in organic thin-film transistors due to self-assembled monolayers at the dielectric surface. Advanced Functional Materials 2009, 19, 958-967. 11. Kumar, B.; Kaushik, B. K.; Negi, Y. S., Organic thin film transistors: structures, models, materials, fabrication, and applications: A Review. Polymer Reviews 2014, 54, 33-111. 12. Reséndiz, L.; Estrada, M.; Cerdeira, A.; Iñiguez, B.; Deen, M. J., Effect of active layer thickness on the electrical characteristics of polymer thin film transistors. Organic Electronics 2010, 11, 1920-1927. 13. Reese, C.; Roberts, M.; Ling, M.-m.; Bao, Z., Organic thin film transistors. Materials Today 2004, 7, 20-27. 14. Zhao, Y.; Guo, Y.; Liu, Y., 25th Anniversary article: recent advances in n‐type and ambipolar organic field‐effect transistors. Advanced Materials 2013, 25, 5372-5391. 15. Horowitz, G.; Peng, X.; Fichou, D.; Garnier, F., Role of the semiconductor/insulator interface in the characteristics of π-conjugated-oligomer-based thin-film transistors. Synth Met 1992, 51, 419-424. 16. Schön, J. H.; Kloc, C.; Batlogg, B., On the intrinsic limits of pentacene field-effect transistors. Organic Electronics 2000, 1, 57-64. 17. Qiu, L.; Xu, Q.; Lee, W. H.; Wang, X.; Kang, B.; Lv, G.; Cho, K., Organic thin-film transistors with a photo-patternable semiconducting polymer blend. Journal of Materials Chemistry 2011, 21, 15637-15642. 18. Lutsyk, P.; Janus, K.; Mikołajczyk, M.; Sworakowski, J.; Boratyński, B.; Tłaczała, M., Long-lived persistent currents in poly(3-octylthiophene) thin film transistors. Organic Electronics 2010, 11, 490-497. 19. Katz, H. E.; Lovinger, A. J.; Laquindanum, J. G., α,ω-Dihexylquaterthiophene: A second thin film single-crystal organic semiconductor. Chemistry of Materials 1998, 10, 457-459. 20. Tian, H.; Wang, J.; Shi, J.; Yan, D.; Wang, L.; Geng, Y.; Wang, F., Novel thiophene-aryl co-oligomers for organic thin film transistors. Journal of Materials Chemistry 2005, 15, 3026-3033. 21. Jung, S.-W.; Yoon, S.-M.; Kang, S. Y.; You, I.-K.; Koo, J. B.; Baeg, K.-J.; Noh, Y.-Y., Low-voltage-operated top-gate polymer thin-film transistors with high-capacitance P(VDF-TrFE)/PVDF-blended dielectrics. Current Applied Physics 2011, 11, S213-S218. 22. Li, Y.; Singh, S. P.; Sonar, P., A high mobility p-type DPP-thieno[3,2-b]thiophene copolymer for organic thin-film transistors. Advanced Materials 2010, 22, 4862-4866. 23. Min, J.; Peng, B.; Wen, Y.; Zhang, Z.-G.; Zhang, M.; Zhang, J.; Xie, Q.; Liu, Y.; Li, Y., Low bandgap copolymer of 1,4-diketopyrrolo[3,4-c]pyrrole and thieno[3,2-b]thiophene: Synthesis and applications in polymer solar cells and field-effect transistors. Synthetic Metals 2011, 161, 1832-1837. 24. Abthagir, P. S.; Ha, Y.-G.; You, E.-A.; Jeong, S.-H.; Seo, H.-S.; Choi, J.-H., Studies of tetracene- and pentacene-based organic thin-film transistors fabricated by the neutral cluster beam deposition method. The Journal of Physical Chemistry B 2005, 109, 23918-23924. 25. Halik, M.; Klauk, H.; Zschieschang, U.; Kriem, T.; Schmid, G.; Radlik, W.; Wussow, K., Fully patterned all-organic thin film transistors. Applied Physics Letters 2002, 81, 289-291. 26. Fukuda, H.; Ise, M.; Kogure, T.; Takano, N., Gas sensors based on poly-3-hexylthiophene thin-film transistors. Thin Solid Films 2004, 464–465, 441-444. 