請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5120完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 汪治平(Jyhpyng Wang) | |
| dc.contributor.author | Shao-Tsung Huang | en |
| dc.contributor.author | 黃少聰 | zh_TW |
| dc.date.accessioned | 2021-05-15T17:52:10Z | - |
| dc.date.available | 2016-08-17 | |
| dc.date.available | 2021-05-15T17:52:10Z | - |
| dc.date.copyright | 2014-08-17 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-12 | |
| dc.identifier.citation | [1] Mitsuru Sugawara. Self-Assembled InGaAs/GaAs Quantum Dots. Academic Press, 1999.
[2] Rudolf Bratschitsch and Alfred Leitenstorfer. Quantum dots: Artificial atoms for quantum optics. Nature Materials, 5:855--856, 2006. [3] M. S. Hegazy and H. E. Elsayed-Ali. Growth of Ge quantum dots on Si(100)(2 1) by pulsed laser deposition. Journal of Applied Physics, 99:054308, 2006. [4] I. Kamiya, Ichiro Tanaka, and H. Sakaki. Control of size and density of selfassembled InAs dots on (0 0 1)GaAs and the dot size dependent capping process. Journal of Crystal Growth, 201-202:1146--1149, 1999. [5] Y. R. Li, Z. Liang, Y. Zhang, J. Zhu, S. W. Jiang, and X. H. Wei. Growth modes transition induced by strain relaxation in epitaxial MgO thin films on SrTiO3 (001) substrates. Thin Solid Films, 489:245--250, 2005. [6] D. J. Eaglesham and M. Cerullo. Dislocation-free Sranski-Krastanow growth of Ge on Si(100). Physical Review Letters, 64:1943--1946, 1990. [7] J. L. Liu, S. Tong, and K. L. Wang. Handbook of Semiconductor Nanostructures and Nanodevices. American Scientific, 2005. [8] J. L. Huang. Feasibility study of the control of the size distribution of Ge/Si quantum dots grown with pulsed laser deposition by laser pre-processing of the substrate. Master's thesis, National Central University, Taiwan, 2013. [9] Kang L. Wang, Fellow IEEE, Dongho Cha, Jinlin Liu, and Christopher Chen. Ge/Si self-assembled quantum dots and their optoelectronic device applications. Proceedings of IEEE, 95:1866--1883, 2007. [10] C. Teichert, M. G. Lagally, L. J. Peticolas, J. C. Bean, and J. Tersoff. Stress-induced self-organization of nanoscale structures in SiGe/Si multilayer films. Physical Review B, 53:16334--16337, 1996. [11] A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, S. V. Chaoekovskii, and S. A. Tiis. Ge/Si photodiodes with embedded arrays of Ge quantum dots for the near infrared (1.3-1.5 m) region. Semiconductors, 37:1383--1388, 2003. [12] Zhi Liu, Tianwei Zhou, Leliang Li, Yuhua Zuo, Chao He, Chuanbo Li, Chunlai Xue, Buwen Cheng, and Qiming Wang. Ge/Si quantum dots thin film solar cells. Applied Physics Letters, 103:082101, 2013. [13] J M MacLeod, C V Cojocaru, F Ratto, C Harnagea, M I Alonso A Bernardi, and F Rosei. Modified Stranski-Krastanov growth in Ge/Si heterostructures via nanostenciled pulsed laser deposition. Nanotechnology, 23:065603, 2012. [14] Mathieu Helfrich, Bernd Terhalle, Yasin Ekinci, and Daniel M. Schaadt. Controlling structural properties of positioned quantum dots. Journal of Crystal Growth, 371:39- -44, 2013. [15] M. Gherasimova, R. Hull, M. C. Reuter, and F. M. Ross. Pattern level assembly of ge quantum dots on si with focused ion beam templating. Applied Physics