請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51176完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 杜裕康(Yu-Kang Tu) | |
| dc.contributor.author | Yu-Wei Ding | en |
| dc.contributor.author | 丁雨葳 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:26:46Z | - |
| dc.date.available | 2023-08-18 | |
| dc.date.copyright | 2020-09-04 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-10 | |
| dc.identifier.citation | 1. Australian Government Department of Health. CDNA National guidelines for public health units. In. Vol 2020: Australian Government Department of Health; 2020:7. 2. World Health Organization (WHO). WHO characterizes COVID-19 as a pandemic. https://www.who.int/. Published 2020. Accessed2020. 3. COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. 2020. https://github.com/CSSEGISandData/COVID-19. 4. Johns Hopkins University Coronavirus Resource Center. Johns Hopkins University Coronavirus Resource Center. Johns Hopkins University Coronavirus Resource Center. https://coronavirus.jhu.edu/. Published 2020. Accessed2020. 5. Mufudza C, Erol H. Poisson Mixture Regression Models for Heart Disease Prediction. Comput Math Methods Med. 2016;2016:4083089. 6. Zhang H, Huang Y. Finite Mixture Models and Their Applications: A Review. 2015. 7. Bender R, Friede T, Koch A, et al. Methods for evidence synthesis in the case of very few studies. Res Synth Methods. 2018;9(3):382-392. 8. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Fixed-Effect Model. In: Introduction to Meta‐Analysis.2011:63-67. 9. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Random-Effects Model. In: Introduction to Meta‐Analysis.2011:69-75. 10. Mantel N, Haenszel W. Statistical Aspects of the Analysis of Data From Retrospective Studies of Disease. JNCI: Journal of the National Cancer Institute. 1959;22(4):719-748. 11. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177-188. 12. Cochran WG. Some Methods for Strengthening the Common χ<sup>2</sup> Tests. Biometrics. 1954;10(4):417-451. 13. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Meta-Regression. In: Introduction to Meta‐Analysis.2011:187-203. 14. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Subgroup Analyses. In: Introduction to Meta‐Analysis.2011:149-186. 15. The Cochrane Collaboration. Cochrane Handbook for Systematic Reviews of Interventions. The Cochrane Collaboration; 2011. 16. Barendregt JJ, Doi SA, Lee YY, Norman RE, Vos T. Meta-analysis of prevalence. Journal of Epidemiology and Community Health. 2013;67(11):974. 17. Berkson J. Application of the logistic function to bio-assay. Journal of the American Statistical Association. 1944;39:357-365. 18. Schwarzer G, Chemaitelly H, Abu-Raddad LJ, Rücker G. Seriously misleading results using inverse of Freeman-Tukey double arcsine transformation in meta-analysis of single proportions. Research synthesis methods. 2019;10(3):476-483. 19. Anscombe FJ. The Transformation of Poisson, Binomial and Negative-Binomial Data. Biometrika. 1948;35(3/4):246-254. 20. Freeman MF, Tukey JW. Transformations Related to the Angular and the Square Root. Ann Math Statist. 1950;21(4):607-611. 21. Miller JJ. The Inverse of the Freeman – Tukey Double Arcsine Transformation. The American Statistician. 1978;32(4):138-138. 22. Stijnen T, Hamza TH, Ozdemir P. Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data. Stat Med. 2010;29(29):3046-3067. 