27. Jia, H. P.; Gowrisanker, S.; Pant, G. K.; Wallace, R. M.; Gnade, B. E., Effect of poly (3-hexylthiophene) film thickness on organic thin film transistor properties. J. Vac. Sci. Technol. A 2006, 24, 1228-1232. 28. Chen, Y.; Shih, I., Fabrication of vertical channel top contact organic thin film transistors. Organic Electronics 2007, 8, 655-661. 29. Xiao, X.; Hu, Z.; Wang, Z.; He, T., Study on the single crystals of poly(3-octylthiophene) induced by solvent-vapor annealing. The Journal of Physical Chemistry B 2009, 113, 14604-14610. 30. Leufgen, M.; Bass, U.; Muck, T.; Borzenko, T.; Schmidt, G.; Geurts, J.; Wagner, V.; Molenkamp, L. W., Optimized sub-micron organic thin-film transistors: the influence of contacts and oxide thickness. Synthetic Metals 2004, 146, 341-345. 31. Dimitrakopoulos, C. D.; Furman, B. K.; Graham, T.; Hegde, S.; Purushothaman, S., Field-effect transistors comprising molecular beam deposited α,ω-di-hexyl-hexathienylene and polymeric insulator. Synthetic Metals 1998, 92, 47-52. 32. Torsi, L.; Marinelli, F.; Angione, M. D.; Dell’Aquila, A.; Cioffi, N.; Giglio, E. D.; Sabbatini, L., Contact effects in organic thin-film transistor sensors. Organic Electronics 2009, 10, 233-239. 33. Bürgi, L.; Richards, T. J.; Friend, R. H.; Sirringhaus, H., Close look at charge carrier injection in polymer field-effect transistors. Journal of Applied Physics 2003, 94, 6129-6137. 34. Qi, Q.; Yu, A.; Jiang, P.; Jiang, C., Enhancement of carrier mobility in pentacene thin-film transistor on SiO2 by controlling the initial film growth modes. Applied Surface Science 2009, 255, 5096-5099. 35. Wang, C. H.; Hsieh, C. Y.; Hwang, J. C., Flexible organic thin‐film transistors with silk fibroin as the gate dielectric. Advanced Materials 2011, 23, 1630-1634. 36. Choi, J.-M.; Lee, K.; Hwang, D. K.; Park, J. H.; Kim, E.; Im, S., High-performance low-voltage tetracene phototransistors with polymer / AlOx bilayer dielectric. Electrochemical and Solid-State Letters 2006, 9, G289-G291. 37. Handa, S.; Miyazaki, E.; Takimiya, K.; Kunugi, Y., Solution-processible n-channel organic field-effect transistors based on dicyanomethylene-substituted terthienoquinoid derivative. Journal of the American Chemical Society 2007, 129, 11684-11685. 38. Ie, Y.; Nishida, K.; Karakawa, M.; Tada, H.; Aso, Y., Electron-transporting oligothiophenes containing dicyanomethylene-substituted cyclopenta[b]thiophene: chemical tuning for air stability in OFETs. The Journal of Organic Chemistry 2011, 76, 6604-6610. 39. Nishida, J.-i.; Deno, H.; Ichimura, S.; Nakagawa, T.; Yamashita, Y., Preparation, physical properties and n-type FET characteristics of substituted diindenopyrazinediones and bis(dicyanomethylene) derivatives. Journal of Materials Chemistry 2012, 22, 4483-4490. 40. Zhao, X.; Wen, Y.; Ren, L.; Ma, L.; Liu, Y.; Zhan, X., An acceptor-acceptor conjugated copolymer based on perylene diimide for high mobility n-channel transistor in air. Journal of Polymer Science Part A: Polymer Chemistry 2012, 50, 4266-4271. 41. Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dotz, F.; Kastler, M.; Facchetti, A., A high-mobility electron-transporting polymer for printed transistors. Nature 2009, 457, 679-686. 