請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51217完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉振宇(Chen-Wuing Liu) | |
| dc.contributor.author | Pei-Yu Liao | en |
| dc.contributor.author | 廖珮瑜 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:27:43Z | - |
| dc.date.available | 2021-03-08 | |
| dc.date.copyright | 2016-03-08 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-02-15 | |
| dc.identifier.citation | 中文文獻
報告書 行政院環境保護署 (2005) 台南市中石化安順廠整治場址土壤及地下水污染範圍調查及整治工作建議計畫報告. 論文 陳慧欣 (2006) 汞在污染場址魚體及環境介質分佈以及生物習性影響之探討. 國立台灣大學環境工程學研究所. 碩士論文. 台北市 黃思維 (2006) 台南鹼氯工廠海水貯存池中魚類的汞及硒蓄積研究. 國立中山大學海洋生物科技暨資源研究所. 碩士論文. 高雄市 網路資源 行政院環境保護署 (2006) 土壤及地下水污染場址健康風險評估評析方法及撰寫指引. http://w3.epa.gov.tw/epalaw/docfile/143121.pdf 行政院環境保護署環境檢驗所 (2009) 戴奧辛及呋喃檢測方(M801.12B). http://www.niea.gov.tw/analysis/method/m_n_1.asp 行政院環境保護署 (2000) 底泥品質指標之分類管理及用途限制辦法總說明. http://w3.epa.gov.tw/epalaw/docfile/140250za10104.pdf 行政院環境保護署環境檢驗所 (2011) 固體與液體樣品中總汞檢測方法—熱分解汞齊原子吸收光譜法 (NIEA M318.01C). http://www.niea.gov.tw/analysis/method/m_n_1.asp 行政院環境保護署環境檢驗所 (2011) 魚介類酸性消化總則-熱板消化�元素分析(NIEA C303.03C). http://www.niea.gov.tw/niea/LIVE/C30303C.htm 行政院環境保護署 (2011) 健康風險評估技術規範. http://ivy5.epa.gov.tw/epalaw/docfile/033310.pdf 行政院環境保護署毒管處 (2012) 毒理資料庫查詢. http://flora2.epa.gov.tw/_ToxicWeb/toxicuc4/database.asp 英文文獻 Alonso, D., Pineda, P., Olivero, J., González, H. and Campos, N. 2000. Mercury levels in muscle of two fish species and sediments from the Cartagena Bay and the Ciénaga Grande de Santa Marta, Columbia. Environmental Pollution 109: 157-163 AL-Majed, N. B and Preston, M. R. 2000. An assessment of the total and methylmercury content of zooplankton and fish tissue collected from Kuwait territorial waters. Marine Pollution Bulletin 40: 298-307 Abreu, S. N., Pereira, E. and Duarte, A. C. 2000. Accumulation of mercury in sea bass from a contaminated lagoon (Ria de Aveiro, Portugal). Marine Pollution Bulletin 40: 293-297 Arnot, J. A., & Gobas, F. A. (2006). A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environmental Reviews, 14(4), 257–297 Barron, M. G., Stehly, G. R., and Hayton, W. L. 1990. Pharmacokinetic modeling in aquatic animals.Ⅰ.Models and concepts. Aquat. Toxicol. 18, 61-86 Biester, H., Müller, G. and Schöler, H. F. 2002. Estimating distribution and retention of mercury in three different soils contaminated by emissions from chlor-alkali plants. part I. Science of the Total Environment 284: 177-189 Beldowski, J. and Pempkowiak, J. 2003. Horizontal and vertical variabilities of mercury concentration and speciation in sediment of the Gdansk Basin, Southern Baltic Sea. Chemosphere 52:645-654 Coleman, P. J., Lee, R. G. M., Alcock, R. E., & Jones, K. C. 1997. Observations on PAH, PCB, and PCDD/F trends in UK urban air 1991–1995. Environmental Science and Technology, 31(7), 2120–2124. Chen, Y. W.; Belzile, N. and Gunn, J. M. 2001. Antagonistic effect of selenium on mercury assimilation by fish populations near Sudbury metal smelters? Limnology and Oceanography 46: 1814-1818 Degetto, S., Schintu, M., Contu, A. and Sbrignadello, G. 1997. Santa Gilla lagoon (Italy): a mercury sediment pollution case study. Contamination assessment and restoration of the site. Science of the Total Environment 204: 49-56 Diliberto, J. J., Burgin, D. E., & Birnbaum, L. S. 