Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51157
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡永傑(Wing-Kit Choi)
dc.contributor.authorTsung-Han Tsaien
dc.contributor.author蔡宗翰zh_TW
dc.date.accessioned2021-06-15T13:26:20Z-
dc.date.available2021-04-15
dc.date.copyright2016-04-15
dc.date.issued2016
dc.date.submitted2016-03-27
dc.identifier.citation[1] A. Shah, “Intel: Keeping up with Moore's Law is becoming a challenge,”
http://www.pcworld.com/article/2038207/intel-keeping-up-with-moores-law-beco
ming-a-challenge.html, 2013.
[2] M. Toti, “Moore’s Law and the increasing complexity of Computing Technology,”
http://www.captec-group.com/blogs/moores-law-and-the-increasing-complexity-o
f-computing-technologies/, 2011.
[3] S. Anthony, “Intel teases 1.6 Tbps optical interconnect, asks us to forget about Light Peak,” http://www.extremetech.com/computing/1633982-intel-teases-1-6tbp
s-optical-interconnect-asks-us-to-forget-about-light-peak, 2013.
[4] L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon Photonics: CMOS Going Optical,” Proceedings of the IEEE, vol. 97, no. 7, pp. 1161-1165, 2009.
[5] M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E . G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no 6, 2006.
[6] P. Jain, “Solve for X: Prashant Jain on optical computing,” https://www.youtube.
com/watch?v=eFhgb5CqAy8, 2013.
[7] Information Technology, “The Dawn of Optical Computing,” http://www.audiotec h.com/trends-magazine/the-dawn-of-optical-computing/, 2011.
[8] C. Gunn, “CMOS photonics technology platform,” 2006.
[9] C. Gunn, “CMOS Photonics for High-Speed Interconnects,” IEEE Journal of Micro, vol. 26, no. 2, pp. 58-66, 2006.
[10] C. Gunn, “Fully Integrated VLSI CMOS and Photonics 'CMOS Photonics',” IEEE Symposium on VLSI Technology, pp. 6-9, 2007.
[11] R. Soref, “The past, present, and future of silicon photonics,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, 2006.
[12] P. M. Fauchet, “Light emission from Si quantum dots,” Materials Today, vol. 8, no. 1, pp. 26-33, 2005.
[13] L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature, vol. 408, pp. 440-444, 2000.
[14] B. H. Kim, C. H. Cho, J. S. Mun, M. K. Kwon, T. Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S. J. Park, “Enhancement of the External Quantum Efficiency of a Silicon Quantum Dot Light-Emitting Diode by Localized Surface Plasmons,” Advanced Material, vol. 20, no. 16, pp. 3100–3104, 2008.
[15] J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-Enhanced Photoluminescence of Silicon Quantum Dots:  Simulation and Experiment,” The Journal of Physical Chemistry C, vol. 111, no. 36, pp. 13372–13377, 2007.
[16] Y. K. Lin, H. W. Ting, C. Y. Wang, S. Gwo, L. J. Chou, C. J. Tsa, and L. J. Chen “Au nanocrystal array/silicon nanoantennas as wavelength-selective photoswitches,” Nano Letters, vol. 3, no. 6, pp. 2723-2731, 2013.
[17] K. T. Lin, H. L. Chen, Y. S. Lai, and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nature communications, vol. 5, Article number 3288, 2014.
[18] Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science, vol. 337, no. 6093, pp. 450-453, 2012.
[19] K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. Jen-La Plante, A. M. Munro, and D. S. Ginger, “Quantum dot/plasmonic nanoparticle metachromophores with quantum yields that vary with excitation wavelength,” Nano Letters, vol. 11, no. 7, pp. 2725-2730, 2011.
[20] K. J. Vahala, “Optical microcavities,” Nature, vol. 424, pp. 839-846, 2003.
[21] V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, “Plasmonic fabry-pérot nanocavity,” Nano Letters, vol. 9, no. 10, pp. 3489-3493, 2009.
[22] H. T. Miyazaki, and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Physical review letters, vol. 96, pp. 097401-1 – 097401-4, 2006.
[23] Z. Li, S. Butun, and K. Aydin, “Ultranarrow Band Absorbers Based on Surface Lattice Resonances in Nanostructured Metal Surfaces,” ACS Nano, vol. 8, no. 8, pp. 8242-8248, 2014.
[24] E. Fermi, “Quantum theory of radiation,” Reviews of modern physics, vol. 4, pp. 87–132, 1932.
[25] R. Loudon, “Quantum Theory of Light,” New York: Oxford Univ. Press, 2000.
[26] Martin A. Green, “Solar Cells Operating Principles, Technology and System Applications,” The School of Photovoltaic and Renewable Energy Engineering, UNSW, 1982.
[27] G. Y. Sung, N. M. Park, J. H. Shin, K. H. Kim, T. Y. Kim, K. S. Cho, and C. Huh,
“Physics and device structures of highly efficient silicon quantum dots based silicon nitride light-emitting diodes,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no 6, 2006.
[28] N. M. Park, S. H. Kim, G. Y. Sung, and S.J. Park, “Growth and size control of amorphous silicon quantum dots using SiH4/N2 plasma,” Chemical Vapor Deposition, vol. 8, no. 6, pp. 254-256, 2002.
[29] T. C. Tsai, L. Z. Yu, and C. T. Lee, “Electroluminescence emission of crystalline silicon nanoclusters grown at a low temperature,” Nanotechnology, vol. 18, no. 27, pp. 275707-1 – 275707-5, 2007.
[30] T. W. Kim, C. H. Cho, B. H. Kim, and S. J. Park, “Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3,” Applied Physics Letters, vol. 88, pp. 123102-1 – 123102-3, 2006.
[31] N. M. Park, T. S. Kim, and S. J Park, “Band gap engineering of amorphous silicon quantum dots for light-emitting diodes,” Applied Physics Letters, vol. 78, no. 17, pp. 2575-1 – 2575-3, 2001.
[32] B. H. Kim, C. H. Cho, T. W. Kim, N. M. Park, G. Y. Sung, and S. J. Park, “Photoluminescence of silicon quantum dots in silicon nitride grown by NH3 and SiH4,” Applied Physics Letters, vol. 86, pp. 091908-1 – 091908-3, 2005.