42. Mohebbi, A. R.; Yuen, J.; Fan, J.; Munoz, C.; Wang, M. f.; Shirazi, R. S.; Seifter, J.; Wudl, F., Emeraldicene as an acceptor moiety: balanced-mobility, ambipolar, organic thin-film transistors. Advanced Materials 2011, 23, 4644-4648. 43. Sonar, P.; Foong, T. R. B.; Singh, S. P.; Li, Y.; Dodabalapur, A., A furan-containing conjugated polymer for high mobility ambipolar organic thin film transistors. Chemical Communications 2012, 48, 8383-8385. 44. Bürgi, L.; Turbiez, M.; Pfeiffer, R.; Bienewald, F.; Kirner, H.-J.; Winnewisser, C., High-mobility ambipolar near-infrared light-emitting polymer field-effect transistors. Advanced Materials 2008, 20, 2217-2224. 45. Głowacki, E. D.; Leonat, L.; Voss, G.; Bodea, M.-A.; Bozkurt, Z.; Ramil, A. M.; Irimia-Vladu, M.; Bauer, S.; Sariciftci, N. S., Ambipolar organic field effect transistors and inverters with the natural material Tyrian Purple. AIP Advances 2011, 1, 042132. 46. Lin, H.-W.; Lee, W.-Y.; Chen, W.-C., Selenophene-DPP donor-acceptor conjugated polymer for high performance ambipolar field effect transistor and nonvolatile memory applications. Journal of Materials Chemistry 2012, 22, 2120-2128. 47. Fan, J.; Yuen, J. D.; Wang, M.; Seifter, J.; Seo, J.-H.; Mohebbi, A. R.; Zakhidov, D.; Heeger, A.; Wudl, F., High-performance ambipolar transistors and inverters from an ultralow bandgap polymer. Advanced Materials 2012, 24, 2186-2190. 48. Irimia-Vladu, M.; Głowacki, E. D.; Troshin, P. A.; Schwabegger, G.; Leonat, L.; Susarova, D. K.; Krystal, O.; Ullah, M.; Kanbur, Y.; Bodea, M. A.; Razumov, V. F.; Sitter, H.; Bauer, S.; Sariciftci, N. S., Indigo - A natural pigment for high performance ambipolar organic field effect transistors and circuits. Advanced Materials 2012, 24, 375-380. 49. Wu, M.; Alivov, Y. I.; Morkoç, H., High-κ dielectrics and advanced channel concepts for Si MOSFET. J Mater Sci: Mater Electron 2008, 19, 915-951. 50. Czernohorsky, M.; Bugiel, E.; Osten, H. J.; Fissel, A.; Kirfel, O., Impact of oxygen supply during growth on the electrical properties of crystalline Gd2O3 thin films on Si(001). Applied Physics Letters 2006, 88, 152905. 51. Yan, L.; Lopez, C. M.; Shrestha, R. P.; Irene, E. A.; Suvorova, A. A.; Saunders, M., Magnesium oxide as a candidate high-κ gate dielectric. Applied Physics Letters 2006, 88, 142901. 52. Guha, S.; Cartier, E.; Gribelyuk, M. A.; Bojarczuk, N. A.; Copel, M. C., Atomic beam deposition of lanthanum- and yttrium-based oxide thin films for gate dielectrics. Applied Physics Letters 2000, 77, 2710-2712. 53. Kato, Y.; Iba, S.; Teramoto, R.; Sekitani, T.; Someya, T.; Kawaguchi, H.; Sakurai, T., High mobility of pentacene field-effect transistors with polyimide gate dielectric layers. Applied Physics Letters 2004, 84, 3789-3791. 54. Yoon, M.-H.; Yan, H.; Facchetti, A.; Marks, T. J., Low-voltage organic field-effect transistors and inverters enabled by ultrathin cross-linked polymers as gate dielectrics. Journal of the American Chemical Society 2005, 127, 10388-10395. 55. Scheinert, S.; Paasch, G., Fabrication and analysis of polymer field-effect transistors. physica status solidi (a) 2004, 201, 1263-1301. 