1999. Effects of CYP1A2 on disposition of 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3,4,7,8-pentachlorodibenzofuran, and 2,2’,4,4,’5,5’-hexachlorobiphenyl in CYP1A2 knockout and parental (C57BL/6N and 129/Sv) strains of mice. Toxicology and Applied Pharmacology, 159(1), 52–64. Debdas, M. 2011. Health impact of polychlorinated dibenzo-p-dioxin: A critical review. Air & Waste Management Association, 48(2), 157–165 Fiedler H, Hutzinger O, Timms C. 1990. Dioxins:Sources of environmental load and human exposure. Toxicol Environ Chem 29, 157-234 Franke, C., Studinger, G., Berger, G., Bohling, S., Bruckmann, U., Cohors-Fresenborg, D., and Johncke, U. 1994. The assessment of bioaccumulation. Chemosphere 29, 1501-1513 Guthrie, R. K., Davis, E. M., Cherry, D. S., and Murray, H. E. 1979. Biomagnification of heavy metals by organisms in a marine microcosm. Bull. Environ. Contam. Toxicol. 21, 53-61 Gagnon, C., Pelletier, E. and Mucci, A. 1997. Behaviour of anthropogenic mercury in coastal marine sediments. Marine Chemistry 59: 159-176 Gobas, F. A. P. C., & Morrison, H. A. 2000. Bioconcentration and bio-magnification in the aquatic environment. In R. S. Boethling, & M. Mackay (Eds.), Handbook of property estimation methods for chemicals (pp. 189–231). Boca Raton, FL: CRC Press. Hornung, H., Krumgalz, B. S. and Cohen, Y. 1984. Mercury pollution in sediments, benthic organisms and inshore fishes of Haifa Bay, Israel. Marine Environmental Research 12: 191-208 Holsbeek, L., Das, H. K. and Joiris, C. R. 1997. Mercury speciation and accumulation in Bangladesh freshwater and anadromous fish. Science of the Total Environment 198: 201-210 Khamitov RZ, Simonova NI, Maksimo GG and Maystrenko N. 1996. Chlorinated dioxin and dibenzofuran levels in food from Bashkortostan Republic, Russia. Chemosphere.28:174-171. Kucuksezgin, F., Uluturhan, E., Kontas, A., & Altay, O. 2002. Trace metal concentrations in edible fishes from Izmir Bay, Eastern Aegean. Marine Pollution Bulletin, 44(8), 827–832. Loonen H., M. Tonkes, J.R. Parsons et al. 1994. Bioconcentration of polychlorinated dibenzo-p-dioxins and dibenzofurans in guppies after aqueous exposure to a complex PCDD/Fs mixture:relationship with molecular structure. Aquat Toxicol 30:153-169 Leblanc, G. A. 1995. Trophic-level differences in the bioconcentration of chemicals: implications in assessing environmental biomagnification. Environ. Sci. Tech. 29, 154-160 Lee, C. L., Chen, H. Y., and Chuang, M. Y. 1996. Use of oysters, Crassostrea gigas, and ambient water to assess metal pollution status of the Charting coastal area, Taiwan, after the 1986 green oyster incident. Chemosphere 33, 2505-2532 Liao, C. M., Lin, M. C., Chang, C. H., Chen, B. C., and Chiang, H. C. 1999. Tissue distribution and kinetics of dietary and waterborne zinc in abalone(Haliotis diversicolor supertexta). J. Environ. Sci. Health A34(10), 1945-1966 Lee, R. G. M., Green, N. J. L., Lohmann, R. & Jones, K. C. 1999. Seasonal, anthropogenic, air mass, and meteorological influences on the atmospheric concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs): evidence for the importance of diffuse combustion sources. Environmental Science and Technology, 33(17), 2864–2871. Liao, C. M., Chen, B. C., Lin, M. C., and Chen, J. W. 2000. An optimal trace zinc biomonitor(Haliotis diversicolor supertexta)control system design in aquacultural ecosystems. Appl. Math. Modeling 24, 27-43 Liao, C. M., and Lin, M. C. 2001. Toxicokinetics and acute toxicity of water borne zinc in abalone(Haliotis diversicolor supertexta Lischke). Bull. Environ. Contam. Toxicol. 