[33] G. R. Lin, Y. H. Pai, C. T. Lin, and C. C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes,” Applied Physics Letters, vol. 96, pp. 263514-1 – 263514-3, 2010.
[34] R. Huang, K. Chen, P. Han, H. Dong, X. Wang, D. Chen, W. Li, J. Xu, Z. Ma, and X. Huang, “Strong green-yellow electroluminescence from oxidized amorphous silicon nitride light-emitting devices,” Applied Physics Letters, vol. 90, pp. 093515-1 – 093515-3, 2007.
[35] D. Amans, S. Callard, A. Gagnaire, J. Joseph, F. Huisken, and G. Ledoux, “Spectral and spatial narrowing of the emission of silicon nanocrystals in a microcavity,” Journal of Applied Physics, vol. 95, no. 9, pp. 5010-1 – 5010-3, 2004.
[36] L. Ding, T. P. Chen, Y. Liu, C. Y. Ng, and S. Fung, “Optical properties of silicon nanocrystals embedded in a SiO2 matrix,” Physical Review B, vol. 72, pp. 125419-1 – 125419-3, 2005.
[37] N. M. Park, C. J. Choi, T. Y. Seong, and S. J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride,” Physical Review Letters, vol. 86, no. 7, pp. 1355-1357, 2001.
[38] T. Y. Kim, N. M. Park, K. H. Kim, G. Y. Sung, Y. W. Ok, T. Y. Seong, and C. J. Choi, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films,” Applied Physics Letters, vol. 85, no. 22, pp. 5355-5357, 2004.
[39] K. Nishio, J. Kōga, T. Yamaguchi, and F. Yonezawa, “Theoretical study of light-emission properties of amorphous silicon quantum dots,” Physical Review B, vol. 67, pp. 195304-1 – 195304-5, 2003.
[40] C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Physical Review B, vol. 48, no. 15, pp. 11024-11036, 1993.
[41] G. G. Qin and Y. J. Li, “Photoluminescence mechanism model for oxidized porous silicon and nanoscale-silicon-particle-embedded silicon oxide,” Physical Review B, vol. 68, pp. 085309-1 – 085309-7, 2003.
[42] I. Bineva, D. Nesheva, Z. Aneva, and Z. Levi, “Room temperature photoluminescence from amorphous silicon nanoparticles in SiOx thin films,” Journal of luminescence, vol. 126, no. 6, pp. 497-502, 2007.
[43] X. X. Wang, J. G. Zhang, L. Ding, B. W. Cheng, W. K. Ge, J. Z. Yu, and Q. M. Wang, “Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix,” Physical Review B, vol. 72, pp. 195313-1 – 195313-6, 2005.
[44] E. G. Barbagiovanni, L. V. Goncharova, and P. J. Simpson, “Electronic structure
study of ion-implanted Si quantum dots in a SiO2 matrix: Analysis of quantum
confinement theories,” Physical Review B, vol. 83, pp. 035112-1 – 035112-11,
2011.
[45] H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Physical Review B, vol. 58, no. 11, pp. 6779-6782, 1998.
[46] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, pp. 824-830, 2000.
[47] C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Applied Physics Letters, vol. 91, pp. 063108-1 – 063108-3, 2007.
[48] A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” Journal of Optics A: Pure and Applied Optics, vol. 7, pp. S90-S96, 2005.
[49] A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Optics Communications, vol. 239 pp. 61-66, 2004.
[50] Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Physical Review Letters, vol. 96, pp. 233901-1 – 233901-4, 2006.
[51] T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. Javier García de Abajo, “Nanohole plasmons in optically thin gold films,” The Journal of Physical Chemistry C, vol. 111, no. 3, pp. 1207–1212, 2007.
[52] K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Physical Review Letters, vol. 92, no. 18, pp. 183901-1 – 183901-4, 2004.
[53] F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano, vol. 3, no. 3, pp. 643-652, 2009.
[54] F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Letters, vol. 8, no. 11, pp. 3983-3988, 2008.
[55] J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Letters, vol. 10, no. 8, pp. 3184-3189, 2010.
[56] H. Mertens, J. Verhoeven, and A. Polman, “Infrared surface plasmons in two-dimensional silver nanoparticle arrays in silicon,” Applied Physics Letters, vol. 85, no. 8, pp. 1317-1319, 2004.
[57] G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” Journal of Applied Physics, vol. 90, no. 8, pp. 3825-3830, 2001.
[58] B. Schnabel, E. B. Kley, and F. Wyrowski, “Study on polarizing visible light by subwavelength-period metal-stripe gratings,” Optical Engineering, vol. 38, no. 2, pp. 220-226, 1999.
[59] M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, B. Schnabel, and F. Wyrowski, “Inverse metal-stripe polarizers,” Applied Physics B, vol. 68, no. 1, pp. 81-85, 1999.
[60] S. C. Yang, H. P. Chen, H. H. Hsiao, P. K. Wei, H. C. Chang, and C. K. Sun “Near-field dynamic study of the nanoacoustic effect on the extraordinary transmission in gold nanogratings,” Optics Express, vol. 20, no. 15, pp. 16186-16194, 2012.
[61] Y. H. Ye, Y. W. Jiang, M. W. Tsai, Y. T. Chang, C. Y. Chen, D. C. Tzuang, Y. T. Wu, and S. C. Lee, “Localized surface plasmon polaritons in Ag/SiO2/Ag plasmonic thermal emitter,” Applied Physics B, vol. 93, pp. 033113-1– 033113-3, 2008.
[62] Y. H. Ye, Y. W. Jiang, M. W. Tsai, Y. T. Chang, C. Y. Chen, D. C. Tzuang, Y. T. Wu, and S. C. Lee, “Coupling of surface plasmons between two silver films in a Ag/SiO2/Ag plasmonic thermal emitter with grating structure,” Applied Physics B, vol. 93, pp. 263106-1– 263106-3, 2008.
[63] C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photonics Technology Letters, vol. 20, no. 13, pp. 1103-1105, 2008.
[64] A. Christ, G. Lévêque, O. J. F. Martin, T. Zentgraf, J. Kuhl, C. Bauer, H. Giessen, and S. G. Tikhodeev, “Near-field–induced tunability of surface plasmon polaritons in composite metallic nanostructures,” Journal of Microscopy., vol. 229, no. 2, pp. 344–353, 2008.