56. Li, J.; Du, J.; Xu, J.; Chan, H. L. W.; Yan, F., The influence of gate dielectrics on a high-mobility n-type conjugated polymer in organic thin-film transistors. Applied Physics Letters 2012, 100, 033301. 57. Wang, C.-H.; Hsieh, C.-Y.; Hwang, J.-C., Flexible organic thin-film transistors with silk fibroin as the gate dielectric. Advanced Materials 2011, 23, 1630-1634. 58. Hsieh, C.-Y.; Hwang, J.-C.; Chang, T.-H.; Li, J.-Y.; Chen, S.-H.; Mao, L.-K.; Tsai, L.-S.; Chueh, Y.-L.; Lyu, P.-C.; Hsu, S. S. H., Enhanced mobility of organic thin film transistors by water absorption of collagen hydrolysate gate dielectric. Applied Physics Letters 2013, 103, 023303. 59. Avendano-Bolivar, A.; Ware, T.; Arreaga-Salas, D.; Simon, D.; Voit, W., Mechanical cycling stability of organic thin film transistors on shape memory polymers. Advanced Materials 2013, 25, 3095-3099. 60. Reeder, J.; Kaltenbrunner, M.; Ware, T.; Arreaga-Salas, D.; Avendano-Bolivar, A.; Yokota, T.; Inoue, Y.; Sekino, M.; Voit, W.; Sekitani, T.; Someya, T., Mechanically adaptive organic transistors for implantable electronics. Advanced Materials 2014, 26, 4967-4973. 61. Sekitani, T.; Zschieschang, U.; Klauk, H.; Someya, T., Flexible organic transistors and circuits with extreme bending stability. Nat Mater 2010, 9, 1015-1022. 62. Laquindanum, J. G.; Katz, H. E.; Dodabalapur, A.; Lovinger, A. J., n-Channel organic transistor materials based on naphthalene frameworks. Journal of the American Chemical Society 1996, 118, 11331-11332. 63. Katz, H. E.; Johnson, J.; Lovinger, A. J.; Li, W., Naphthalenetetracarboxylic diimide-based n-channel transistor semiconductors: structural variation and thiol-enhanced gold contacts. Journal of the American Chemical Society 2000, 122, 7787-7792. 64. Jones, B. A.; Facchetti, A.; Marks, T. J.; Wasielewski, M. R., Cyanonaphthalene diimide semiconductors for air-stable, flexible, and optically transparent n-channel field-effect transistors. Chemistry of Materials 2007, 19, 2703-2705. 65. Horowitz, G.; Kouki, F.; Spearman, P.; Fichou, D.; Nogues, C.; Pan, X.; Garnier, F., Evidence for n-type conduction in a perylene tetracarboxylic diimide derivative. Advanced Materials 1996, 8, 242-245. 66. Malenfant, P. R. L.; Dimitrakopoulos, C. D.; Gelorme, J. D.; Kosbar, L. L.; Graham, T. O.; Curioni, A.; Andreoni, W., N-type organic thin-film transistor with high field-effect mobility based on a N,N′-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative. Applied Physics Letters 2002, 80, 2517-2519. 67. Chesterfield, R. J.; McKeen, J. C.; Newman, C. R.; Ewbank, P. C.; da Silva Filho, D. A.; Brédas, J.-L.; Miller, L. L.; Mann, K. R.; Frisbie, C. D., Organic thin film transistors based on n-alkyl perylene diimides: charge transport kinetics as a function of gate voltage and temperature. The Journal of Physical Chemistry B 2004, 108, 19281-19292. 68. Delgado, M. C. R.; Kim, E.-G.; Filho, D. A. d. S.; Bredas, J.-L., Tuning the charge-transport parameters of perylene diimide single crystals via end and/or core functionalization: a density functional theory investigation. Journal of the American Chemical Society 2010, 132, 3375-3387. 