Letters, 93:023106, 2008. [16] Amro Alkhatib and Ammar Nayfeh. A complete physical germanium-on silicon quantum dot self-assembly process. Scientific Reports, 3:2099, 2013. [17] A. Pascale, I. Berbezier, A. Ronda, and P. C. Kelires. Self-assembly and ordering mechanisms of Ge islands on prepatterned Si(001). Physical Review B, 77:075311, 2008. [18] S. Watanabe, Y. Yoshida, S. Kayashima, S. Yatsu, M. Kawai, and T. Kato. In situ observation of self-organizing nanodot formation under nanosecond-pulsed laser irradiation on Si surface. Journal of Applied Physics, 108:103510, 2010. [19] A Perez del Pino, E Gyorgy, J Roqueta I C Marcus, and M I Alonso. Effects of pulsed laser radiation on epitaxial self-assembled Ge quantum dots grown on Si substrates. Nanotechnology, 22:295304, 2011. [20] Michale N. R. Ashfold, Frederik Claeyssens, Gareth M. Fuge, and Simon J. Henley. Pulsed laser ablation and deposition of thin films. Chemical Society Reviews, 33:23- -31, 2004. [21] J. H. Chuei. Control of the crystallinity of carbon films grown with pulsed laser deposition by using another laser pulse for synchronous laser processing. Master's thesis, National Central University, Taiwan, 2013. [22] S. T. Su. Using pulsed laser deposition for growing TiO2 mesoporous films with structures optimized for increasing the efficiency of dye-sensitized solar cells. Master's thesis, National Chung cheng University, Taiwan, 2013. [23] PV Education - Absorption Coefficient ( http:// pveducation.org/ pvcdrom/ pnjunction/absorption-coefficient ). [24] Digital Instruments - Scanning Probe Microscopy Training Notebook. [25] Nanosensors - Catalogue of PointProbe Plus Silicon -SPM-Probes. [26] Museum of Science - Scanning Electron Microscope ( http://legacy.mos.org/sln/ SEM/ ). [27] T. M. Burbaev, T. N. Zavaritskaya, N. N. Mel'nik V. A. Kurbatov, V. A. Tsvetkov, K. S. Zhuravlev, V. A. Markov, and A. I. Nikiforov. Optical properties of germanium monolayers on silicon. Semiconductors, 35:941--946, 2001. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5120 | - |
| dc.description.abstract | 自聚性鍺/矽量子點(self-assembled Ge/Si quantum dots)的研究在1990年晚期才開始進行。當量子點小於10奈米(nm)時,量子點內量子侷限(quantum confinement)的效應會讓量子點能隙(band gap)吸收波段(absorption wavelength)改變。因此,透過控制鍺/矽量子點的大小,鍺/矽量子點應用在光度感應器(photodetector)、LED與太陽能電池(solar cell)這幾種光電元件上有著頗有潛力的發展。
在我們的研究中,我們用脈衝雷射沉積(pulsed laser deposition, PLD)的方式,在攝氏400度的矽基板(100)上成長2A的鍺。在此厚度下,矽與鍺之間4.2%晶格大小不匹配(lattice mismatch)所造成的應力(strain)不夠大,無法以斯特蘭斯基─克拉斯坦諾夫成長(Stranski–Krastanow growth,S-K growth)的方式形成量子點,因此我們在此厚度(2A)下沒有看到量子點。然而,在此樣品上,使用波長為355奈米的脈衝雷射光照射後,我們觀察到了量子點的形成,我們觀察到最小的量子點大小為平均直徑13.3奈米,同時,也達成了密度為1.6x10^11cm^(-2)的量子點。 實驗結果指出,透過改變鍺的厚度跟打在基板上雷射的能量,能夠控制鍺量子點在矽基板上形成的大小。在製造更佳效能的光電元件上有著不錯的潛力。 | zh_TW |
| dc.description.abstract | It was only in the late 1990s did the research of germanium on silicon self-assembled quantum dots (QDs) begin. Due to the effect of quantum confinement in the quantum dots with dot size less than 10 nm, the absorption wavelength of the energy bandgap shifts. Therefore, by controlling the size distribution of Ge/Si QDs, there is big potential for the application in optoelectronic devices such as photodetectors, LEDs, and solar cells.