[65] S. A Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Optics Express, vol. 14, no. 5, pp. 1957-1964, 2006.
[66] A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Physical Review Letters, vol. 91, no. 18, pp. 183901-1–183901-4, 2003.
[67] A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen,
“Controlling the interaction between localized and delocalized surface plasmon
modes: Experiment and numerical calculations,” Physical Review B, vol. 74, pp.
155435-1 - 155435-8, 2006.
[68] K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nature Communications, vol. 2, no. 517, 2010.
[69] H. H. Chen, Y. W. Jiang, Y. T. Wu, P. E. Chang, Y. T. Chang, H. F. Huang, and S. C. Lee, “Narrow bandwidth and highly polarized ratio infrared thermal emitter,” Applied Physics Letters, vol. 97, pp. 163112-1–163112-3, 2010.
[70] R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of plasmonic thin‐film solar cells with broadband absorption enhancements,” Advanced Materials, vol. 21, pp. 3504-3509, 2009.
[71] C. Y. Chen, M. W. Tsai, Y. W. Jiang, Y. H. Ye, Y. T. Chang, and S. S. Lee, “Coupling of surface plasmons between two silver films in a plasmonic thermal emitter,” Applied Physics Letters, vol. 91, pp. 243111-1–243111-3, 2007.
[72] Y. W. Jiang, M. W. Tsai, Y. H. Ye, D. C. Tzuang, C. Y. Chen, and S. C. Lee, “Enhancement of thermal radiation in plasmonic thermal emitter by surface plasmon resonance,” IEEE Conference on Nanotechnology, pp. 104-107, 2008.
[73] M. W. Tsai, C. Y. Chen, Y. W. Jiang, Y. H. Ye, H. Y. Chang, T. H. Chuang, and S. C. Lee, “Coupling between surface plasmons via thermal emission of a dielectric layer sandwiched between two metal periodic layers,” Applied Physics Letters, vol. 91, pp. 213104-1–213104-3, 2007.
[74] Y. W. Jiang, Y. T. Wu, M. W. Tsai, P. E. Chang, D. C. Tzuang, Y. H. Ye, and S. C. Lee, “Characteristics of a waveguide mode in a trilayer Ag/SiO2/Au plasmonic thermal emitter,” Optics Letters, vol. 34, no. 20, pp. 3089-3091, 2009.
[75] J. J. Jiang, Y. B. Xie, Z. Y. Liu, X. M. Tang, X. J. Zhang, and Y. Y. Zhu, “Amplified spontaneous emission via the coupling between Fabry–Perot cavity and surface plasmon polariton modes,” Optics Letters, vol. 39, no. 8, pp. 2378–2381, 2014.
[76] P. Lodah, A. Floris van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, Daniël Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature, vol. 430, pp. 654-657, 2004.
[77] M. Boroditsky, R. Vrijen, T. F. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, “Spontaneous emission extraction and Purcell enhancement from thin-film 2-D photonic crystals,” Journal of Lightwave Technology, vol. 17, no. 11, 1999.
[78] X. Feng, F. Liu, and Y. Huang, “Calculated plasmonic enhancement of
spontaneous emission from silicon nanocrystals with metallic gratings,” Optics Communications, vol. 283, pp. 2758-2761, 2010.
[79] J. J. Jiang, F. Xu, Y. B. Xie, X. M. Tang, Z. Y. Liu, X. J. Zhang, and Y. Y. Zhu, “Surface-enhanced fluorescence of a dye-doped polymer layer with plasmonic band edge tuning,” Optics Letters, vol. 38, no. 22, pp. 4570-4573, 2013.
[80] J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Applied Physics Letters, vol. 88, pp. 131109-1–131109-3, 2006.
[81] H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Letters, vol. 6, no. 11, pp. 2622-2625, 2006.
[82] J. Kalkman, H. Gersen, L. Kuipers, and A. Polman, “Excitation of surface plasmons at a SiO2/Ag interface by silicon quantum dots: Experiment and theory,” Physical Review B, vol. 73, pp. 075317-1 - 075317-8, 2006.
[83] Y. Gong, J. Lu, S. Z. Cheng, Y. Nishi, and J. Vučković, “Plasmonic enhancement of emission from Si-nanocrystals,” Applied Physics Letters, vol. 94, pp. 013106-1–013106-4, 2009.
[84] K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. L. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Letters, vol. 10, no. 7, pp. 2598-2603, 2010.
[85] L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Optics Letters, vol. 32, no. 12, pp. 1623-1625, 2007.
[86] J. B. Khurgin and G. Sun, “Limits of luminescence efficiency enhancement by surface plasmon polaritons,” SPIE Nano Science+ Engineering, vol. 6638, 2007.
[87] D. R. Jung, J. Kim, S. Nam, C. Nahm, H. Choi, J. I. Kim, J. Lee, C. Kim, and B. Park, “Photoluminescence enhancement in CdS nanoparticles by surface-plasmon resonance,” Applied Physics Letters, vol. 99, no. 4, pp. 041906-1–041906-3, 2011.
[88] D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Applied Physics Letters, vol. 91, no. 17, pp. 171103-1–171103-3, 2007.
[89] K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nature Material, vol. 3, pp. 601-605, 2004.
[90] D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology, vol. 19, no. 34, pp. 345201-1–345201-4, 2008.
[91] D. M. Yeh, C. Y. Chen, Y. C. Lu, C. F. Huang, and C. C. Yang, “Formation of various metal nanostructures with thermal annealing to control the effective coupling energy between a surface plasmon and an InGaN/GaN quantum well,” Nanotechnology, vol. 18, no. 26, pp. 265402-1–265402-6, 2007.
[92] J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons: figures of merit,” Journal of the Optical Society of America B, vol. 24, no. 8, pp. 1968-1980, 2007.
[93] K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami,
“Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum
wells probed by time-resolved photoluminescence spectroscopy,” Applied
Physics Letters, vol. 87, no. 7, pp. 071102-1–071102-3, 2005.
[94] ELIONIX INC., “ELS-7500EX: Ultra-high precision lithography with a resolution of 10 nm and with high stitching and overlay accuracy,” http://www.elionix.co.jp/english/products/ELS/ELS7500EX.html, 2011.