66(5), 597-602 Lee, C. C., Guo, Y. L., Kuei, C. H., Chang, H. Y., Hsu, J. F., Wang, S. T., et al. 2006 Human PCDD/F levels near a pentachlorophenol contamination site in Tainan, Taiwan. Chemosphere, 65(3), 436–448. Landis, M. S., Keeler, G. J., Al-Wali, K. I. and Stevens, R. K. 2004. Divalent inorganic reactive gaseous mercury emissions from a mercury cell chlor-alkali plant and its impact on near-field atmospheric dry deposition. Atmospheric Environment 38: 613-622 Lima, A. P. S., Sarkis, J. E. S., Shihomatsu, H. M. and Müller, R. C. S. 2005. Mercury and selenium concentrations in fish samples from Cachoeira do PiriáMunicipality, ParáState, Brazil. Environmental Research 97: 236-244 Lin, H., Sun, T., Xue, S., & Jiang, X. 2016. Heavy metal spatial variation, bioaccumulation, and risk assessment of Zostera japonica habitat in the Yellow River Estuary, China. Science of The Total Environment, 541, 435-443 Maršálek, P., Svobodová, Z., Randák, T. and Švehla, J. 2005. Mercury and methylmercury contamination of fish from the Skalka Reservoir: A case study. Acta Veterinaria Brno 74: 427-434 Milbrath, M. O., Wenger, Y., Chang, C. W., Emond, C., Garabrant, D., Gillespie, B. W., et al. 2009. Apparent half-lives of dioxins, furans, and polychlorinated biphenyls as a function of age, body fat, smoking status, and breast-feeding. Environmental Health Perspectives, 117(3), 417–425 Malisch, R., & Kotz, A. 2014. Dioxins and PCBs in feed and food—review from European perspective. Science of the Total Environment, 491, 2–10. Manh, H. D., Kido, T., Tai, P. T., Okamoto, R., Honma, S., Liang, S. X., et al. 2015. Levels of polychlorinated dibenzodioxins and polychlorinated dibenzofurans in breast milk samples from three dioxin-contaminated hotspots of Vietnam. Science of the Total Environment, 511(2015), 416–422. Neely, W. B., Branson, D. R., and Blau, G. E. 1974. Partition coefficient to measure bioconcentration potential of organic chemicals in fish. Environ. Sci. Tech. 8, 1113-1115 Nigro, M., Campana, A., Lanzillotta, E. and Ferrara, R. 2002. Mercury exposure and elimination rates in captive bottlenose dolphins. Marine Pollution Bulletin 44: 1071-1075 Naito, W., Jin, J., Kang, Y. S., Yamamuro, M., Masunaga, S., & Nakanishi, J. 2003. Dynamics of PCDDs/DFs and coplanar-PCBs in an aquatic food chain of Tokyo Bay. Chemosphere, 53(4), 347–362. Olson JR. 1994. Pharmacokinetics of dioxin and related chemicals. In:Schecter A eds. Dioxins and Health. New York:Plenum Press, 78-99 Otter, R. R., Bailey, F. C., Fortner, A. M., & Adams, S. M. 2012. Trophic status and metal bioaccumulation differences in multiple fish species exposed to coal ash-associated metals. Ecotoxicology and Environmental Safety, 85, 30–36. Pirkle JL, Wolfe WH, Patterson DG, et al. 1989. Estimates of the Half-life of 2,3,7,8-tetrachlorodibenzo-p-dioxin in Vietnam veterans of operation ranch hand. J Tox Environ Health 27:165-171 