23. Leisch F. FlexMix: A General Framework for Finite Mixture Models and Latent Class Regression in R. Journal of Statistical Software. 2004;11(8):18. 24. Dempster AP, Laird NM, Rubin DB. Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society Series B (Methodological). 1977;39(1):1-38. 25. Schwarzer G. meta: An R package for meta-analysis. R news. 2007;7(3):40-45. 26. Schlattmann P, Hoehne J, Verba M. CAMAN: finite mixture models and meta-analysis tools—based on CA MAN. R package version 071 Available at)( Accessed October 20, 2014). 2014. 27. Teerapabolarn K, Jaioun K. APPROXIMATION OF BINOMIAL DISTRIBUTION BY AN IMPROVED POISSON DISTRIBUTION. International Journal of Pure and Applied Mathematics. 2014;97(4):491-495. 28. Fullman N, Yearwood J, Abay SM, et al. Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: a systematic analysis from the Global Burden of Disease Study 2016. The Lancet. 2018;391(10136):2236-2271. 29. Open Philanthropy Project. Global Health Security Index 2019. New York Oct 25 2019. 30. National Center for HIV/AIDS VH, STD, and TB Prevention,. BCG Vaccine. In: Division of Tuberculosis Elimination, ed: Centers of Disease Control and Prevention; 2011. 31. Stensballe LG, Nante E, Jensen IP, et al. Acute lower respiratory tract infections and respiratory syncytial virus in infants in Guinea-Bissau: a beneficial effect of BCG vaccination for girls: community based case–control study. Vaccine. 2005;23(10):1251-1257. 32. Aaby P, Roth A, Ravn H, et al. Randomized trial of BCG vaccination at birth to low-birth-weight children: beneficial nonspecific effects in the neonatal period? Journal of Infectious Diseases. 2011;204(2):245-252. 33. Rajarshi K, Chatterjee A, Ray S. BCG vaccination strategy implemented to reduce the impact of COVID-19: Hype or Hope? Medicine in Drug Discovery. 2020;7:100049. 34. Singh S. BCG VACCINES MAY NOT REDUCE COVID-19 MORTALITY RATES. medRxiv. 2020:2020.2004.2011.20062232. 35. O’Neill LAJ, Netea MG. BCG-induced trained immunity: can it offer protection against COVID-19? Nature Reviews Immunology. 2020;20(6):335-337. 36. Madan M, Pahuja S, Mohan A, et al. TB infection and BCG vaccination: are we protected from COVID-19? Public Health. 2020;185:91-92. 37. (WHO). WHO. WHO-UNICEF estimates of BCG coverage. In:2019. 38. CORONAVIRUS GOVERNMENT RESPONSE TRACKER. Oxford COVID-19 Government Response Tracker (OxCGRT); 2020. https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker. 39. Viechtbauer W. Metafor: meta-analysis package for R. R package version. 2010;2010:1-0. 40. Panovska-Griffiths J. Coronavirus: five reasons why the UK death toll is so high. The Conversation2020. 41. Lanese N. Sweden's lax COVID-19 response caused too many deaths, country's top epidemiologist says. In. LIVESCIENCE: LIVESCIENCE; 2020. 42. Sudharsanan N, Didzun O, Bärnighausen T, Geldsetzer P. The Contribution of the Age Distribution of Cases to COVID-19 Case Fatality Across Countries: A 9-Country Demographic Study. Annals of Internal Medicine. 2020. 43. Gan N. How Vietnam managed to keep its coronavirus death toll at zero. In. CNN News: CNN News; 2020. 44. Moffitt M. Why Taiwan's COVID-19 death rate is shockingly low. SFGATE2020. 45. Scott D. Singapore’s Covid-19 case fatality rate is remarkably low. Why? VOX2020. 46. Wang CJ, Ng CY, Brook RH. Response to COVID-19 in Taiwan: Big Data Analytics, New Technology, and Proactive Testing. JAMA. 2020;323(14):1341-1342. 