[95] ELIONIX INC., “Instruction Manual for the ELS-7500 TFE Electron Beam Lithography System,” http://homepage.ntu.edu.tw/~f95943128/instrument /ELS-7500.pdf.
[96] Prof. C. H. Kuan, Electron-Beam Laboratory, Graduate Institute of Photonics and
Optoelectronics, and Department of Electrical Engineering, National Taiwan
University, http://homepage.ntu.edu.tw/~f95943128/professor.html.
[97] National Nano Device Laboratories (NDL), Taiwan, “ELIONIX ELS7500-EX
User Guide,” http://www.ndl.narl.org.tw/docs/devices/CF/L12_A.pdf.
[98] National Nano Device Laboratories (NDL), Taiwan, “X-ray photoelectron
spectroscopy (XPS, Thermo Fisher Scientific Theta probe),” http://www2.ndl.nar
l.org.tw/ web/department/nmlab/device_xps.php.
[99] Horiba Jobin Yvon Inc., “Raman spectroscopy T64000 User Manual,” http://chemistry.unt.edu/~verbeck/LIMS/Manuals/T64000_user.pdf, 2009.
[100] Instrumentation Center, National Taiwan University, “JEOL JSM-7600F Field Emission Scanning Electron Microscope,” http://www.hic.ch.ntu.edu.tw
/EM%E5%8C%96/em1_Project.html.
[101] Instrumentation Center, National Taiwan University, “Hitachi S-4800 Field Emission Scanning Electron Microscope,” http://www.hic.ch.ntu.edu.tw/ EM%
E7%90%86/em2.html.
[102] National Nano Device Laboratories (NDL), Taiwan, “Veeco Dimension 5000
Scanning Probe Microscope (D5000),” http://www2.ndl.narl.org.tw/web/dep
artment/nmlab/device_d5000.php.
[103] Synopsys' Optical Solutions Group, “RSoft Products – Optical Simulations,” http://optics.synopsys.com/rsoft/?gclid=Cj0KEQjwstaqBRCT38DWpZjJotIBEiQAERS6_KT1fV3FSmYBDM4GTPW_qdLZp5xbixOjfmDrSaySIzUaAvu-8P8HAQ and http://optics.synopsys.com/.
[104] Cybernet Systems Taiwan Co. Ltd., “RSoft Products – Optical Simulations,”
http://www.cybernet-ap.com.tw/zh.php?m=743.
[105] B. H Lai, C. H. Cheng, Y. H. Pai, and G. R. Lin, “Plasma power controlled deposition of SiOx with manipulated Si Quantum Dot size for photoluminescent wavelength tailoring,” Optics Express, vol. 18, no. 5, pp. 4449–4456, 2010.
[106] S. Mirabella, R. Agosta, G. Franzò, I. Crupi, M. Miritello, R. L. Savio, M. A. D. Stefano, S. D. Marco, F. Simone, and A. Terrasi, “Light absorption in silicon quantum dots embedded in silica,” Journal of Applied Physics, vol. 106, no. 10, pp. 103505-1–103505-8, 2009.
[107] G. Nicotra, R. A. Puglisi, S. Lombardo, C. Spinella, M. Vulpio, G. Ammendola, M. Bileci, and C. Gerardi, “Nucleation kinetics of Si quantum dots on SiO2,” Journal of Applied Physics, vol. 95, no. 4, pp. 2049-2055, 2004.
[108] G. Faraci, S. Gibilisco, P. Russo, A. R. Pennisi, G. Compagnini, S. Battiato, R. Puglisi, and S. L. Rosa, “Si/SiO2 core shell clusters probed by Raman spectroscopy,” The European Physical Journal B, vol. 46, no. 4, pp. 457-461, 2005.
[109] G. Faraci, S. Gibilisco, P. Russo, A. R. Pennisi, and S. L. Rosa, “Modified Raman confinement model for Si nanocrystals,” Physical Review B, vol. 73, pp. 033307-1 – 033307-4, 2006.
[110] J. Zi, H. Büscher, C. Falter, W. Ludwig, K. Zhang, and X. Xie, “Raman shifts in Si nanocrystals,” Applied Physics Letters, vol. 69, no. 2, pp. 200-1 – 200-3, 1996.
[111] G. R. Lin, C. J. Lin, C. K. Lin, L. J. Chou, L. J. Chou, and Y. L. Chueh, “Oxygen defect and Si nanocrystal dependent white-light and near-infrared EL of Si-implanted and PECVD Si-rich SiO2,” Journal of Applied Physics, vol. 97, no. 9, pp. 094306-1 – 094306-8, 2005.
[112] G. R. Lin, C. J. Lin, and K. C. Yu, “Time-resolved photoluminescence and capacitance–voltage analysis of the neutral vacancy defect in silicon implanted SiO2 on silicon substrate,” Journal of Applied Physics, vol. 96, no. 5, pp. 3025-3027, 2004.
[113] G. H. Li, K. Ding, Y. Chen, H. X. Han, and Z. P. Wang, “Photoluminescence and Raman scattering of silicon nanocrystals prepared by silicon ion implantion into SiO2 films,” Journal of Applied Physics, vol. 88, no. 3, pp. 1439-1442, 2000.
[114] K. S. Seol, A. Ieki, Y. Ohki, H. Nishikawa, and M. Tachimori, “Photoluminescence study on point defects in buried SiO2 film formed by implantation of oxygen,” Journal of Applied Physics, vol. 79, no. 1, pp. 412-1 – 412-6, 1996.
[115] N. Nishikawa, Y. Miyakea, E. Watanabea, D. Itoa, K. S. Seolb, Y. Ohkib, K. Ishiic, Y. Sakuraid, and K. Nagasawad, “Photoluminescence of oxygen-deficient-type defects in a-SiO2,” Journal of Non-Crystalline Solids, vol. 222, no. 1, pp. 221-227, 1997.
[116] E. D. Palik, “Handbook of optical constants of solids,” pp. 749-763, 1067, Academic, New York, 1985.
[117] A. Hartstein, J. C. Tsang, D. J. DiMaria, and D. W. Dong, “Observation of amorphous silicon regions in silicon‐rich silicon dioxide films,” Applied Physics Letters, vol. 36, no. 10, pp. 836-837, 1980.
[118] J. Feng, T. Okamoto, and S. Kawata, “Enhancement of electroluminescence through a two-dimensional corrugated metal film by grating-induced surface-plasmon cross coupling,” Optics Letters, vol. 30, no. 17, pp. 172302-1 – 172302-3, 2005.