Pickard, S. W., & Clarke, J. U. 2008. Benthic bioaccumulation and bioavailability of polychlorinated dibenzo-p-dioxins/dibenzofurans from surficial lake Ontario sediments. Journal of Great Lakes Research, 34(3), 418–433. Spacie, A., and Hamelink, J. L. 1982. Alternative models for describing the bioconcentration of organics in fish. Environ. Toxico. Chem. 1, 309-320 Schecter A.J., Ryan J.J., Constable J.D. 1986. Chlorinated Dibenzo-p-dioxin and dibenzofuran levels in human adipose tissue and milk samples from the north and south of Vietnam. Chemosphere 15:1613-1620 Spacie, A., McCarty, L. S., & Rand, G. M. 1995. Bioaccumulation and bioavailability in multiphase systems. In G. M. Rand (Ed.), Fundamentals of Aquatic Toxicology: Effects, Environmental Fate, and Risk Assessment, 2nd Edition (pp. 493–521). Washington, DC: Taylor and Francis. Schüürmann, G., and Markert, B. 1997. Ecotoxicology: Ecological fundamentals, chemical exposure, and biological effects. John Wiley & Sons, Inc. Sin, D. W. M., Choi, J. Y. Y., & Louie, K. K. 2002. A study of polychlorinated dibenzo-p-dioxins and dibenzofurans in the atmosphere of Hong Kong. Chemosphere, 47(6), 647–653. Stamen kovic J. et al. 2004. Distribution of total and methyl mercury in sediment along steamboat creak (Nevdad, USA). Science of the Total Environmental 322:167-177 Tay, K. L., Doe, K. G., Wade, J., and Vaughan, D. A., Berrigan, R. E. and Moore, M. J. 1992. Sediment bioassessment in Halifax Harbour. Environ. Toxico. Chem. 11, 1567-1581 Turoczy, N. J., Mitchell, B. D., Levings, A. H., & Rajendram, V. S. 2001. Cadmium, copper, mercury, and zinc concentrations in tissues of the King Crab (Pseudocarcinus gigas) from southeast Australian waters. Environment international, 27(4), 327–334. Lee, T.M., Lai, H.Y.; Chen, Z.S. 2004. Effect of chemical amendments on the concentration of cadmium and lead in long-term contaminated soils. Chemosphere,Vol.57,No. p.1459-1471 Uno, S. H., Shiraishi, S., Hatakeyama, and Otsuki, A. 1997. Uptake and depuration kinetics and BCFs of several pesticides in three species of shellfish(Corbicula leana, Corbicula japonica, and Cipangopludina chinensis): comparison between field and laboratory experiment. Aquat. Toxicol. 39, 23-43 Van der Oost, R., Beyer, J., & Vermeulen, N. P. 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environmental Toxicology and Pharmacology, 13(2), 57–149. van Ede, K. I., Andersson, P. L., Gaisch, K. P., van den Berg, M., & van Duursen, M. B. 2014. Comparison of intake and systemic relative effect potencies of dioxin-like compounds in female rats after a single oral dose. Archives of Toxicology, 88(3), 637–646. Wang, A., Barber, D. and Pfeiffer, C. J. 2001. Protective effects of selenium against mercury toxicity in cultured Atlantic spotted dophins (Stenella plagiodon) renal cells. Archives of Environmental Contamination and Toxicology 41: 403-409 Wataru N., Jiancheng J., Kang T.S., et al. 2003. Dynamics of PCDD/DFs and coplanar-PCBs in an aquatic food chain of Tokyo Bay. Chemosphere 53:347-362 Wang, M. S., Wang, C. L., Chang-Chien, G. P. & Lin, L. F. 2005. Characterization of polychlorinated dibenzo-p-dioxins and dibenzofurans in the stack flue gas of a municipal solid waste incinerator, in the ambient air, and in the banyan leaf. Aerosol and Air Quality Research, 5(2), 171–184. Zhou, H. Y. and Wong, M. H. 2000. Mercury accumulation in freshwater fish with emphasis on the dietary influence. Water Research 34: 4234-4242 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51217 | - |
