請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51117完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張英 | |
| dc.contributor.author | Hui-Chun Chang | en |
| dc.contributor.author | 張惠淳 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:25:31Z | - |
| dc.date.available | 2016-06-11 | |
| dc.date.copyright | 2016-06-11 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-05-09 | |
| dc.identifier.citation | Abel, S., and Theologis, A. (1994). Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. The Plant J 5, 421-427.
Agarwal, P.K., and Jha, B. (2010). Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biol Plant 54, 201-212. Aitken, A. (1996). 14-3-3 and its possible role in co-ordinating multiple signalling pathways. Trends in Cell Biol 6, 341-347. Atkinson, N.J., and Urwin, P.E. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63, 3523-3543. Ausubel, F.M. (2005). Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6, 973-979. Bachmann, M., Shiraishi, N., Campbell, W.H., Yoo, B.C., Harmon, A.C., and Huber, S.C. (1996). Identification of Ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase. Plant Cell 8, 505-517. Bailey-Serres, J., and Voesenek, L.A. (2008). Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59, 313-339. Bensmihen, S. (2002). The Homologous ABI5 and EEL Transcription Factors Function Antagonistically to Fine-Tune Gene Expression during Late Embryogenesis. Plant Cell 14, 1391-1403. Boyer, J.S. (1982). Plant productivity and environment. Science 218, 443-448. Bray, E.A. (2000). Responses to abiotic stresses. Biochem Mol Biol Plant 1158-1249. Catala, R., Lopez-Cobollo, R., Mar Castellano, M., Angosto, T., Alonso, J.M., Ecker, J.R., and Salinas, J. (2014). The Arabidopsis 14-3-3 protein RARE COLD INDUCIBLE 1A links low-temperature response and ethylene biosynthesis to regulate freezing tolerance and cold acclimation. Plant Cell 26, 3326-3342. Chang, I.F., Curran, A., Woolsey, R., Quilici, D., Cushman, J.C., Mittler, R., Harmon, A., and Harper, J.F. (2009). Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana. Proteomics 9, 2967-2985. Chen, Y.T., Liu, H., Stone, S., and Callis, J. (2013). ABA and the ubiquitin E3 ligase KEEP ON GOING affect proteolysis of the Arabidopsis thaliana transcription factors ABF1 and ABF3. Plant J 75, 965-976. Choi, H.I., Park, H.J., Park, J.H., Kim, S., Im, M.Y., Seo, H.H., Kim, Y.W., Hwang, I., and Kim, S.Y. (2005). Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 139, 1750-1761. Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal 16, 735-743. Craufurd, P.Q., Flower, D.J., and Peacock, J.M. (1993). Effect of heat and drought stress on Sorghum (Sorghum Bicolor). I. panicle development and leaf appearance. Exp Agr 29, 61-76. Curran, A., Chang, I.F., Chang, C.L., Garg, S., Miguel, R.M., Barron, Y.D., Li, Y., Romanowsky, S., Cushman, J.C., Gribskov, M., Harmon, A.C., and Harper, J.F. (2011). Calcium-dependent protein kinases from Arabidopsis show substrate specificity differences in an analysis of 103 substrates. Front Plant Sci 2, 36. Cushman, J.C., and Bohnert, H.J. (2000). Genomic approaches to plant stress tolerance. Curr Opin in Plant Biol 3, 117-124. Dangl, J.L., and Jones, J.D. (2001). Plant pathogens and integrated defence responses to infection. Nature 411, 826-833. Ferl, R.J. (1996). 14-3-3 proteins and signal transduction. Annu Rev Plant Physiol Plant Mol Biol 47, 49-73. Finkelstein, R., Gampala, S.S., Lynch, T.J., Thomas, T.L., and Rock, C.D. (2005). Redundant and distinct functions of the ABA response loci ABA-INSENSITIVE (ABI) 5 and ABRE-BINDING FACTOR (ABF) 3. Plant Mol Biol 59, 253-267. Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2006). Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9, 436-442. Fuller, B., Stevens, S.M., Jr., Sehnke, P.C., and Ferl, R.J. (2006). Proteomic analysis of the 14-3-3 family in Arabidopsis. Proteomics 6, 3050-3059. Muñiz García, M.N., Giammaria, V., Grandellis, C. Téllez-Iñón, M.T., Ulloa, R.M., Capiati, D.A. (2012). Characterization of StABF1, a stress-responsive bZIP transcription factor from Solanum tuberosum L. that is phosphorylated by StCDPK2 in vitro. Planta 4, 761-778. Gendrel, A.V., Lippman, Z., Martienssen, R., and Colot, V. (2005). Profiling histone modification patterns in plants using genomic tiling microarrays. Nat Methods 2, 213-218. Gomez-Porras, J.L., Riano-Pachon, D.M., Dreyer, I., Mayer, J.E., and Mueller-Roeber, B. (2007). Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice. BMC Genomics 8, 260. Hernandez Sebastia, C., Hardin, S.C., Clouse, S.D., Kieber, J.J., and Huber, S.C. (2004). Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate. Arch Biochem Biophys 428, 81-91. Heyne, E.G., and Brunson, A.M. (1940). Genetic studies of heat and drought tolerance in Maize. Agronomy J 32, 803. Hrabak, E.M., Chan, C.W., Gribskov, M., Harper, J.F., Choi, J.H., Halford, N., Kudla, J., Luan, S., Nimmo, H.G., Sussman, M.R., Thomas, M., Walker-Simmons, K., Zhu, J.K., and Harmon, A.C. (2003). The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132, 666-680. Huang, J.Z. (2001). Phosphorylation of Synthetic Peptides by a CDPK and Plant SNF1-Related Protein Kinase. Influence of Proline and Basic Amino Acid Residues at Selected Positions. Plant Cell Physio 42, 1079-1087. Ingram, J., and Bartels, D. (1996). The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47, 377-403. Izumi, Y., Burg, M.B., and Ferraris, J.D. (2014). 14-3-3-beta and -{varepsilon} contribute to activation of the osmoprotective transcription factor NFAT5 by increasing its protein abundance and its transactivating activity. Physiol Rep 2, e12000. Jakoby, M., Weisshaar, B., Dröge-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T., and Parcy, F. (2002). bZIP transcription factors in Arabidopsis. Trends in Plant Sci 7, 106-111. Kang, J.y. (2002). Arabidopsis Basic Leucine Zipper Proteins That Mediate Stress-Responsive Abscisic Acid Signaling. Plant Cell 14, 343-357. Kobayashi, Y., Murata, M., Minami, H., Yamamoto, S., Kagaya, Y., Hobo, T., Yamamoto, A., and Hattori, T. (2005). Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J 44, 939-949. Lata, C., Yadav, A., and Pras, M. (2011). Role of plant transcription factors in abiotic stress tolerance. Abiotic Stress Response in Plants 10, 270-296. Lee, M., and Yoe, H. (2015). Analysis of environmental stress factors using an artificial growth system and plant fitness optimization. Biomed Res Int 2015, 292543. Liu, X., Yu, C.W., Duan, J., Luo, M., Wang, K., Tian, G., Cui, Y., and Wu, K. (2012). HDA6 directly interacts with DNA methyltransferase MET1 and maintains transposable element silencing in Arabidopsis. Plant Physiol 158, 119-129. Maudoux, O., Batoko, H., Oecking, C., Gevaert, K., Vandekerckhove, J., Boutry, M., and Morsomme, P. (2000). A plant plasma membrane H+-ATPase expressed in yeast is activated by phosphorylation at its penultimate residue and binding of 14-3-3 regulatory proteins in the absence of fusicoccin. J Biol Chem 275, 17762-17770. Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends Plant Sci 11, 15-19. Moore, B.W., and Perez, V.J. (1968). Specific acidic proteins of the nervous system. Physiol. Biochem. Asp N. Int, 343-359. Muniz Garcia, M.N., Giammaria, V., Grandellis, C., Tellez-Inon, M.T., Ulloa, R.M., and Capiati, D.A. (2012). Characterization of StABF1, a stress-responsive bZIP transcription factor from Solanum tuberosum L. that is phosphorylated by StCDPK2 in vitro. Planta 235, 761-778. Muslin, A.J., Tanner, J.W., Allen, P.M., and Shaw, A.S. (1996). Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84, 889-897. Nicaise, V., Roux, M., and Zipfel, C. (2009). Recent advances in PAMP-triggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm. Plant Physiol 150, 1638-1647. Oh, S., Shin, S., Lightfoot, S.A., and Janknecht, R. (2013). 14-3-3 proteins modulate the ETS transcription factor ETV1 in prostate cancer. Cancer Res 73, 5110-5119. Raghavendra, A.S., Gonugunta, V.K., Christmann, A., and Grill, E. (2010). ABA perception and signalling. Trends Plant Sci 15, 395-401. Rosenquist, M. (2001). Data mining the Arabidopsis genome reveals fifteen 14-3-3 genes. Expression is demonstrated for two out of five novel genes. Plant Physiol 127, 142-149. Roychoudhury, A., Paul, S., and Basu, S. (2013). Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep 32, 985-1006. Schoonheim, P.J., Veiga, H., Pereira Dda, C., Friso, G., van Wijk, K.J., and de Boer, A.H. (2007). A comprehensive analysis of the 14-3-3 interactome in barley leaves using a complementary proteomics and two-hybrid approach. Plant Physiol 143, 670-683. Schultz, T.F. (1998). 14-3-3 proteins are part of an abscisic Acid VIVIPAROUS1 (VP1) response complex in the Em promoter and interact with VP1 and EmBP1. The Plant Cell 10, 837-848. Sebastia, C.H., Hardin, S.C., Clouse, S.D., Kieber, J.J. and Huber, S.C. (2004). Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate. Arch. Biochem. Biophys. 428: 81-91. Sehnke, P.C., DeLille, J.M., and Ferl, R.J. (2002). Consummating signal transduction the role of 14-3-3 proteins in the completion of signal-induced transitions in protein activity. Plant Cell 14, 339-354. Seif El-Yazal, S., Seif El-Yazal, M., Dwidar, E., and Rady, M. (2015). Phytohormone crosstalk research: Cytokinin and its crosstalk with other phytohormones. Current Protein & Peptide Sci 16, 395-405. Shen, Q., Zhang, P. and Ho, T.H. (1996). Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell 8, 1107–1119. Shinozaki, K., and Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. J Exp Bot 58, 221-227. Sirichandra, C., Davanture, M., Turk, B.E., Zivy, M., Valot, B., Leung, J., and Merlot, S. (2010). The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover. PLoS One 5, e13935. Sornaraj, P., Luang, S., Lopato, S., and Hrmova, M. (2016). Basic leucine zipper (bZIP) transcription factors involved in abiotic stresses: A molecular model of a wheat bZIP factor and implications of its structure in function. Biochim Biophys Acta 1860, 46-56. Sun, X., Luo, X., Sun, M., Chen, C., Ding, X., Wang, X., Yang, S., Yu, Q., Jia, B., Ji, W., Cai, H., and Zhu, Y. (2014). A Glycine soja 14-3-3 protein GsGF14o participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana. Plant Cell Physiol 55, 99-118. Sun, X., Sun, M., Jia, B., Chen, C., Qin, Z., Yang, K., Shen, Y., Meiping, Z., Mingyang, C. and Zhu, Y. (2015). A 14-3-3 family protein from wild soybean (Glycine Soja) regulates ABA sensitivity in Arabidopsis. PloS One 10, e0146163. Tezuka, K., Taji, T., Hayashi, T., and Sakata, Y. (2013). A novel abi5 allele reveals the importance of the conserved Ala in the C3 domain for regulation of downstream genes and salt tolerance during germination in Arabidopsis. Plant Signal Behav 8, e23455. Vysotskii, D.A., de Vries-van Leeuwen, I.J., Souer, E., Babakov, A.V., and de Boer, A.H. (2013). ABF transcription factors of Thellungiella salsuginea: Structure, expression profiles and interaction with 14-3-3 regulatory proteins. Plant Signal Behav 8, e22672. Wang, Y., Li, L., Ye, T., Lu, Y., Chen, X., and Wu, Y. (2013). The inhibitory effect of ABA on floral transition is mediated by ABI5 in Arabidopsis. J Exp Bot 64, 675-684. Yamaguchi-Shinozaki, K., and Shinozaki, K. (2005). Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10, 88-94. Yan, J., He, C., Wang, J., Mao, Z., Holaday, S.A., Allen, R.D., and Zhang, H. (2004). Overexpression of the Arabidopsis 14-3-3 protein GF14 lambda in cotton leads to a 'stay-green' phenotype and improves stress tolerance under moderate drought conditions. Plant Cell Physiol 45, 1007-1014. Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2, 1565-1572. Yoshida, T., Mogami, J., and Yamaguchi-Shinozaki, K. (2014). ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21, 133-139. Zhang, W., Ruan, J., Ho, T.H., You, Y., Yu, T., and Quatrano, R.S. (2005). Cis-regulatory element based targeted gene finding: genome-wide identification of abscisic acid- and abiotic stress-responsive genes in Arabidopsis thaliana. Bioinformatics 21, 3074-3081. Zhao, R., Sun, H.L., Mei, C., Wang, X.J., Yan, L., Liu, R., Zhang, X.F., Wang, X.F., Zhang, D.P. (2011). The Arabidopsis Ca(2+)-dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and post-germination growth. New Phytol 192, 61-73. Zhou, H., Lin, H., Chen, S., Becker, K., Yang, Y., Zhao, J., Kudla, J., Schumaker, K.S., and Guo, Y. (2014). Inhibition of the Arabidopsis salt overly sensitive pathway by 14-3-3 proteins. Plant Cell 26, 1166-1182. Zou, M., Guan, Y., Ren, H., Zhang, F., and Chen, F. (2008). A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66, 675-683. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51117 | - |