[119] P. T. Worthing and W. L. Barnes, “Efficient coupling of surface plasmon polaritons to radiation using a bi-grating,” Applied Physics Letters, vol. 79, no. 19, pp. 3035-3037, 2001.
[120] D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Applied Physics Letters, vol. 81, no. 23, pp. 4315-4317, 2002.
[121] E. Popov, D. Maystre, R. C. McPhedran, M. Nevière, M. C. Hutley, and G. H. Derrick, “Total absorption of unpolarized light by crossed gratings,” Optics Express, vol. 16, no. 9, pp. 6146-6155, 2008.
[122] G. H. Derrick, R. C. McPhedran, D. Maystre, and M. Neviere, “Crossed gratings: a theory and its applications,” Applied Physics, vol. 18, no. 23, pp. 39-52, 1979.
[123] P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Physical Review B, vol. 6, pp. 4370-1 – 4370-10, 1972.
[124] J. Yu, Y. Shen, X. Liu, R. Fu, J. Zi, and Z. Zhu, “Absorption in one-dimensional metallic–dielectric photonic crystals,” Journal of Physics: Condensed Matter, vol. 16, no. 7, pp. L51-L56, 2004.
[125] M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of Au, Ni, and Pb at submillimeter wavelengths,” Applied Optics, vol. 26, no. 4, pp. 744-752, 1987.
[126] A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Applied Optics, vol. 37, no. 22, pp. 5271-5283, 1988.
[127] E. D. Palik, “Handbook of optical constants of solids,” pp. 765-769, 1067, Academic, New York, 1985.
[128] S. H. Wemple, “Refractive-index behavior of amorphous semiconductors and glasses,” Physical Review B, vol. 7, no. 8, pp. 3767-3777, 1973.
[129] S. Chongsawangvirod, E. A. Irene, A. Kalnitsky, S. P. Tay, and J. P. Ellul, “Refractive Index Profiles of Thermally Grown and Chemically Vapor Deposited Films on Silicon,” Journal of Electrochemical Society, vol. 137, no. 11, pp. 3536-3541, 1990.
[130] K. Haga and H. Watanabe, “Optical properties of plasma-deposited silicon-oxygen alloy films,” Japanese Journal of Applied Physics, vol. 29, no. 4, pp. 636-639, 1990.
[131] S. A. Maier, “Plasmonics: Fundamentals and Applications,” Springer, New York, 2007.
[132] J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Molecular Physics, vol. 80, no. 5, pp. 1031-1046, 1993.
[133] M. Dovrat, Y. Goshen, J. Jedrzejewski, I. Balberg, and A. Sa’ar, “Radiative versus nonradiative decay processes in silicon nanocrystals probed by time-resolved photoluminescence spectroscopy,” Phys. Rev. B, vol. 69, no. 15, pp. 155311–155318, 2004.
[134] V. Vinciguerra, G. Franzò, F. Priolo, F. Iacona, and C. Spinella, “Quantum confinement and recombination dynamics in silicon nanocrystals embedded in Si/SiO2 superlattices,” J. Appl. Phys., vol. 87, no. 11, pp. 8165–8173, 2000.
[135] L. V. Dao, X. Wen, M. T. T. Do, P. Hannaford, E. C. Cho, Y. H. Cho, and Y. Huang, “Time-resolved and time-integrated photoluminescence analysis of state filling and quantum confinement of silicon quantum dots,” J. Appl. Phys., vol. 97, no. 1, pp. 013501-1–013501-5, 2005.
[136] L. C. Andreani, G. Panzarini, and J. M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory,” Phys. Rev. B, vol. 60, no. 19, pp. 13276–13279, 1999.
[137] K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold Enhancement of Quantum Dot Luminescence in Plasmonic Metamaterials,” Phys. Rev. Lett., vol. 105, no. 22, pp. 227403-1–227403-4, 2010.
[138] Quantum Dots, http://www.sigmaaldrich.com/materials-science/nanomaterials/
quantum-dots.html.
[139] N. F. Chiu, C, Yu, S. Y. Nien, J. H. Lee, C. H. Kuan, K. C. Wu, C. K. Lee, and C. W. Lin, “Enhancement and tunability of active plasmonic by multilayer grating coupled emission,” Opt. Express, vol. 15, no. 18, pp. 11608-11615, 2007.
[140] C. Y. Tsai, K. H. Chang, C. Y. Wu, and P. T. Lee, “The aspect ratio effect on plasmonic properties and biosensing of bonding mode in gold elliptical nanoring arrays,” Opt. Express, vol. 21, no. 12, pp. 14090-14096, 2013.
[141] L. Pavesi, S. Gaponenko, and L. Dal Negro, “Towards the First Silicon Laser,” Chapter 4, pp. 261-280, volume 93 of the series NATO Science Series, 2003.
[142] L. Pavesi and R. Turan, “Silicon nanocrystals: fundamentals, synthesis and applications,” Chapter 10, pp. 247-296, WILEY, 2010.
[143] L. Pavesi, S. Gaponenko, and L. Dal Negro, “Towards the First Silicon Laser,” Chapter 1, pp. 21-28, volume 93 of the series NATO Science Series, 2003.