| dc.description.abstract | 汞與戴奧辛為公認毒性物質,易在脂肪組織中積累,從而造成對人類健康的嚴重危險。然而生物體對於污染物累積的途徑,並不只有由環境的直接接觸這一途徑累積,從食物鏈中的累積也是一個可能的途徑。
本研究以南台灣某鹼氯工廠內貯水池及工廠外鄰近水域之生物體為主要調查對象,廠內貯水池的7種生物樣品中戴奧辛濃度以海鰱最高,已超過食品規範中魚貝類限值(4 pg/ g fresh weight)141倍。而汞濃度分析結果亦為海鰱最高,超過WHO水產品中總汞食用安全限值 0.5 mg/kg。另外,亦於廠外6處魚塭與鄰近溪域進行生物體中汞與戴奧辛濃度補充調查,其中發現有5處魚塭中魚體中汞濃度仍有超限情形,而生物體中戴奧辛濃度皆低於限值,鄰近溪域則是部分樣品有超限情形而已。 本研究以Spearman相關性分析結果顯示,魚體內戴奧辛與汞濃度達顯著相關水準(P<0.01),相關係數為0.811,屬高度相關,故可推知當魚體食用水域中其他生物體或底泥時,會同時攝入戴奧辛與汞二種污染物並逐漸累積。而進一步由統計分析結果發現,戴奧辛濃度與油脂含量達顯著相關水準(P<0.01),相關係數為0.833,屬高度相關,亦說明了當魚體內器官中油脂含量越高時,其器官中之戴奧辛濃度將會越高。此外,針對底泥與魚體中戴奧辛17種同源物組成比例進行分析,結果顯示底泥戴奧辛成分主要以OCDD、OCDF、1,2,3,4,6,7,8-HpCDF為主,佔全部80-90%,可確定底泥中污染物來源與土壤一致。惟魚體中戴奧辛同源物則以OCDD、1,2,3,4,6,7,8-HpCDD、1,2,3,6,7,8-HxCDD及1,2,3,4,6,7,8-HpCDF為主(70-80%),顯示污染物進入魚體中,藉由生物轉換機制導致組成比例而不同。 底泥中的戴奧辛同源物以OCDD、OCDF、1,2,3,4,6,7,8- HpCDF及和1,2,3,4,6,7,8- HPCD為主,與其他研究指出底泥主要存在同源物項目一致,魚體內戴奧辛同源以1,2,3,7,8- PeCDF、1,2,3,4,6,7,8- HpCDF、1,2,3,6,7,8- HxCDD及1,2- 3,4,6,7,8-HpCDD為主,且發現1,2,3,4,6,7,8-HpCDF濃度在於底泥中最低,於生物體反而是最高,推測因高氯不易代謝於體外故累積於體內。 最後由風險計算結果已可明確得知本研究區域之污染對於人體健康影響風險具高度危害可能,再加上國人會食用魚體器官的習性,應立即阻絕食物鏈累積降低危害,建議相關主管機關應加強相關行政管制措施,同時提供當地居民更多資訊與觀念,以達到阻絕食物鏈累積可能對人體健康所造成之危害。 | zh_TW |
| dc.description.abstract | Mercury and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) accumulate in organisms through food webs and exert potentially toxic effects on aquatic organisms and humans. This study examined the levels of mercury and PCDD/Fs in organisms and sediment samples collected from a saltwater pond at the site, a chloralkali factory that shut down in Tainan City, Taiwan. It was also a pentachlorophenol production plant. After the factories were shut down in the 1980s, mercury and PCDD/Fs contamination remained, posing severe health hazards. The correlation between PCDD/Fs congener accumulation patterns in distinct fish organs and the sediment was evaluated. Mercury and PCDD/Fs levels in all the fish samples exceeded food safety limits, and the concentrations of mercury and PCDD/Fs in each species were closely correlated (n = 12, Spearman’s rank correlation [R] = 0.811, p < 0.01). The mercury concentrations were positively but non-significantly correlated with the weight (n = 11, R = 0.741, p < 0.01) and length (n = 11, R = 0.618, p < 0.05) of the species. The fish likely accumulated the contaminants through ingestion of other organisms or the sediment. However, after the pollutants entered a fish, they exhibited distinct accumulation patterns because of their differing chemical properties. Specifically, the mercury concentration was correlated with organism weight and length, whereas the PCDD/Fs concentration was associated with organ lipid content. In this study, the 1,2,3,4,6,7,8-HpCDF concentration was lowest in the sediment but highest in the organisms. However, the OCDD concentration was highest in the sediment but lowest in the organisms. The dominant congeners 1,2,3,7,8-PeCDF, 1,2,3,4,6,7,8-HpCDF, 1,2,3,6,7,8-HxCDD, and 1,2,3,4,6,7,8-HpCDD in the fish differed from those found in the sediment samples.