47. Cheng H-Y, Li S-Y, Yang C-H. Initial rapid and proactive response for the COVID-19 outbreak - Taiwan's experience. J Formos Med Assoc. 2020;119(4):771-773. 48. Wong JEL, Leo YS, Tan CC. COVID-19 in Singapore—Current Experience: Critical Global Issues That Require Attention and Action. JAMA. 2020;323(13):1243-1244. 49. Lee VJ, Chiew CJ, Khong WX. Interrupting transmission of COVID-19: lessons from containment efforts in Singapore. Journal of Travel Medicine. 2020;27(3). 50. La V-P, Pham T-H, Ho M-T, et al. Policy response, social media and science journalism for the sustainability of the public health system amid the COVID-19 outbreak: The vietnam lessons. Sustainability. 2020;12(7):2931. 51. Desjardins J. Mapped: The Median Age of the Population on Every Continent. In:2019. 52. Population ages 65 and above (% of total population) - Italy. 2019. https://data.worldbank.org/indicator/SP.POP.65UP.TO.ZS?locations=IT. 53. Onder G, Rezza G, Brusaferro S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA. 2020;323(18):1775-1776. 54. Livingston E, Bucher K. Coronavirus disease 2019 (COVID-19) in Italy. Jama. 2020;323(14):1335-1335. 55. Stein L. Belgium appears to have the highest coronavirus mortality rate in the world. Here's why. abc NEWS. May 19, 2020. 56. NPR. Why Belgium's Death Rate Is So High: It Counts Lots Of Suspected COVID-19 Cases. In: Schultz T, ed2020. 57. Declining death rate from COVID-19 in hospitals in England. The Centre for Evidence-Based Medicine., ; 2020. https://www.cebm.net/covid-19/declining-death-rate-from-covid-19-in-hospitals-in-england/. 58. Nguyen THD, Vu DC. Summary of the COVID-19 outbreak in Vietnam - Lessons and suggestions. Travel Med Infect Dis. 2020:101651-101651. 59. Lipsitch M, Donnelly CA, Fraser C, et al. Potential biases in estimating absolute and relative case-fatality risks during outbreaks. PLoS neglected tropical diseases. 2015;9(7):e0003846. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51176 | - |
| dc.description.abstract | 背景 自2020年初以來,嚴重特殊傳染性肺炎(Coronavirus Disease 2019, COVID-19)成為國際重大議題。隨著全世界確診與死亡人數的迅速增加,世界衛生組織(WHO)於2020年3月11日宣布其為全球大流行。然而,雖然此疾病目前已襲擊約188個國家與地區,對全球公共衛生而言是重大挑戰,我們仍舊觀察到國家在總確診數、死亡數、住院數、以及個案死亡率(Case Fatality Rate, CFR)的差距非常明顯,凸顯了研究各國的疫情差異程度是至關重要的。 目的 本研究有兩個目的。第一個為探討各國COVID-19的個案死亡率差異是否會受到某些與公共衛生相關因素的影響,第二個為研究各國是否可以依據個案死亡率分組並探討分在同一組的國家是否有地理位置上的接近,以及觀察分組的狀況隨時間的變化。 方法與材料 資料來自於約翰霍普金斯大學冠狀病毒研究中心(Johns Hopkins University Coronavirus Resource Center)所提供的公開資源。我們收集2020年2月24日至5月25日期間周一的COVID-19數據,並每周進行一次分析。接著,進行比例統合分析(Proportion Meta-Analyses, proportion MA)以探討各國個案死亡率,並額外以統合迴歸(Meta-Regressions)與子群體分析(Subgroup Analyses)的方式,來探討公共衛生或防疫相關因子(醫療照護可及性與品質指數[HAQ]、全球衛生安全指數[GHS]、卡介苗1985年接種率與篩檢政策)是否與各國個案死亡率之間的差異有關。最後,我們利用有限混和模型(Finite Mixture Models, FMM)來探討相似個案死亡率的國家是否可以進行分組並聚集於鄰近地區。 結果 根據比例統合分析的結果,加權平均個案死亡率在固定效應模型(Fixed-Effect Model)中從3.30%迅速上升至7.02%,而在隨機效應模型(Random-Effects Model)則是1.35%上升至3.19%。 在有限混和模型中,我們發現各國可以根據個案死亡率進行分組,且同一組的國家也有聚集在相鄰地區的現象。五月底時,位於南歐、西歐的國家如義大利、法國、英國和比利時被分在高個案死亡率組別,其估計值大於12%;北美洲國家的估計個案死亡率也遠高於南美洲國家;東亞、東南亞的國家如新加坡、越南與台灣則長時間維持在較低個案死亡率的組別,估計死亡率約為0.06%至1.45%。 最後透過統合迴歸與子群體分析的結果,發現有較高水準的健康照護系統(HAQ)、以往針對生物性威脅能夠較有效率對抗(GHS)與較高卡介苗接種率的的國家傾向有較高的個案死亡率,而篩檢政策的部分則是檢測越多可疑病例與低個案死亡率有相關。 結論 加權平均個案死亡率隨著時間的增加顯示COVID-19的疫情從開始到蔓延全球越來越嚴重。 個案死亡率相似的國家有集中在附近地區的現象,如義大利、法國、西班牙與英國等歐洲國家多屬於高死亡率組別,而新加坡、越南與台灣則多維持在低死亡率組別,這可能與類似公共衛生政策、相似人口特徵與防疫手段有所相關。 另外,較高公共衛生水平、較高卡介苗接種率的國家傾向有高死亡率,而能夠篩檢更多可疑病例的國家則傾向有較低的死亡率。 | zh_TW |