| dc.description.abstract | 在植物中,bZIP 是一群大的轉錄因子(TF)基因家族。先前的研究發現,bZIPs參與許多非生物逆境反應。bZIP會藉由調節許多下游基因,進而去對抗環境逆境。然而,對於植物抵抗環境壓力的轉錄機制仍然不是很清楚。 14-3-3蛋白是一種鷹架蛋白,其與標的蛋白結合可導致酶的激活/去激活、改變座落位置,細胞核,線粒體和葉綠體等胞器之進出、防止或刺激蛋白質的降解。ABF3及ABI5皆受鹽分誘導表現。為了研究ABF3這一個bZIP類的轉錄因子,在阿拉伯芥中參與的轉錄機制,以及和14-3-3蛋白之間的交互關係,本研究使用了螢光素酶測試法檢測轉錄活性。本實驗結果顯示共同表現ABF3及14-3-3能夠提升以ABI5啟動子驅動的螢光素酶表現。染色質免疫沉澱 (ChIP) 實驗結果分析發現ABF3會與ABI5啟動子結合。利用試管內激酶活性分析,鈣離子依存性激酶可磷酸化ABF3;並找到三個磷酸化位點分別為Thr-128,Ser-134及Thr-451。總體而言,本研究發現在阿拉伯芥中14-3-3與轉錄因子ABF3共表現下,可調節下游基因ABI5之表現,在阿拉伯芥當中是否可透過此調控方式抵禦鹽分逆境,則需要更多後續研究。 | zh_TW |
| dc.description.abstract | Basic region/leucine zippers (bZIPs) are transcription factors (TFs) encoded by a big gene family in plants. Previous studies showed that bZIPs participate in many abiotic stress responses. bZIPs can regulate many down-stream genes, which could response against the environment stresses. However, the transcriptional network and the transcription mechanism in plants remained unclear. 14-3-3 proteins are scaffold proteins, which can result in activation/deactivation of enzymes, alteration of the translocation into/out of organelles like the nucleus, mitochondria and chloroplasts, prevention or stimulation of proteolytic breakdown of protein. The gene expression of ABF3 and ABI5 are induced by salt. In order to investigate the relationship between ABF3, a bZIP TF, and 14-3-3 protein in the transcriptional network in Arabidopsis, This research carried by protoplast transactivation assay using luciferase as a reporter. The results showed that the expression of both 14-3-3 and ABF3 can up-regulate ABI5 gene expression. Chromatin immunoprecipitation (ChIP) analysis results showed that ABF3 binds to the promoter of ABI5. In vitro kinase assay showed that calcium dependent protein kinase can phosphorylate ABF3. Thr-128, Ser-134 and Thr-451 phosphorylation sites were identified. In conclusion, 14-3-3 and ABF3 together regulate the transcription level of down-stream ABI5 gene. Whether this regulation pathway is involved in salt stress response requires further studies. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:25:31Z (GMT). No. of bitstreams: 1 ntu-105-R02b42022-1.pdf: 1931609 bytes, checksum: c50769f52c206ab024b668d1667a2026 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 誌謝﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒II
摘要﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒III Abstract﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒IV Contents﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒VI Abbreviations ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒IX List of Tables﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒XII List of Figures ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒XIII List of Appendix﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ XIV 1. Introduction﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒1 1.1 Environmental stresses﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 1 1.1.1 Biotic stresses ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒1 1.1.2 Abiotic stresses﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒2 1.2 Transcriptional regulatory networks in abiotic stress responses﹒﹒﹒﹒﹒﹒3 1.3 ABA﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒3 1.3.1 ABA-dependent pathway﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒4 1.3.2 ABA-independent pathway﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒5 1.4 Stress-responsive transcription factors in plants﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 5 1.4.1 bZIP transcription factors﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒6 1.5 ABA INSENSITIVE5﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒7 1.6 14-3-3 protein﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒7 1.6.1 14-3-3 protein and abiotic stresses ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒8 1.6.2 14-3-3 protein and transcription factors ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒9 1.6.3 14-3-3 protein