[144] Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science, vol. 337, no. 6093, pp. 450-453, 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51157-
dc.description.abstract以矽材料為基礎的光電子元件 (Silicon-based Optoelectronic devices),是未來整合光互聯 (Optical Interconnects) 和互補式金屬氧化物半導體 (CMOS) 系統,很重要的研究方向。特別是以矽量子點 (Silicon Quantum Dots) 為發光源的發光元件,被認為是高速傳遞訊號的光互聯系統中最重要的元件。因此,如何去提升矽量子點元件的發光特性並研究其物理機制,是很重要的研究方向。
本論文成功研製世界上第一個具金屬-介電質-金屬奈米共振腔結構(Metal-Insulator-Metal Nano-cavity) 的非晶矽量子點發光源 (Amorphous Silicon Quantum Dots Light Emitter),並深入分析與驗證其新穎的放光增強物理機制。此研究利用光場模擬去設計最佳化與對照組奈米結構,並實驗性的去驗證利用表面電漿子 (Surface Plasmons) 提升非晶矽量子點放光特性的各種新穎的物理機制。
本論文提出一個新穎的物理機制,是世界上第一個利用奈米金屬光柵 (Metal Nano-gratings) 的侷域性表面電漿共振效應 (Localized Surface Plasmons Resonances, LSPRs),與奈米共振腔 (Nano-cavity) 中的共振腔模態耦合效應 (Modes Coupling),成功有效提升奈米共振腔中的非晶矽量子點的輻射性複合量子侷限放光特性 (Quantum-Confinement-Induced Radiative Emission) 的研究。此新穎的物理機制有效提升非晶矽量子點發光元件的發光強度 (Emission Intensity),以及大幅度改善全世界應用表面電漿子窄化矽量子點放光頻譜的程度(Bandwidth narrowing),窄化其半高寬值 (Emission Bandwidth) 至只有15 nm,有效增加矽量子點發光源應用在光互聯系統中的實用性。此外,我們成功的在低溫環境之下成長出矽量子點 (below 450℃),使得矽量子點在互補式金屬氧化物半導體系統整合中,更具有實用性的應用。
本論文主要的研究可以分成三個部分:
第一部份 (第四章),此研究是世界上第一個利用Fabry–Pérot type LSPRs效應,有效提升非晶矽量子點發光強度的研究。我們利用電子束微影技術 (E-beam Lithography) 製作奈米金屬光柵,研究奈米共振腔中的表面電漿子彼此之間的共振耦合效應,成功的使奈米共振腔中的表面電漿共振,呈現侷域性的表面電漿共振子 (Localized Surface Plasmon, LSPs),並在奈米金屬線的側壁 (sidewall) 呈現Fabry–Pérot resonance型態,並在量子力學的物理基礎下,耦合非晶矽量子點和表面電漿子的近場強電場 (strong near-field),有效提升非晶矽量子點發光元件的發光強度。
第二部份 (第五章),此研究是世界上第一個利用具結構對稱性的次波長奈米金屬交叉光柵 (Subwavelength Crossed Metallic Gratings),有效提升非晶矽量子點發光強度的研究。我們設計具有結構對稱性的次波長奈米金屬交叉光柵以及次波長奈米共振腔結構,成功的利用其較強的表面電漿共振耦合輻射效應 (Out-coupling),以及較高的光萃取效率 (Light-Extraction Efficiency),並在量子力學的物理基礎下,耦合非晶矽量子點和表面電漿子的近場強電場,大幅度有效的提升非晶矽量子點發光元件的發光強度。
第三部份 (第六章),此研究是世界上第一個成功利用次波長奈米共振腔中的侷域表面電漿模態 (Localized Surface Plasmon mode, LSPs mode) 與光學上的共振腔模態 (Optical Fabry–Pérot cavity mode) 互相耦合的效應,有效提升非晶矽量子點發光強度的研究。此研究成功改善非晶矽量子點發光元件的發光特性,和沒有奈米金屬陣列結構的元件互相比較,優化的奈米金屬光柵發光元件,其發光峰值可大幅提升2.77倍,並且,其發光頻譜半高寬縮小至只有15 nm,有效增加矽量子點發光源應用在光互聯系統中的實用性。
本論文提出一個具有實用性的次波長奈米共振腔搭配奈米金屬光柵結構,在量子力學、表面電漿共振,以及奈米共振腔的物理基礎下,成功耦合非晶矽量子點、表面電漿模態,以及共振腔模態,有效提升非晶矽量子點發光元件的發光特性,有效增強矽量子點發光源應用在光互聯系統中的實用性。
zh_TW
dc.description.abstractThe development of Si-based optoelectronics integrated circuit (OEICs) devices is the key issue for the integrations of optical interconnects (OIs) and complementary metal oxide semiconductor (CMOS) technologies in the future. For the practical applications of Si-based OEICs in future Central Processing Unit (CPU) with high-speed data rates, the key component is the light source – Si quantum dots (Si QDs) light emitter. Hence, how to improve the light emission properties of the Si QDs light emitter and figure out its fundamental physical mechanisms, those are very important issues and research directions in the future.
This thesis successfully developed the world's first amorphous silicon quantum dots (a-Si QDs) light emitter with metal-insulator-metal (MIM) sandwiched nanostructures, and we deeply analyzed and verified its new physical mechanism for light emission. We designed the nanostructures of optimized and reference sample by advanced optical simulation, and we experimentally verified the correctness of the new physical mechanism for surface plasmons-enhanced light emission from a-Si QDs light emitter.
We do the world's first research of new physical mechanism of the mode coupling between the localized surface plasmons resonances (LSPRs) mode and the optical cavity mode in the MIM nanocavity. This new physical mechanism successfully enhanced the quantum-confinement-induced emission output of a-Si QDs, and greatly narrowed the emission bandwidth to only 15 nm, compared to the related study of spectral narrowing by surface plasmons resonance in the world.
The thesis focuses in depth on the experimental researches and analysis for the enhancements of light emissions of the a-Si QDs light emitter with the MIM sandwiched nanostructures, and its basic physical mechanisms. We have successfully shown that the multifold intensity enhancements and spectral narrowing of photoluminescence of the a-Si QDs light emitter, through the coupling of the a-Si QDs and the near-field (evanescent electric field) of the localized surface plasmons (LSPs), the out-coupling effect of LSPs, and the strong coupling effect between the LSPs and optical Fabry–Pérot (FP) resonance modes in the coupled QDs–plasmonic system, based on the theories in quantum mechanics (QMs), surface plasmon (SPs), and nanocavity, by tuning the plasmonic subwavelength metallic nano-gating on the top. Besides, the Si QDs have been successfully grown by the low-temperature annealing (below 450 ℃), providing more practical applications of the Si QDs integrated into the CMOS system.
The thesis has three main parts:
The first part (Chapter 4), we investigated experimentally the world's first research of plasmon-enhanced light-emission of the a-Si QDs light emitter with the Ag/SiOx:a-Si QDs/Ag nanostructures, through the resonant coupling between the a-Si QDs and the near-field of FP-type LSPs resonance mode, by tuning a one-dimensional (1D) Ag gratings on the top. According to our experimental results, it is worthwhile noticing the improved design of Ag grating structure by tuning the pitch and Ag line width for the largest PL integrated emission through the strong a-Si QDs–LSPs coupling, based on the theories of QMs and SPs.