| dc.description.abstract | Background Coronavirus Disease 2019 (COVID-19) has become a serious threat to global public health. The rapid increase in the number of confirmed cases and deaths around the world led World Health Organization (WHO) to declare it as a pandemic on March 11, 2020. Though the outbreak has now affected more than 188 countries/areas, countries faced different levels of challenges of COVID-19 in terms of infected numbers of cases, hospitalized patients and mortalities, highlighting the importance of investigations into the causes for such large disparities around the world. Objective There were two aims in the thesis. The first was to explore whether the difference in case fatality rates (CFRs) of COVID-19 would be affected by factors relating to public health and prevention policies. The second was to investigate how countries could be grouped into clusters according to COVID-19 case-fatality rates and whether countries of the same cluster were close in geography over time. Materials and Methods Data were obtained from the open sources provided by Johns Hopkins University Coronavirus Resource Center. To investigate the changes in CFRs over time, we used data reported on Mondays between February 24 and May 25. We conducted proportion meta-analyses to investigate the CFR of COVID-19 in different countries. Besides, in order to explore whether the factors relating to public health and prevention policies (Healthcare Access and Quality Index [HAQ], Global Health Security Index [GHS], Baccille Calmette-Guérin Coverage Rate [BCG Coverage Rate], Testing Policy [TP]) could affect the CFRs, we undertook meta-regressions and subgroup analyses. We conducted finite mixture models to investigate how countries with similar CFRs were forming groups and whether they were close in geography. Results The pooled estimate of CFRs given by proportion meta-analyses during the period was rising rapidly from 3.30% to 7.02% in the fixed-effect models and from 1.35% to 3.19% in the random-effects models. Countries could be divided into several groups based on their CFRs and located within near regions according to the results of finite mixture models. In May, some countries located in Southern and Western Europe such as Italy, France, United Kingdom and Belgium fell into groups with higher CFR of more than 12%. Countries in North America seemed to have higher CFR than which in South America. Countries in Eastern Asia like Singapore, Vietnam and Taiwan were in low-CFR groups with estimated CFR ranging from 0.06% to 1.45%. Countries with higher quality of healthcare system, efficient responses to an outbreak and higher BCG coverage rate in 1985 tended to have higher CFR. However, countries with more suspected cases being tested were associated with lower CFR. Conclusions The estimated CFRs increased with the spread of COVID-19 across the world. Countries of similar case fatality rates forming several groups and were even clustered within geographical regions. Some countries in Western Europe fell into high-CFR groups and Singapore, Vietnam and Taiwan remained in the low-CFR groups over time, which might be explained by their adopting similar public health policies, demographics and strategies to contain the pandemic. A higher quality level of public health and a higher coverage rate of BCG vaccination in 1985 were associated with higher CFR, and testing more suspected cases was associated with a lower CFR. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:26:46Z (GMT). No. of bitstreams: 1 U0001-1008202014411900.pdf: 3207802 bytes, checksum: a8400c2004c69ec93f7e59a0a41028ec (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員審定書 ………………………………………………………………... i 致謝 ……………………………………………………………………………... ii 中文摘要 ……………………………………………………………………….. iii Abstract ……………………………………………………………….………… v Chapter 1 Introduction ………………………………………………………... 1 1.1 Background …………………………………………………………….. 1 1.2 Aims ……………………………………………………………………. 2 1.3 Hypotheses ……………………………………………………………... 2 1.4 Introductions to Methods ………………………………………………. 3 Chapter 2 Literature Reviews ………………………………………………… 5 2.1 Traditional Meta-Analysis ……………………………………………... 5 2.1.1 Inverse Variance Method ……………………………………….. 8 2.1.2 Estimation in Random-Effects Models …………………………. 9 2.1.3 Meta-Regressions ……………………………………………….. 10 2.1.4 Subgroup Analyses ……………………………………………... 10 2.2 Meta-Analyses in Proportion of an Event ……………………………… 11 2.2.1 Binomial Distribution with Inverse Variance Method …………. 12 2.2.2 Transformations with Inverse Variance Method ……………….. 13 2.2.2.1 Logit Transformation ……………………………………. 14 2.2.2.2 Arcsine Transformation …………………………………. 15 2.2.2.3 Freeman-Tukey Double Arcsine Transformation ……….. 16 2.2.3 Generalized Linear Mixed Models ……………………………... 18 2.3 Finite Mixture Models Used in Meta-Analyses ………………………... 19 2.3.1 The Concepts of Finite Mixture Models ………………………... 19 2.3.2 The Models of Finite Mixture Models ………………………….. 20 2.2.3 The Estimations of Finite Mixture Models ……………………... 21 Chapter 3 Material and Methods ……………………………………………... 23 3.1 Materials ……………………………………………………………….. 23 3.2 Methods ………………………………………………………………..... 24 3.2.1 Definition of Case Fatality Rate…………………………………. 24 3.2.2 Method 1: Proportion Meta-Analyses …………………………... 24 3.2.3 Method 2: Finite Mixture Models ………………………………. 25 3.2.3.1 Transformations with Normal Distributions …………….. 26 3.2.3.2 Poisson Distributions ……………………………………. 26 3.3 Meta-Regressions and Subgroup Analyses …………………………….. 27 Chapter 4 Results ………………………………………………………………. 31 4.1 Descriptive Statistics of COVID-19 …………………………………… 31 4.1.1 The Characteristics of Each Country ……………………………… 31 4.1.2 Descriptive Statistics Plots ………………………………………… 32 4.2 Results of Proportion Meta-Analyses ………………………………….. 35 4.3 Results of Finite Mixture Models ……………………………………… 40 4.3.1 Results of Finite Mixture Models on May 25 …………………… 40 4.3.2 Maps of Results of Finite Mixture Models on May 25 …………. 41 4.3.3 Comparisons of Results of Finite Mixture Models on Different Days …………………………………………………………………… 43 4.4 Results of Meta-Regressions and Subgroup Analyses …………………. 50 4.4.1 Results of Meta-Regressions ……………………………………. 50 4.4.2 Results of Subgroup Analyses ………………………………….. 56 Chapter 5 Discussions ………………………………………………………….. 59 5.1 Factors Impacting the Case Fatality Rate ………………………………. 59 5.1.1 Level of Healthcare and Responses to an Outbreak …………….. 59 5.1.2 BCG Coverage in 1985 …………………………………………. 60 5.1.3 Testing Policy …………………………………………………… 61 5.1.4 Age Distribution in Confirmed Cases …………………………… 61 5.2 The Clusters in Countries ………………………………………………. 62 5.3 The Changes in Case Fatality Rates Over Time ………………………… 63 5.3.1 The Changes in Case Fatality Rates within Proportion Meta-Analyses ……………………………………………………………….. 