In our experiments, thin film of germanium with thickness of 2 A was grown on silicon (100) by pulsed laser deposition (PLD) with 400°C substrate temperature. With such small thickness (2 A), the strain due to 4.2% lattice mismatch between germanium and silicon is not enough for the Stranski–Krastanow(S-K) growth of QDs. As a result, no QDs were observed. However, after the irradiation of the sample with 355-nm pulsed laser beam, the formation of QDs was observed. The smallest average quantum dot diameter observed was about 17 nm and the density of dots was 1.6x10^11cm^(-2). The results indicate that by varying different parameters such as the thickness of germanium thin film and the fluence of the laser beam irradiated on the sample, one can control the size of the Ge QDs formed on Si substrate. This technique provides control over QDs size, which in result provides a new route for the fabrication of the optoelectronic devices with better performances. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-15T17:52:10Z (GMT). No. of bitstreams: 1 ntu-103-R00222029-1.pdf: 24702734 bytes, checksum: bea77758d550560c0624c9e2b3897b0d (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書i
誌謝ii 摘要iii Abstract iv 1 Inroduction 1 1.1 Quantum Dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Growth of the Ge/Si(100) Quantum Dots . . . . . . . . . . . . . . . . . . 2 1.3 Applications of Ge/Si Quantum Dots . . . . . . . . . . . . . . . . . . . . 3 1.3.1 Quantum Dot Photodiodes . . . . . . . . . . . . . . . . . . . . . 5 1.3.2 Quantum Dot LEDs . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.3 Quantum Dot Solar Cells . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Control of the Growth of Ge/Si Quantum Dots . . . . . . . . . . . . . . . 8 1.4.1 Growth Through Nanostencil . . . . . . . . . . . . . . . . . . . 8 1.4.2 Pre-Patterning . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4.3 Laser Induced Periodic Surface Structure on Silicon . . . . . . . 10 1.4.4 Laser Irradiation on Germanium Quantum Dots . . . . . . . . . . 11 1.5 Motivation and Gaols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Materials and Methods 14 2.1 Pulsed Laser Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.1 Introduction to Pulsed Laser Deposition . . . . . . . . . . . . . . 14 2.1.2 The Mechanism of Pulsed Laser Deposition . . . . . . . . . . . . 15 2.1.3 Dependence of Laser Fluence . . . . . . . . . . . . . . . . . . . 17 2.2 Experimental Methods of Pulsed Laser Deposition . . . . . . . . . . . . 17 2.2.1 Light Source of Ablation Beam in PLD . . . . . . . . . . . . . . 17 2.2.2 Experimental Setup of PLD . . . . . . . . . . . . . . . . . . . . 18 2.2.3 Issue of the Air Pressure in PLD Chamber . . . . . . . . . . . . . 21 2.2.4 Details of the Target and Substrate . . . . . . . . . . . . . . . . . 22 2.2.5 Preparation of the silicon substrates . . . . . . . . . . . . . . . . 22 2.2.6 Determination of the Fluence of Ablation Beam . . . . . . . . . . 24 2.3 Experimental Methods of Control Beam . . . . . . . . . . . . . . . . . . 25 2.3.1 Light Source of Control Beam . . . . . . . . . . . . . . . . . . . 25 2.3.2 Experimental Setup of Control Beam . . . . . . . . . . . . . . . 26 2.3.3 Determination of Wavelength and Fluence of Control Beam . . . 27 2.4 Diagnostic Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4.1 Surface Profiler . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4.2 Atomic Force Microscopy . . . . . . . . . . . . . . . . . . . . . 29 2.4.3 Field Emission Scanning Electronic Microscope . . . . . . . . . 31 2.5 Experimental Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3 Experimental Results and Discussion 33 3.1 Growth of Germanium Quantum Dots . . . . . . . . . . . . . . . . . . . 33 3.1.1 Films of Various Substrate Temperature . . . . . . . . . . . . . . 33 3.1.2 Films of Various Effective Thickness . . . . . . . . . . . . . . . 34 3.2 Laser-Induced Formation of Germanium Quantum Dots . . . . . . . . . . 35 3.2.1 Effect of Control Beam Fluence . . . . . . . . . . . . . . . . . . 37 3.2.2 Films of Various Shot Numbers of Control Beam . . . . . . . . . 39 3.2.3 Films of Various Effective Thickness . . . . . . . . . . . . . . . 41 4 Summary and Future Prospective 44 References 46 | |
| dc.language.iso | en | |
| dc.subject | 雷射激發表面結構 | zh_TW |
| dc.subject | 鍺/矽量子點 | zh_TW |
| dc.subject | 脈衝雷射沉積 | zh_TW |
| dc.subject | PLD | zh_TW |
| dc.subject | 斯特蘭斯基─克拉斯坦諾夫成長 | zh_TW |
| dc.subject | S-K 成長 | zh_TW |
| dc.subject | pulsed laser deposition | en |
| dc.subject | laser-induced surface structure | en |
| dc.subject | S-K growth | en |
| dc.subject | Stranski-Krastanow growth | en |
| dc.subject | PLD | en |
| dc.subject | Ge/Si quantum dots | en |
| dc.title | 光控制自聚性矽/鍺量子點在光電元件上的應用 | zh_TW |
| dc.title | Light-Controlled Self-Assembly of Ge/Si Quantum Dots for
Optoelectronic Devices | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳賜原(Szu-yuan Chen) | |
| dc.contributor.oralexamcommittee | 李勝偉(Sheng-Wei Lee) | |
| dc.subject.keyword | 鍺/矽量子點,脈衝雷射沉積,PLD,斯特蘭斯基─克拉斯坦諾夫成長,S-K 成長,雷射激發表面結構, | zh_TW |
| dc.subject.keyword | Ge/Si quantum dots,pulsed laser deposition,PLD,Stranski-Krastanow growth,S-K growth,laser-induced surface structure, | en |
| dc.relation.page | 47 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2014-08-12 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf | 24.12 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