and ABFs ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒10 1.7 Project goals﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 11 2. Materials and Methods ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒13 2.1 Plant materials and growth conditions﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒13 2.2 RNA extraction and Real-time PCR analysis ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒13 2.3 Isolation of Arabidopsis leaf protoplasts ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒14 2.4 Bimolecular Fluorescence Complementation ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒15 2.4.1 Plasmid Construction for BiFC analysis ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒15 2.4.2 Transformation of plasmids for BiFC analysis﹒﹒﹒﹒﹒﹒﹒﹒﹒15 2.5 Transactivation assay using Arabidopsis leaf protoplasts﹒﹒﹒﹒﹒﹒﹒﹒16 2.6 Chromatin immunoprecipitation Assays ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒17 2.7 Fusion peptide design and construction ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒18 2.8 Purification of Glutathione S-transferase-tagged recombinant proteins ﹒﹒18 2.9 In vitro kinase assay﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒19 2.10 Arabidopsis Transformation Using the Floral Dipping Method﹒﹒﹒﹒﹒20 Results﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒21 3.1 AtABF3 can be phosphorylated by AtCDPKs in vitro﹒﹒﹒﹒﹒﹒﹒﹒﹒21 3.2 Protein-protein interaction between ABF3 and 14-3-3ω was detected using BiFC ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒21 3.3 Transactivation assay of ABI5 activated by ABF3 and 14-3-3 ﹒﹒﹒﹒﹒22 3.4 ABF3 can enhance the transcription activity of ABI5 through binding to ABRE cis-element of ABI5 promoter﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒23 3.5 ABF3 can bind to the promoter of ABI5 in vivo ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒24 3.6 ABF3 and ABI5 gene expression in abf3 mutant under salt stress condition ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒24 3.7 Isolation of abi5 T-DNA insertional mutant lines﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒25 3.8 Isolation of AtABI5 and AtABF3 overexpression lines﹒﹒﹒﹒﹒﹒﹒﹒﹒26 4. Discussion﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 27 Reference﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 33 Table﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 45 Figures﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒46 Appendixes﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒57 | |
| dc.language.iso | en | |
| dc.subject | 雙分子互補螢光系統 | zh_TW |
| dc.subject | bZIP轉錄因子 | zh_TW |
| dc.subject | ABF | zh_TW |
| dc.subject | 14-3-3蛋白 | zh_TW |
| dc.subject | ABI5 | zh_TW |
| dc.subject | 鹽分逆境 | zh_TW |
| dc.subject | 磷酸化 | zh_TW |
| dc.subject | bZIP轉錄因子 | zh_TW |
| dc.subject | ABF | zh_TW |
| dc.subject | 14-3-3蛋白 | zh_TW |
| dc.subject | ABI5 | zh_TW |
| dc.subject | 雙分子互補螢光系統 | zh_TW |
| dc.subject | 鹽分逆境 | zh_TW |
| dc.subject | 磷酸化 | zh_TW |
| dc.subject | phosphorylation | en |
| dc.subject | 14-3-3 | en |
| dc.subject | ABI5 | en |
| dc.subject | bimolecular fluorescence complementation | en |
| dc.subject | salt stress | en |
| dc.subject | bZIP | en |
| dc.subject | bZIP | en |
| dc.subject | ABF | en |
| dc.subject | 14-3-3 | en |
| dc.subject | ABI5 | en |
| dc.subject | bimolecular fluorescence complementation | en |
| dc.subject | salt stress | en |
| dc.subject | phosphorylation | en |
| dc.subject | ABF | en |
| dc.title | 阿拉伯芥ABF3在鹽及離層酸作用之下調控ABI5基因表現之研究 | zh_TW |
| dc.title | The regulation of ABI5 expression by ABF3 in response to salt and ABA in Arabidopsis thaliana | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林讚標,靳宗洛,李昆達,鄭萬興 | |
| dc.subject.keyword | bZIP轉錄因子,ABF,14-3-3蛋白,ABI5,雙分子互補螢光系統,鹽分逆境,磷酸化, | zh_TW |
| dc.subject.keyword | bZIP,ABF,14-3-3,ABI5,bimolecular fluorescence complementation,salt stress,phosphorylation, | en |
| dc.relation.page | 69 | |
| dc.identifier.doi | 10.6342/NTU201600243 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-05-09 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 1.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