69. Kakinuma, T.; Kojima, H.; Ashizawa, M.; Matsumoto, H.; Mori, T., Correlation of mobility and molecular packing in organic transistors based on cycloalkyl naphthalene diimides. Journal of Materials Chemistry C 2013, 1, 5395-5401. 70. Zhou, K.; Dong, H.; Zhang, H.-l.; Hu, W., High performance n-type and ambipolar small organic semiconductors for organic thin film transistors. Physical Chemistry Chemical Physics 2014, 16, 22448-22457. 71. Wurthner, F.; Stolte, M., Naphthalene and perylene diimides for organic transistors. Chemical Communications 2011, 47, 5109-5115. 72. Jones, B. A.; Facchetti, A.; Wasielewski, M. R.; Marks, T. J., Tuning orbital energetics in arylene diimide semiconductors materials design for ambient stability of n-type charge transport. Journal of the American Chemical Society 2007, 129, 15259-15278. 73. Ling, M. M.; Erk, P.; Gomez, M.; Koenemann, M.; Locklin, J.; Bao, Z., Air-stable n-channel organic semiconductors based on perylene diimide derivatives without strong electron withdrawing groups. Advanced Materials 2007, 19, 1123-1127. 74. Chang, Y.-C.; Kuo, M.-Y.; Chen, C.-P.; Lu, H.-F.; Chao, I., On the air stability of n-channel organic field-effect transistors: a theoretical study of adiabatic electron affinities of organic semiconductors. The Journal of Physical Chemistry C 2010, 114, 11595-11601. 75. Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P., A new class of polymers: starburst-dendritic macromolecules. Polym J 1985, 17, 117-132. 76. Naylor, A. M.; Goddard, W. A.; Kiefer, G. E.; Tomalia, D. A., Starburst dendrimers. 5. molecular shape control. Journal of the American Chemical Society 1989, 111, 2339-2341. 77. Turro, N. J.; Barton, J. K.; Tomalia, D. A., Molecular recognition and chemistry in restricted reaction spaces photophysics and photoinduced electron transfer on the surfaces of micelles, dendrimers, and DNA. Accounts of Chemical Research 1991, 24, 332-340. 78. Hawker, C. J.; Wooley, K. L.; Frechet, J. M. J., Solvatochromism as a probe of the microenvironment in dendritic polyethers: transition from an extended to a globular structure. Journal of the American Chemical Society 1993, 115, 4375-4376. 79. Grayson, S. M.; Fréchet, J. M. J., Convergent dendrons and dendrimers: from synthesis to applications. Chemical Reviews 2001, 101, 3819-3868. 80. Miller, T. M.; Neenan, T. X., Convergent synthesis of monodisperse dendrimers based upon 1,3,5-trisubstituted benzenes. Chemistry of Materials 1990, 2, 346-349. 81. Chen, C.-P.; Dai, S. A.; Chang, H.-L.; Su, W.-C.; Jeng, R.-J., Facile approach to polyurea/malonamide dendrons via a selective ring-opening addition reaction of azetidine-2,4-dione. Journal of Polymer Science Part A: Polymer Chemistry 2005, 43, 682-688. 82. Tsai, C.-C.; Chang, C.-C.; Yu, C.-S.; Dai, S. A.; Wu, T.-M.; Su, W.-C.; Chen, C.-N.; Chen, F. M. C.; Jeng, R.-J., Side chain dendritic polyurethanes with shape-memory effect. Journal of Materials Chemistry 2009, 19, 8484-8494. 83. Ting, W.-H.; Chen, C.-C.; Dai, S. A.; Suen, S.-Y.; Yang, I. K.; Liu, Y.-L.; Chen, F. M. C.; Jeng, R.-J., Superhydrophobic waxy-dendron-grafted polymer films viananostructure manipulation. Journal of Materials Chemistry 2009, 19, 4819-4828. 84. Tsai, C.-C.; Juang, T.-Y.; Dai, S. A.; Wu, T.-M.; Su, W.-C.; Liu, Y.-L.; Jeng, R.-J., Synthesis and montmorillonite-intercalated behavior of dendritic surfactants. Journal of Materials Chemistry 2006, 16, 2056-2063. 85. Schmidt, R.; Oh, J. H.; Sun, Y.-S.; Deppisch, M.; Krause, A.-M.; Radacki, K.; Braunschweig, H.; Könemann, M.; Erk, P.; Bao, Z.; Würthner, F., High-performance air-stable n-channel organic thin film transistors based on halogenated perylene bisimide semiconductors. Journal of the American Chemical Society 2009, 131, 6215-6228. 86. Oh, J. H.; Suraru, S. L.; Lee, W.-Y.; Könemann, M.; Höffken, H. W.; Röger, C.; Schmidt, R.; Chung, Y.; Chen, W.-C.; Würthner, F.; Bao, Z., High-performance air-stable n-type organic transistors based on core-chlorinated naphthalene tetracarboxylic diimides. Advanced Functional Materials 2010, 20, 2148-2156. 87. Li, L.; Tang, Q.; Li, H.; Yang, X.; Hu, W.; Song, Y.; Shuai, Z.; Xu, W.; Liu, Y.; Zhu, D., An ultra closely π-stacked organic semiconductor for high performance field-effect transistors. Advanced Materials 2007, 19, 2613-2617. 88. Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Brédas, J.-L., Charge transport in organic semiconductors. Chemical reviews 2007, 107, 926-952. 89. Chen, F.-C.; Liao, C.-H., Improved Air Stability of n-channel organic thin-film transistors with surface modification on gate dielectrics. Applied Physics Letters 2008, 93, 103310. 90. Wen, Y.; Liu, Y.; Di, C.-a.; Wang, Y.; Sun, X.; Guo, Y.; Zheng, J.; Wu, W.; Ye, S.; Yu, G., Improvements in stability and performance of N,N′-dialkyl perylene diimide-based n-type thin-film transistors. Advanced Materials 2009, 21, 1631-1635. 91. Tiao, H.-C.; Lee, Y.-J.; Liu, Y.-S.; Lee, S.-H.; Li, C.-H.; Kuo, M.-Y., Effect of hydroxyl density on condensation behaviors of self-assembled monolayers and performance of pentacene-base organic thin-film transistors. Organic Electronics 2012, 13, 1004-1011. 92. Pecunia, V.; Banger, K.; Sirringhaus, H., High-performance solution-processed amorphous-oxide-semiconductor TFTs with organic polymeric gate dielectrics. Advanced Electronic Materials 2015, 1, n/a-n/a. 93. Jo, J.-W.; Kim, J.; Kim, K.-T.; Kang, J.-G.; Kim, M.-G.; Kim, K.-H.; Ko, H.; Kim, Y.-H.; Park, S. K., Highly stable and imperceptible electronics utilizing photoactivated heterogeneous sol-gel metal–oxide dielectrics and semiconductors. Advanced Materials 2015, 27, 1182-1188. 94. Zhao, X.; Zhang, Q.; Xia, G.; Wang, S.; Ouyang, J.; Zhou, J., Enhanced performances of organic thin film transistors by dual interfacial modification of dielectric layer. Applied Physics A 2015, 118, 809-815. 95. 林士勛. 含氟烷基取代之萘雙亞醯胺與苝雙亞醯胺在有機場效電晶體之應用. 中央大學2008. 96. Wu, S., Calculation of interfacial tension in polymer systems. Journal of Polymer Science Part C: Polymer Symposia 1971, 34, 19-30. 97. Wu, S., Polar and nonpolar interactions in adhesion. The Journal of Adhesion 1973, 5, 39-55. 98. Aghamohammadi, M.; Rödel, R.; Zschieschang, U.; Ocal, C.; Boschker, H.; Weitz, R. T.; Barrena, E.; Klauk, H., Threshold-voltage shifts in organic transistors due to self-assembled monolayers at the dielectric: evidence for electronic coupling and dipolar effects. ACS Applied Materials & Interfaces 2015, 7, 22775-22785. 