The study results are valuable for assessing the health risks associated with ingesting mercury- and PCDF/F-contaminated seafood from the study site. Therefore, it is suggested that the public should be alerted through bans and advisories when a threat to human health may occur from the consumption of contaminated fish. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:27:43Z (GMT). No. of bitstreams: 1 ntu-105-D99622002-1.pdf: 3130321 bytes, checksum: 4d11eeacd2512a16bdeb4d05c0e604ed (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 目錄
中文摘要 I Abstract II 目錄 III 表目錄 V 圖目錄 VII 第一章 前言 1 1.1 研究緣起 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 污染物特性 3 2.1.1 汞 4 2.1.2 戴奧辛 8 2.2 生物累積效應 13 2.2.1 生物累積因子 13 2.2.2 鹼氯工業地區生物體之污染物累積 14 2.3 環境風險評估 17 2.3.1 生態風險評估 17 2.3.2 人體健康風險評估 20 2.4 國內外相關法規訂定 26 2.4.1 汞與戴奧辛於環境介質之管制標準 26 2.4.2 底泥清理標準與品質指標 31 2.5 文獻閱讀心得與研究方向擬定 36 第三章 材料與方法 37 3.1 研究區域 37 3.2 實驗架構圖 38 3.3 污染物濃度分析 39 3.3.1 樣品數據來源 39 3.3.2 實驗室檢測方法 39 3.4 生物累積效應計算 39 3.5 統計分析方法計算 40 3.6 健康風險評估計算 40 第四章 結果與討論 41 4.1 廠址內貯水池調查 41 4.1.1 生物種類調查結果 41 4.1.2 生物體與底泥中汞與戴奧辛濃度分佈 42 4.2 廠址外圍水域環境調查 48 4.2.1 魚塭生物體中汞與戴奧辛濃度分佈 48 4.2.2 外圍溪域底泥與生物體中汞與戴奧辛濃度分佈 56 4.3 生物累積相關探討 68 4.4 健康風險評估分析 78 第五章 結論與建議 92 5.1 結論 92 5.2 建議 93 參考文獻 94 表目錄 表2-1、主要污染物之物化性質 3 表2-2、底泥中汞之型態 6 表2-3、戴奧辛化學結構式及異構物 11 表2-4、國際毒性當量因子 I–TEF 11 表2-5、2,3,7,8戴奧辛同源物物理及化學性質 12 表2-6、本評估關切污染物之毒理資料彙整表 22 表2-7、關切污染物劑量評估引用參數 24 表2-8、不同介質屬性暴露途徑彙整表 25 表2-9、我國水產動物可食部分中重金屬管制限量標準 27 表2-10、國內外汞管制標準彙整表 27 表2-11、國內戴奧辛相關法規彙整 29 表2-12、國內戴奧辛管制標準值彙整 29 表2-13、各國底泥管理法規精神綜整 33 表2-14、我國底泥品質指標及已公告可適用底泥分析方法 34 表4-1、貯水池生物種類調查彙整表 41 表4-2、貯水池生物體中汞與戴奧辛濃度 44 表4-3、貯水池底泥中汞與戴奧辛濃度 47 表4-4、本研究區域外圍歷年之魚體調查資料彙整表 51 表4-5、本研究區域外圍魚體補充調查資料彙整表 54 表4-6、本研究於竹筏港溪水域調查生物體數據 59 表4-7、本研究彙整94年環保署調查之竹筏溪底泥檢測結果 61 表4-8、本研究於鹿耳門溪水域調查生物體數據 63 表4-9、本研究彙整94年環保署調查之鹿耳門溪底泥檢測結果 65 表4-10、貯水池生物體中汞與戴奧辛濃度相關性分析結果 70 表4-11、貯水池生物體器官中汞與戴奧辛濃度 70 表4-12、貯水池生物體器官中汞與戴奧辛濃度相關性分析結果 71 表4-13、貯水池生物體BSAFs數值 74 表4-14、本研究區域底泥總汞濃度分布 80 表4-15、居民血液總汞濃度分佈情形 80 表4-16、居民血液中總汞濃度值於不同特性分類後之濃度分佈情形 81 表4-17、實際參與居民之各類食物總食用量分佈 81 表4-18、安順廠區戴奧辛污染調查報告結果 