63 5.3.1.1 Significant Decline on March 16 in RE Models ………… 63 5.3.1.2 Slight Decrease After May 04 in Both FE and RE Models ... 64 5.3.2 The Changes in Clusters within Finite Mixture Models ………... 64 5.3.2.1 The Clusters in Higher-Case Fatality Rates Countries …… 64 5.3.2.2 The Clusters in Lower-Case Fatality Rates Countries …… 66 5.4 Results of Proportion Meta-Analyses …………………………………... 68 5.4.1 The Difference in Estimated Case Fatality Rates ………………… 68 5.4.2 Comparisons of Four Methods …………………………………. 69 5.5 Results of Finite Mixture Models ……………………………………… 70 5.5.1 Comparisons among Three Methods …………………………… 70 5.6 Limitations and Strengths ……………………………………………… 70 5.6.1 Limitations ……………………………………………………… 70 5.6.2 Strengths ………………………………………………………… 72 Chapter 6 Conclusions …………………………………………………………. 73 References ……………………………………………………………………….. 74 Appendix 1. Results of Finite Mixture Models on March 02 ……………………. 78 Appendix 2. Results of Finite Mixture Models on March 30 ……………………. 80 Appendix 3. Results of Finite Mixture Models on April 27 ……………………… 83 Appendix 4. Maps of FMM results with logit transformation …………………… 86 Appendix 5. Maps of FMM results with Poisson distribution …………………… 88 Appendix 6. Bubble plots of Meta-Regressions on May 25 ……………………… 90 Appendix 7. R codes of Finite Mixture Models …………………………………. 93 | |
| dc.language.iso | en | |
| dc.subject | 統合迴歸 | zh_TW |
| dc.subject | 有限混和模型 | zh_TW |
| dc.subject | 統合分析 | zh_TW |
| dc.subject | 統合分析 | zh_TW |
| dc.subject | 個案死亡率 | zh_TW |
| dc.subject | 嚴重特殊傳染性肺炎 | zh_TW |
| dc.subject | 嚴重特殊傳染性肺炎 | zh_TW |
| dc.subject | 有限混和模型 | zh_TW |
| dc.subject | 統合迴歸 | zh_TW |
| dc.subject | 子群體分析 | zh_TW |
| dc.subject | COVID-19 | zh_TW |
| dc.subject | COVID-19 | zh_TW |
| dc.subject | 子群體分析 | zh_TW |
| dc.subject | 個案死亡率 | zh_TW |
| dc.subject | case fatality rates | en |
| dc.subject | Coronavirus Disease 2019 | en |
| dc.subject | COVID-19 | en |
| dc.subject | meta-analyses | en |
| dc.subject | finite mixture models | en |
| dc.subject | meta-regressions | en |
| dc.subject | subgroup analyses | en |
| dc.subject | Coronavirus Disease 2019 | en |
| dc.subject | COVID-19 | en |
| dc.subject | case fatality rates | en |
| dc.subject | meta-analyses | en |
| dc.subject | finite mixture models | en |
| dc.subject | meta-regressions | en |
| dc.subject | subgroup analyses | en |
| dc.title | 利用統合分析探討各國COVID-19個案死亡率 | zh_TW |
| dc.title | Using Meta-Analyses to Investigate the Case Fatality Rates of COVID-19 in Different Countries | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0000-0002-2461-474X | |
| dc.contributor.advisor-orcid | 杜裕康(0000-0002-2461-474X) | |
| dc.contributor.oralexamcommittee | 林先和(Hsien-Ho Lin),范怡琴(Yi-Chin Fan),陳錦華(Chin-Hua Chen) | |
| dc.contributor.oralexamcommittee-orcid | 林先和(0000-0002-7481-6016),范怡琴(0000-0003-1866-0800),陳錦華(0000-0002-3130-4125) | |
| dc.subject.keyword | 嚴重特殊傳染性肺炎,COVID-19,個案死亡率,統合分析,有限混和模型,統合迴歸,子群體分析, | zh_TW |
| dc.subject.keyword | Coronavirus Disease 2019,COVID-19,case fatality rates,meta-analyses,finite mixture models,meta-regressions,subgroup analyses, | en |
| dc.relation.page | 96 | |
| dc.identifier.doi | 10.6342/NTU202002806 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-11 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1008202014411900.pdf 未授權公開取用 | 3.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