99. Zhang, F.; Hu, Y.; Schuettfort, T.; Di, C. A.; Gao, X.; McNeill, C. R.; Thomsen, L.; Mannsfeld, S. C.; Yuan, W.; Sirringhaus, H.; Zhu, D., Critical role of alkyl chain branching of organic semiconductors in enabling solution-processed n-channel organic thin-film transistors with mobility of up to 3.50 cm(2) V(-1) s(-1). J Am Chem Soc 2013, 135, 2338-49. 100. Jang, J.; Nam, S.; Chung, D. S.; Kim, S. H.; Yun, W. M.; Park, C. E., High Tg cyclic olefin copolymer gate dielectrics for N,N′-ditridecyl perylene diimide based field-effect transistors: improving performance and stability with thermal treatment. Advanced Functional Materials 2010, 20, 2611-2618. 101. Hong, K.; Kim, S. H.; Yang, C.; Jang, J.; Cha, H.; Park, C. E., Improved n-type bottom-contact organic transistors by introducing a poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate) coating on the source/drain electrodes. Applied Physics Letters 2010, 97, 103304. 102. Lee, K.; Kim, J.; Shin, K.; Kim, Y. S., Micropatterned crystalline organic semiconductors via direct pattern transfer printing with PDMS stamp. Journal of Materials Chemistry 2012, 22, 22763-22768. 103. Bommel, S. Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, Unravelling nanoscale molecular processes in organic thin films., 2015. 104. Umeda, T.; Kumaki, D.; Tokito, S., High air stability of threshold voltage on gate bias stress in pentacene TFTs with a hydroxyl-free and amorphous fluoropolymer as gate insulators. Organic Electronics 2008, 9, 545-549. 105. Lee, S.; Koo, B.; Shin, J.; Lee, E.; Park, H.; Kim, H., Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance. Applied Physics Letters 2006, 88, -. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51241 | - |
| dc.description.abstract | 在本研究中,一系列富含Urea/malonamide Linkage的規則樹枝狀高分子應用在有機場效薄膜電晶體 (OTFTs) 之介電層。此一系列的分子量及分枝程度由小而大 (從低到高分別為:G0.5, G1, G1.5, G2和G2.5),其末端具有不同分枝程度的成對碳十八長碳鏈。此外,利用合成的方式製備以Tetracarboxylic Diimides為核心的衍生物例如NDI-C4F7, NDI-C7F9, PDI-C4F7 和 PDI-C7F9作為OTFTs的半導體層。由於以NDI或PDI為核心化合物在大氣中擁有良好的穩定性。所有的N型通道之OTFTs元件,可在大氣下製備並量測 (經由旋轉塗佈方式)。這類以G1.5介電層修飾OTFTs元件之載子遷移率(Mobility) 相對於標準Octadecyltrichlorosilane (ODTS) 修飾之元件可提升10到100倍左右。特別是當PDI-C4F¬7作為有機半導體蒸鍍在G1.5修飾之絕緣層上時,表現出最佳的N型OTFTs性質, mobility以及開關電流比 (On/off Currnet Ratio) 分別達到約為3.8 cm2V-1s-1以及7 x 103。此外,研究中利用AFM偵測半導體層的表面形貌,以及GIWAXS觀察半導體小分子在不同介電層改質之基板上的排列及堆積密度,此外接觸角、介電常數、熱性質等分析也在此研究中被進行探討。 | zh_TW |
| dc.description.abstract | A series of urea/malonamide dendritic molecules were prepared as gate dielectric insulator for organic thin film transistors (OTFTs). The series of molecules possess various numbers of peripheral stearyl groups with the different degrees of branching (from low to high: G0.5, G1, G1.5, G2 and G2.5). In addition, several tetracarboxylic diimides derivatives such as NDI-C4F7, NDI-C7F9, PDI-C4F7 and PDI-C7F9 with fluorinated alkyl end groups were used as semiconducting layers of OTFT due to the good stability in air. Numbers of n-channel OTFTs were fabricated by spinning the dendritic gate insulators on Si/SiO2 substrates, and then depositing the semiconducting layers in vacuum. This type of OTFTs with G1.5 as gate dielectric insulator showed the enhancement of electron mobility about 1-2 order than the device modified by octadecyltrichlorosilane (ODTS) . In particular, the device with G1.5 as insulator and PDI-C4F7 as