The second part (Chapter 5), we have experimentally investigated the world's first research of LSPs-enhanced PL intensity and spectral narrowing of the a-Si QDs, using plasmonic subwavelength crossed Ag gratings as the top layer in the Ag/SiOx:a-Si QDs/Ag sandwich nanostructures. A 2-fold enhancement in the PL peak intensity and a 1.34-fold enhancement in the integrated PL intensity have been observed by switching the 1D Ag grating to the crossed Ag grating, through the higher light-extraction efficiency of the polarization-independent symmetric structure, the stronger a-Si QDs–LSPs coupling, and the increased out-coupling efficiency of the LSPs mode to the radiated photons.
The third part (Chapter 6), we have experimentally demonstrated the world's first research of the amplified PL emission with narrowed linewidth of the a-Si QDs, through the strong coupling of the LSP and optical FP cavity modes within the MIM plasmonic nanocavity, at the emission peak wavelength of free a-Si QDs. As compared with the results of our previous report (Chapter 4), the significant spectral narrowing is achieved by further applying the resonance coupling between the LSP and optical FP cavity modes by the whole new configuration designs of the MIM plasmonic nanocavity. A maximum of 2.77-fold PL enhancement and the narrowest emission linewidth of 15 nm have been observed by using an optimized 1D Ag grating structure as the top layer in the nanocavity.
A novel MIM sandwich nanocavity combined with the plasmonic subwavelength metallic gratings was proposed for efficiently enhancing the light-emission properties of a-Si QDs, through the exctions-plasmons coupling in QD–plasmonic material system, the strong out-coupling of LSPs, and the strong coupling between the LSPs and optical FP cavity modes, for the practical applications of a-Si QDs as a promising light source in future OEICs integrated with CMOS systems.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:26:20Z (GMT). No. of bitstreams: 1
ntu-105-D00941027-1.pdf: 14215332 bytes, checksum: bce1e8036295dde4497f424bb9b00092 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsContents
口試委員會審定書
誌謝……………………..…………………………………………………………………….i
摘要……………….. ……………………………………………………………….…v
Abstract…………… …………………………………………………………………ix
Contents …………………………………………………………………………….xiii
List of Figures ……………………………………………………………………...xvii
List of Tables …………………………………………………………………..…xxviii
Chapter 1 Introduction to Si-based Optoelectronic Integrated Circuit
Technology….……………………………………………………..1
1.1 Si-based Optoelectronic Integrated Circuit…………………………….1
1.1.1 Background and History………………………………………...1
1.1.2 Toward Si-based laser…………………………………………..8
1.2 Literature Review………………………………………………………9
1.3 Motivation…………………………………………………………….22
1.4 Experimental Architecture and Design………………………………..23
1.5 Design Thinking for Three Main Research…………………………...25
1.6 Thesis Organization…………………………………………………...29
Chapter 2 Basic Theory of Plasmonic Light–Emission Enhancement …….31
2.1 Silicon Quantum Dots………………………………………………...31
2.1.1 Quantum Confinement Effect………………………………....31
2.1.2 Radiation Emission Mechanism……………………………….38
2.2 Surface Plasmons……………………………………………………..40
2.2.1 Surface Plasmons Polaritons………………………………….40
2.2.2 Localized Surface Plasmons………………………………….43
2.3 Metal-Insulator-Metal (MIM) nano-cavity…………………………...44
2.3.1 Surface Plasmons Coupling Mechanism………………………44
2.3.2 Localized Electromagnetic energy density……………………45
2.3.3 Optical Fabry-Pérot cavity...…………………………………..46
2.4 Plasmonic Light–Emission Enhancement…………………………….47
2.4.1 Fermi’s Golden Rule…………………………………………..47
2.4.2 Exctions-Plasmons Coupling………………………………….48
2.4.3 Out-Coupling of Surface Plasmons……………………………49
Chapter 3 Experiment, Measuring, and Optical Simulation Technique…...51
3.1 Experiment Technique………………………………………………...51
3.1.1 Plasma-Enhanced Chemical Vapor Deposition……………….51
3.1.2 Furnace Annealing……………………………………………52
3.1.3 E-beam Lithography………………………………………….53
3.1.4 Thermal Evaporation………………………………………….57
3.1.5 Reactive Ion Etching………………………………………….58
3.2 Measuring Technique…………………………………………………59
3.2.1 Reflectance Spectrometer……………………………………..59
3.2.2 Photoluminescence Spectrometer……………………………..59
3.2.3 X-ray Photoelectron Spectroscopy…………………………….60
3.2.4 Raman Spectroscopy…………………………………………..61
3.2.5 Field Emission Scanning Electron Microscope……………….62
3.2.6 Atomic Force Microscope……………………………………..63
3.2.7 Ellipsometer…………………………………………………...64
3.3 Optical Simulation Technique………………………………………..65
Chapter 4 Plasmon-enhanced a-Si QDs by LSPPs resonance in
Ag/SiOx:a-Si QDs/Ag Sandwich Nanostructures…..…………….67
4.1 Experimental Architecture and Design……………………………..68
4.2 Experiments………………………………………………………...70
4.2.1 Device structure…………………………………………….70
4.2.2 Process flow chart…………………………………………..71
4.2.3 Process parameters………………………………………….72
4.2.4 Measurement………………………………………………..76
4.3 Experimental Results and Discussion……………………………...77
4.3.1 Material analysis of SiOx:a-Si QDs………………………..77
4.3.2 LSPPs resonances…………………………………………..80
