請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51189完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 靳宗洛(Tsung-Luo Jinn) | |
| dc.contributor.author | Jun Shi | en |
| dc.contributor.author | 石峻 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:27:03Z | - |
| dc.date.available | 2018-03-08 | |
| dc.date.copyright | 2016-03-08 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-02-18 | |
| dc.identifier.citation | Alscher, R.G., Erturk, N., and Heath, L.S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53, 1331-1341.
Arabidopsis Interactome Mapping, C. (2011). Evidence for network evolution in an Arabidopsis interactome map. Science 333, 601-607. Barth, O., Vogt, S., Uhlemann, R., Zschiesche, W., and Humbeck, K. (2009). Stress induced and nuclear localized HIPP26 from Arabidopsis thaliana interacts via its heavy metal associated domain with the drought stress related zinc finger transcription factor ATHB29. Plant Mol Biol 69, 213-226. Bauwe, H., and Kolukisaoglu, U. (2003). Genetic manipulation of glycine decarboxylation. J Exp Bot 54, 1523-1535. Bedhomme, M., Adamo, M., Marchand, C.H., Couturier, J., Rouhier, N., Lemaire, S.D., Zaffagnini, M., and Trost, P. (2012). Glutathionylation of cytosolic glyceraldehyde-3-phosphate dehydrogenase from the model plant Arabidopsis thaliana is reversed by both glutaredoxins and thioredoxins in vitro. Biochem J 445, 337-347. Beyer, W., Imlay, J., and Fridovich, I. (1991). Superoxide dismutases. Prog Nucleic Acid Res Mol Biol 40, 221-253. Bowler, C., Montagu, M.V., and Inze, D. (1992). Superoxide Dismutase and Stress Tolerance. Annu Rev Plant Physiol Plant Mol Biol 43, 83-116. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254. Carroll, M.C., Girouard, J.B., Ulloa, J.L., Subramaniam, J.R., Wong, P.C., Valentine, J.S., and Culotta, V.C. (2004). Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone. Proc Natl Acad Sci USA 101, 5964-5969. Chu, C.C., Lee, W.C., Guo, W.Y., Pan, S.M., Chen, L.J., Li, H.M., and Jinn, T.L. (2005). A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis. Plant Physiol 139, 425-436. Ciriolo, M.R., Desideri, A., Paci, M., and Rotilio, G. (1990). Reconstitution of Cu,Zn-superoxide dismutase by the Cu(I).glutathione complex. J Biol Chem 265, 11030-11034. Ciriolo, M.R., Battistoni, A., Falconi, M., Filomeni, G., and Rotilio, G. (2001). Role of the electrostatic loop of Cu,Zn superoxide dismutase in the copper uptake process. Eur J Biochem 268, 737-742. Cobbett, C., and Goldsbrough, P. (2002). Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53, 159-182. Cohu, C.M., Abdel-Ghany, S.E., Gogolin Reynolds, K.A., Onofrio, A.M., Bodecker, J.R., Kimbrel, J.A., Niyogi, K.K., and Pilon, M. (2009). Copper delivery by the copper chaperone for chloroplast and cytosolic copper/zinc-superoxide dismutases: regulation and unexpected phenotypes in an Arabidopsis mutant. Mol Plant 2, 1336-1350. de Abreu-Neto, J.B., Turchetto-Zolet, A.C., de Oliveira, L.F., Zanettini, M.H., and Margis-Pinheiro, M. (2013). Heavy metal-associated isoprenylated plant protein (HIPP): characterization of a family of proteins exclusive to plants. FEBS J 280, 1604-1616. Dixon, D.P., Skipsey, M., Grundy, N.M., and Edwards, R. (2005). Stress-induced protein S-glutathionylation in Arabidopsis. Plant Physiol 138, 2233-2244. Guo, L., Devaiah, S.P., Narasimhan, R., Pan, X., Zhang, Y., Zhang, W., and Wang, X. (2012). Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδ to transduce hydrogen peroxide signals in the Arabidopsis response to stress. Plant Cell 24, 2200-2212. Halliwell, B. (2006). Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141, 312-322. Halliwell, B., and Whiteman, M. (2004). Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142, 231-255. Halliwell, B., and Gutteridge, J.M.C. (2007). Free Radicals in Biology and Medicine, Ed 4. Oxford University Press, Oxford. Horecka, J., Kinsey, P.T., and Sprague, G.F., Jr. (1995). Cloning and characterization of the Saccharomyces cerevisiae LYS7 gene: evidence for function outside of lysine biosynthesis. Gene 162, 87-92. Huang, C.H., Kuo, W.Y., Weiss, C., and Jinn, T.L. (2012). Copper chaperone-dependent and -independent activation of three copper-zinc superoxide dismutase homologs localized in different cellular compartments in Arabidopsis. Plant Physiol 158, 737-746. Jensen, L.T., and Culotta, V.C. (2005). Activation of CuZn superoxide dismutases from Caenorhabditis elegans does not require the copper chaperone CCS. J Biol Chem 280, 41373-41379. Keele, B.B., Jr., McCord, J.M., and Fridovich, I. (1970). Superoxide dismutase from Escherichia coli B. A new manganese-containing enzyme. J Biol Chem 245, 6176-6181. Kliebenstein, D.J., Monde, R.A., and Last, R.L. (1998). Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol 118, 637-650. Kuo, W.Y., Huang, C.H., Liu, A.C., Cheng, C.P., Li, S.H., Chang, W.C., Weiss, C., Azem, A., and Jinn, T.L. (2013). CHAPERONIN 20 mediates iron superoxide dismutase (FeSOD) activity independent of its co-chaperonin role in Arabidopsis chloroplasts. New Phytol 197, 99-110. Kurkela, S., and Borg-Franck, M. (1992). Structure and expression of Kin2, one of two cold- and ABA-induced genes of Arabidopsis thaliana. Plant Mol Biol 19, 689-692. Maurino, V.G., and Peterhansel, C. (2010). Photorespiration: current status and approaches for metabolic engineering. Curr Opin Plant Biol 13, 249-256. McCord, J.M., and Fridovich, I. (1969). Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244, 6049-6055. Mehra, R.K., Tran, K., Scott, G.W., Mulchandani, P., and Saini, S.S. (1996). Ag(I)-binding to phytochelatins. J Inorg Biochem 61, 125-142. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7, 405-410. Myouga, F., Hosoda, C., Umezawa, T., Iizumi, H., Kuromori, T., Motohashi, R., Shono, Y., Nagata, N., Ikeuchi, M., and Shinozaki, K. (2008). A heterocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis. Plant Cell 20, 3148-3162. Palmieri, M.C., Lindermayr, C., Bauwe, H., Steinhauser, C., and Durner, J. (2010). Regulation of plant glycine decarboxylase by s-nitrosylation and glutathionylation. Plant Physiol 152, 1514-1528. Pilon, M., Ravet, K., and Tapken, W. (2011). The biogenesis and physiological function of chloroplast superoxide dismutases. Biochim Biophys Acta 1807, 989-998. Rae, T.D., Schmidt, P.J., Pufahl, R.A., Culotta, V.C., and O'Halloran, T.V. (1999). Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284, 805-808. Rauser, W.E. (1999). Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem Biophys 31, 19-48. Rius, S.P., Casati, P., Iglesias, A.A., and Gomez-Casati, D.F. (2008). Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase. Plant Physiol 148, 1655-1667. Tan, Y.F., O'Toole, N., Taylor, N.L., and Millar, A.H. (2010). Divalent metal ions in plant mitochondria and their role in interactions with proteins and oxidative stress-induced damage to respiratory function. Plant Physiol 152, 747-761. Tehseen, M., Cairns, N., Sherson, S., and Cobbett, C.S. (2010). Metallochaperone-like genes in Arabidopsis thaliana. Metallomics 2, 556-564. Wong, P.C., Waggoner, D., Subramaniam, J.R., Tessarollo, L., Bartnikas, T.B., Culotta, V.C., Price, D.L., Rothstein, J., and Gitlin, J.D. (2000). Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 97, 2886-2891. Yadav, S.K. (2010). Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76, 167-179. Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2, 1565-1572. Yost, F.J., Jr., and Fridovich, I. (1973). An iron-containing superoxide dismutase from Escherichia coli. J Biol Chem 248, 4905-4908. Yu, C.W., Liu, X., Luo, M., Chen, C., Lin, X., Tian, G., Lu, Q., Cui, Y., and Wu, K. (2011). HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis. Plant Physiol 156, 173-184. Zelko, I.N., Mariani, T.J., and Folz, R.J. (2002). Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33, 337-349. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51189 | - |
| dc.description.abstract | 超氧歧化酶(superoxide dismutase; SOD)能夠將O2-轉變為H2O2及O2,進而保護細胞免於氧化傷害,這樣的歧化作用則需要依賴其催化中心的過度金屬離子。銅鑲嵌輔助蛋白(copper chaperone for SOD; CCS)已經被證實負責將銅離子嵌入銅鋅超氧歧化酶(CuZnSOD; CSD)中並使之活化,另外,也觀察到有另一條非CCS的CSD活化機制。在阿拉伯芥中,細胞質型CSD1能夠經由上述的任一機制活化。本篇研究再一次確認了穀胱甘肽與銅離子的複合物(GSH-Cu),以及一些還未發現的未知因子參與了非CCS的活化路徑,因此,我們利用了包括硫酸銨沈澱及逆相高效液態色層分析等方法,試圖將這些未知因子從缺少CCS的細胞萃取物中分離出來。篩選出的蛋白質中,3-磷酸甘油醛去氫脢(glyceraldehyde-3-phosphate dehydrogenase; GAPC)以及重金屬結合蛋白20 (heavy metal-associated isoprenylated plant protein 20; HIPP20)能夠與CSD1進行交互作用,並幫助其活化。此外,已有許多報告指出SOD具有除了清除自由基以外的其他生理功能,我們的結果提出了CSD1可能也參與訊息傳導、轉錄調控及重金屬代謝等機制,藉此或許能夠提供一些研究SOD功能的新方向。最後,我們也提出植物螯合素(phytochelatin; PC)如同GSH-Cu,能夠在非CCS活化機制中攜帶銅離子,以利CSD1進行活化。 | zh_TW |
| dc.description.abstract | Superoxide dismutase (SOD) catalyzes the conversion of O2- into H2O2 and O2 protecting cells from oxidative damages. This dismutating activity depends on the transition metal ion on its catalytic site. It has been shown that CCS (copper chaperone for SOD) is responsible for the Cu incorporation and the activation of CuZnSOD; meanwhile, an alternative CCS-independent pathway was also observed. Arabidopsis thaliana cytosolic CuZnSOD, CSD1, can be activated by either pathway. In this study, we confirmed that glutathione (GSH)-Cu complex and some unidentified factors were involved in the CCS-independent activation. Fractionation approaches were conducted, including ammonium sulfate precipitation and reverse-phase HPLC for the purpose to isolate the factors facilitating the activation of CSD1 from the CCS-knockout (ccs) cellular extract. Candidates such as glyceraldehyde-3-phosphate dehydrogenase (GAPC) and heavy metal-associated isoprenylated plant protein 20 (HIPP20) were confirmed interacting with CSD1 in the BiFC assay and mediating CSD1 activation. SOD has been suggested participating in multiple vital physiological functions in addition to its known functions in ROS scavenging. Our results proposed the possible functions of CSD1 in signal transduction, transcriptional regulation or heavy metal detoxification and, thus, may provide some new aspects regarding SOD function. Moreover, we demonstrated a potential Cu carrier with functions similar to GSH-Cu complex, phytochelatin, delivering Cu during CSD1 activation in the absence of CCS. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:27:03Z (GMT). No. of bitstreams: 1 ntu-105-R00b42037-1.pdf: 1691046 bytes, checksum: 73bec2eeaf747126fed49c8f46fe6f09 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II Introduction 1 Superoxide dismutase in Arabidopsis thaliana 1 The requirement of chaperone for SOD activation 2 The activation of CuZnSOD independent of CCS 3 The participation of glutathione (GSH) in CuZnSOD activation 4 Materials and Methods 5 Plant materials and growth conditions 5 RNA extraction and RT-PCR 5 Cellular protein extraction, in-gel SOD activity assay and immunoblotting 5 Recombinant proteins purification and deactivation 6 Reconstitution of Apo-CSD1 in vitro 7 Ammonium sulfate (AS) fractionation and reverse-phase HPLC 8 Protein identification 9 Preparation and transfection of protoplast and bimolecular fluorescence complementation (BiFC) assay 9 Accession numbers 10 Results 11 Affinity purification and deactivation of CSD1 protein 11 CCS-Independent CSD1 activation is contributed by glutathione (GSH)-Cu complex in the presence of unknown factor(s) in the CCS-knockout (ccs) cellular extract 11 The unknown factor(s) in ccs cellular extract facilitating Apo-CSD1 activation is soluble protein or peptide with low molecular weight 12 Identification of the unknown factor(s) required for CSD1 activation 13 Analysis of the candidates for CSD1 protein activation 15 Interaction between the candidates and CSD1 analyzed by bimolecular fluorescence complementation (BiFC) assay 16 Phytochelatins (PCs), similar to GSH, act as copper carrier in the CCS-Independent CSD1 activation 17 Discussion 19 In addition to GSH, unidentified factor(s) are necessary for Apo-CSD1 activation in vitro 19 GAPCs and HIPP20 showed potential for rescuing Apo-CSD1 activity 20 The direct interactions of CSD1 with GAPC1, GAPC2, COR6.6 and HIPP20 21 The plants-specific PCs might be putative Cu carrier in the CCS-independent CSD1 activation 22 Tables 25 Figures 27 References 37 | |
| dc.language.iso | en | |
| dc.subject | 銅鑲嵌輔助蛋白 | zh_TW |
| dc.subject | 銅鑲嵌輔助蛋白 | zh_TW |
| dc.subject | 銅鋅超氧歧化? | zh_TW |
| dc.subject | 阿拉伯芥 | zh_TW |
| dc.subject | 阿拉伯芥 | zh_TW |
| dc.subject | 銅鋅超氧歧化? | zh_TW |
| dc.subject | Arabidopsis | en |
| dc.subject | copper/zinc superoxide dismutase | en |
| dc.subject | CCS-independent activation | en |
| dc.subject | CCS-independent activation | en |
| dc.subject | copper/zinc superoxide dismutase | en |
| dc.subject | Arabidopsis | en |
| dc.title | 以非CCS活化阿拉伯芥銅鋅超氧歧化酶所需因子之功能性研究 | zh_TW |
| dc.title | Functional Study of Factors Required for CuZnSOD Activation Independent of CCS in Arabidopsis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 葉國楨(Kuo-Chen Yeh),張孟基(Men-Chi Chang),楊建志(Chien-Chih Yang),張英?(Ing-Feng Chang) | |
| dc.subject.keyword | 阿拉伯芥,銅鋅超氧歧化?,銅鑲嵌輔助蛋白, | zh_TW |
| dc.subject.keyword | Arabidopsis,copper/zinc superoxide dismutase,CCS-independent activation, | en |
| dc.relation.page | 42 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-02-18 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 1.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