semiconductor exhibited the best n-channel properties. The electron mobility and on/off ratio measured in the air were 3.80 cm2V-1s-1 and 7.7 x 103, respectively. Vth shift (Vide infra) The investigation of the influence on semiconducting layers was performed by atomic force microscopy (AFM) and Grazing incidence wide-angle X-ray scattering (GIWAXS). In fact, the film quality of gate insulators is dependent on the thermal properties, surface energies and generation of dendrons. Better film quality would favor the ordered arrangement of semiconducting molecules, hence the properties of gate insulator such as contact angle, dielectric constant and thermal stabilities were also studied in this work. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:28:19Z (GMT). No. of bitstreams: 1 ntu-105-R02549043-1.pdf: 5026192 bytes, checksum: 6a33965e71e54dda1f5b063540a03f5a (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract ii 目錄 iii 圖目錄 vi 表目錄 viii 第一章 緒論 1 1.1 前言 1 1.2 有機薄膜電晶體之簡介 2 1.3 有機薄膜電晶體之重要參數 7 1.3.1 載子遷移率(Charge Carrier Mobility, μ) 7 1.3.2 起始電壓(Threshold Voltage, VTH) 7 1.3.3 開關電流比(On/off Current Ratio, Ion/Ioff) 7 1.4 有機薄膜電晶體之材料 8 1.4.1 有機半導體材料 8 表1.1 P型材料之載子遷移率與開關電流比 10 表1.2 N型材料之載子遷移率與開關電流比 13 表1.3雙極性材料之載子遷移率與開關電流比 15 1.4.2 介電層材料 15 表1.4 無機介電層材料及其介電常數 16 表1.5 有機高分子介電材料及其介電常數 16 1.4.3 塑膠電晶體基板 17 第二章 文獻回顧與研究動機 18 2.1 廣泛研究之 18 2.1.1 NDI與PDI於有機薄膜電晶體之應用 18 2.1.2 不同側鏈NDI與PDI對有機薄膜電晶體之影響 19 2.1.3 Urea/malonamide規則樹枝狀高分子介紹 21 2.1研究動機 21 第三章 實驗與合成 23 3.1 藥品與溶劑 23 表3.1 藥品列表 23 表3.2 溶劑列表 24 3.2 儀器介紹 25 3.3 實驗流程 27 3.3.1 有機小分子之合成步驟 27 3.3.2 有機高分子之合成步驟 31 3.3.3 Polyurea/malonamide規則樹枝狀高分子之合成 31 3.4 有機薄膜電晶體元件製備 35 第四章 結果與討論 36 4.1 有機小分子及規則樹枝狀高分子之基本性質 36 4.1.1 熱性質探討 36 表4.1各種NDI與PDI衍生物與NDI高分子之5% 熱重量損失溫度 37 4.1.2 接觸角與表面能分析 39 表4.2 晶圓及不同表面修飾之晶圓接觸角以及表面能 39 4.1.3 規則樹枝狀高分子介電常數測定 40 表4.3 不同代數規則樹枝狀高分子之厚度、介電常數及其電容值 41 表4.4 不同代數規則樹枝狀高分子修飾後電晶體元件介電層之電容量 41 4.2 表面形貌分析 42 4.2.1 原子力顯微鏡 42 4.2.2 掠角入射廣角X光散射分析 48 4.3 有機薄膜電晶體之電性質分析 51 表4.5 以NDI-C4F7, PDI-C4F7, NDI-C7F9, PDI-C7F9為半導體層蒸鍍在不同介電層改質之基板上電晶體元件的載子遷移率及開關電流比 55 第五章 結論 58 第六章 參考文獻 59 第八章 附錄 72 | |
| dc.language.iso | zh-TW | |
| dc.subject | 有機場效薄膜電晶體 | zh_TW |
| dc.subject | 規則樹枝狀高分子 | zh_TW |
| dc.subject | 介電層 | zh_TW |
| dc.subject | 有機場效薄膜電晶體 | zh_TW |
| dc.subject | 規則樹枝狀高分子 | zh_TW |
| dc.subject | 介電層 | zh_TW |
| dc.subject | dendritic urea/malonamide | en |
| dc.subject | dendritic urea/malonamide | en |
| dc.subject | gate dielectric insulator | en |
| dc.subject | organic thin film transistors (OTFTs) | en |
| dc.subject | gate dielectric insulator | en |
| dc.subject | organic thin film transistors (OTFTs) | en |
| dc.title | 具有urea/malonamide鍵結之規則樹枝狀高分子介電層用於N型有機薄膜電晶體 | zh_TW |
| dc.title | Dendritic dielectric layer with urea/malonamide linkage for air stable n-channel organic thin film transistors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 童世煌,邱文英,陳錦地 | |
| dc.subject.keyword | 有機場效薄膜電晶體,規則樹枝狀高分子,介電層, | zh_TW |
| dc.subject.keyword | dendritic urea/malonamide,gate dielectric insulator,organic thin film transistors (OTFTs), | en |
| dc.relation.page | 85 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-02-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 4.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