82 表4-19、顯宮里及鹿耳里附近漁塭及海水儲存池中不同魚種戴奧辛濃度 82 表4-20、顯宮里及鹿耳里附近漁塭及中不同海鮮戴奧辛濃度 82 表4-21、食用特定區域魚及海鮮里民血液戴奧辛濃度值與海鮮食用量之比較 83 表4-22、受測里民血液戴奧辛暴露劑量與各研究設定劑量之比較 83 表4-23、場址周邊里別之海鮮平均食用總量估算 83 表4-24、海水池汞暴露評估與風險值計算 87 表4-25、周邊魚塭汞暴露評估與風險值計算 88 表4-26、海水池戴奧辛暴露評估與風險值計算 88 表4-27、周邊魚塭戴奧辛暴露評估與風險值計算 88 圖目錄 圖2-1、環境中各含汞物種間之化學轉換循環途徑 7 圖2-2、戴奧辛、呋喃結構式 8 圖3-1、本研究區域地理位置圖 37 圖3-2、實驗架構圖 38 圖4-1、環保署增加調查之貯水池底泥調查結果 45 圖4-2、廠區至貯水池排放口位置圖 46 圖4-3、本研究區域外圍歷年調查之魚塭底泥戴奧辛濃度調查結果 49 圖4-4、本研究區域外圍歷年調查之魚塭底泥汞濃度調查結果 50 圖4-5、本研究於竹筏港溪水域生物體捕撈作業 57 圖4-6、本研究於鹿耳門溪水域生物體捕撈作業 58 圖4-7、魚體中油脂含量與戴奧辛濃度之迴歸分析 71 圖4-8、魚體中油脂含量與汞濃度之迴歸分析 72 圖4-9、土壤中戴奧辛同源物濃度分析結果 72 圖4-10、貯水池底泥中戴奧辛同源物濃度分析結果 73 圖4-11、貯水池魚體中戴奧辛同源物濃度分析結果 73 圖4-12、貯水池底泥中戴奧辛同源物Box-Whisker圖 76 圖4-13、貯水池魚體中戴奧辛同源物Box-Whisker圖 77 圖4-14、本研究廠址污染物傳輸途徑 85 圖4-15、汞之攝取污染魚的急性潛在劑量率不確定分析及敏感度分析 90 圖4-16、戴奧辛之攝取污染魚的急性潛在劑量率不確定分析及敏感度分析 91 | |
| dc.language.iso | zh-TW | |
| dc.subject | 風險評估 | zh_TW |
| dc.subject | 汞 | zh_TW |
| dc.subject | 風險評估 | zh_TW |
| dc.subject | 生物累積因子 | zh_TW |
| dc.subject | 汞 | zh_TW |
| dc.subject | 戴奧辛 | zh_TW |
| dc.subject | 生物累積因子 | zh_TW |
| dc.subject | 戴奧辛 | zh_TW |
| dc.subject | Mercury | en |
| dc.subject | Dioxins | en |
| dc.subject | Mercury | en |
| dc.subject | Biota-to-sediment accumulation factors | en |
| dc.subject | risk | en |
| dc.subject | Dioxins | en |
| dc.subject | Biota-to-sediment accumulation factors | en |
| dc.subject | risk | en |
| dc.title | 污染廠址水域環境中生物體內汞及戴奧辛生物累積與環境風險之研究 | zh_TW |
| dc.title | Environmental risk analysis and bioaccumulation effect of mercury and dioxin in polluted aquatic environment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 廖中明(Chung-Min Liao),陳瑞昇(Jui-Sheng Chen),洪俊雄(Chun hsiung Hung),張誠信(Cheng-Shin Jang,) | |
| dc.subject.keyword | 戴奧辛,汞,生物累積因子,風險評估, | zh_TW |
| dc.subject.keyword | Dioxins,Mercury,Biota-to-sediment accumulation factors,risk, | en |
| dc.relation.page | 100 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-02-15 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 3.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