4.3.3 PL spectra analysis………………………………………….84
4.3.4 Conclusion………………………………………………….87
Chapter 5 Plasmon-enhanced a-Si QDs by LSPs through Plasmonic
Subwavelength Crossed Metallic Gratings………..………………89
5.1 Experimental Architecture and Design…………………………..…90
5.2 Experiments………………………………………………………...92
5.2.1 Device structure…………………………………………….92
5.2.2 Process flow chart…………………………………………..93
5.2.3 Process parameters………………………………………….94
5.2.4 Measurement………………………………………………..98
5.3 Experimental Results and Discussion………………………….…100
5.3.1 Material analysis of SiOx:a-Si QDs………………………..100
5.3.2 LSPs resonance……………………………………………102
5.3.3 PL spectra analysis……………………………………...…109
5.3.4 TRPL and evanescent electric field analysis………………111
5.3.5 Conclusion…………………………………………………117
Chapter 6 Narrow-band amplified-emission of the a-Si QDs via the
coupling between LSPs and Fabry–Pérot cavity modes……….119
6.1 Experimental Architecture and Design……………………………..121
6.2 Experiments……………………………………………………...…123
6.2.1 Device structure……………………………………………..123
6.2.2 Process flow chart…………………………………………..125
6.2.3 Process parameters………………………………………….126
6.2.4 Measurement……………………………………………….130
6.3 Experimental Results and Discussion…………………………….131
6.3.1 Material analysis of SiOx:a-Si QDs…………………………131
6.3.2 LSPs-FP cavity modes resonance coupling…………………134
6.3.3 PL spectra analysis………………………………………….151
6.3.4 TRPL and evanescent electric field analysis………………..154
6.3.5 Quantification of coupling efficiency……………………….158
6.3.6 Conclusion…………………………………………………..161
Chapter 7 Conclusions…………………...……………………………………163
Chapter 8 Future Work……………………………………………………….165
Publication List…………………………………………………………………….169
Honor……………………………………………………………………………….173
References………………………………………………………………………….181
dc.language.isoen
dc.subject量子侷限效應zh_TW
dc.subject矽量子點zh_TW
dc.subject光激發螢光zh_TW
dc.subject表面電漿子zh_TW
dc.subject侷域表面電漿共振模態zh_TW
dc.subject法布里-珀羅共振腔模態zh_TW
dc.subject次波長奈米共振腔zh_TW
dc.subject次波長奈米金屬光柵zh_TW
dc.subject交叉狀金屬光柵zh_TW
dc.subject金屬-介電質-金屬共振腔zh_TW
dc.subject近場電場zh_TW
dc.subject模態耦合效應zh_TW
dc.subject表面電漿共振耦合輻射效應zh_TW
dc.subject光互聯系統zh_TW
dc.subject矽基光電子電路。zh_TW
dc.subject矽量子點zh_TW
dc.subject量子侷限效應zh_TW
dc.subject光激發螢光zh_TW
dc.subject表面電漿子zh_TW
dc.subject侷域表面電漿共振模態zh_TW
dc.subject法布里-珀羅共振腔模態zh_TW
dc.subject次波長奈米共振腔zh_TW
dc.subject次波長奈米金屬光柵zh_TW
dc.subject交叉狀金屬光柵zh_TW
dc.subject金屬-介電質-金屬共振腔zh_TW
dc.subject近場電場zh_TW
dc.subject模態耦合效應zh_TW
dc.subject表面電漿共振耦合輻射效應zh_TW
dc.subject光互聯系統zh_TW
dc.subject矽基光電子電路。zh_TW
dc.subjectSubwavelength Nano-cavityen
dc.subjectMode couplingen
dc.subjectOut-coupling of LSPsen
dc.subjectOptical Interconnects (OIs)en
dc.subjectSi-based optoelectronics integrated circuit (OEICs).en
dc.subjectSilicon Quantum Dots (Si QDs)en
dc.subjectQuantum Confinement Effect (QCE)en
dc.subjectSilicon Quantum Dots (Si QDs)en
dc.subjectQuantum Confinement Effect (QCE)en
dc.subjectPhotoluminescence (PL)en
dc.subjectSurface Plasmons (SPs)en
dc.subjectLocalized Surface Plasmons (LSPs) modeen
dc.subjectOptical Fabry–P&eacuteen
dc.subjectrot (FP) resonance modeen
dc.subjectEvanescent electric fielden
dc.subjectSubwavelength metallic nano-gratingen
dc.subjectCrossed gratingen
dc.subjectMetal-insulator-Metal (MIM) sandwich nanostructuresen
dc.subjectNear-fielden
dc.subjectEvanescent electric fielden
dc.subjectMode couplingen
dc.subjectOut-coupling of LSPsen
dc.subjectOptical Interconnects (OIs)en
dc.subjectSi-based optoelectronics integrated circuit (OEICs).en
dc.subjectPhotoluminescence (PL)en
dc.subjectSurface Plasmons (SPs)en
dc.subjectLocalized Surface Plasmons (LSPs) modeen
dc.subjectOptical Fabry–P&eacuteen
dc.subjectrot (FP) resonance modeen
dc.subjectSubwavelength Nano-cavityen
dc.subjectSubwavelength metallic nano-gratingen
dc.subjectCrossed gratingen
dc.subjectMetal-insulator-Metal (MIM) sandwich nanostructuresen
dc.subjectNear-fielden
dc.title奈米金屬光柵與共振腔應用於增強矽量子點的量子侷限放光效應zh_TW
dc.titleMetal Nano-grating and Nano-cavity for the Enhancement of Quantum-Confinement-Induced Photoluminescence of Silicon Quantum Dotsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.coadvisor林晃巖(Hoang Yan Lin)
dc.contributor.oralexamcommittee李柏璁(Po-Tsung Lee),王子建(Tzyy-Jiann Wang),李君浩(Jiun-Haw Lee)
dc.subject.keyword矽量子點,量子侷限效應,光激發螢光,表面電漿子,侷域表面電漿共振模態,法布里-珀羅共振腔模態,次波長奈米共振腔,次波長奈米金屬光柵,交叉狀金屬光柵,金屬-介電質-金屬共振腔,近場電場,模態耦合效應,表面電漿共振耦合輻射效應,光互聯系統,矽基光電子電路。,zh_TW
dc.subject.keywordSilicon Quantum Dots (Si QDs),Quantum Confinement Effect (QCE),Photoluminescence (PL),Surface Plasmons (SPs),Localized Surface Plasmons (LSPs) mode,Optical Fabry–P&eacute,rot (FP) resonance mode,Subwavelength Nano-cavity,Subwavelength metallic nano-grating,Crossed grating,Metal-insulator-Metal (MIM) sandwich nanostructures,Near-field,Evanescent electric field,Mode coupling,Out-coupling of LSPs,Optical Interconnects (OIs),Si-based optoelectronics integrated circuit (OEICs).,en
dc.relation.page238
dc.identifier.doi10.6342/NTU201600148
dc.rights.note有償授權
dc.date.accepted2016-03-28
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
13.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved