Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51112
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁啟德(Chi-Te Liang)
dc.contributor.authorCheng-Hua Liuen
dc.contributor.author劉承華zh_TW
dc.date.accessioned2021-06-15T13:25:24Z-
dc.date.available2021-05-17
dc.date.copyright2016-05-17
dc.date.issued2016
dc.date.submitted2016-05-12
dc.identifier.citationchapter 1
References 4
[1] G. E. Moore, Tech. Dig. IEDM 21, 11 (1975).
[2] A. K. Geim, Rev. Mod. Phys. 83, 851 (2011).
[3] A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
[4] A. K. Geim and I. V. Grigorieva, Nature 499, 419 (2013).
[5] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanotechnol. 7, 699 (2012).
[6] K. Alam and R. K. Lake, IEEE Tran. Electron Devices. 59, 3250 (2012).
[7] J. Jo and C. Shin, Curr. Appl. Phys. 15, 352 (2015).
[8] M. L. Luisier, M.; Antoniadis, D. A.; Bokor, J., IEDM Tech. Dig. IEDM 251-254 (2011).
[9] Y. Taur, IBM J. Res. Dev. 46, 213 (2002).
[10] X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319, 1229 (2008).
chapter 2
References 36
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
[2] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320, 1308 (2008).
[3] T. J. B. M. Janssen, A. Tzalenchuk, S. Lara-Avila, S. Kubatkin, and V. I. Fal'ko, Rep. Prog. Phys. 76, 104501 (2013).
[4] M. Mecklenburg and B. C. Regan, Phys. Rev. Lett. 106, 116803 (2011).
[5] P. R. Wallace, Phys. Rev. 71, 622 (1947).
[6] A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
[7] Y. W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, Phys. Rev. Lett. 99, 246803 (2007).
[8] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
[9] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
[10] T. Ando, T. Nakanishi, and R. Saito, J. Phys. Soc. Jpn. 67, 2857 (1998).
[11] P. L. McEuen, M. Bockrath, D. H. Cobden, Y.-G. Yoon, and S. G. Louie, Phys. Rev. Lett. 83, 5098 (1999).
[12] N. M. R. Peres, Rev. Mod. Phys. 82, 2673 (2010).
[13] W. Greiner, Mueller, B. and Rafelski, J. , Springer, Berlin (1985).
[14] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nat. Phys. 2, 620 (2006).
[15] E. M. L. L.D. Landau, Theoretical Physics, vol. 3 (Butterworth-Heinemann, Oxford)
[16] Y. Zheng and T. Ando, Phys. Rev. B 65, 245420 (2002).
[17] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
[18] C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).
[19] H. U. Baranger and P. A. Mello, Phys. Rev. Lett. 73, 142 (1994).
[20] O. Agam, I. Aleiner, and A. Larkin, Phys. Rev. Lett. 85, 3153 (2000).
[21] S. Oberholzer, E. V. Sukhorukov, C. Strunk, C. Schönenberger, T. Heinzel, and M. Holland, Phys. Rev. Lett. 86, 2114 (2001).
[22] D. A. Abanin and L. S. Levitov, Science 317, 641 (2007).
[23] J. R. Williams, L. DiCarlo, and C. M. Marcus, Science 317, 638 (2007).
[24] G. P. Mikitik and Y. V. Sharlai, Phys. Rev. Lett. 82, 2147 (1999).
[25] H. P. Wei, D. C. Tsui, M. A. Paalanen, and A. M. M. Pruisken, Phys. Rev. Lett. 61, 1294 (1988).
[26] A. M. M. Pruisken, Phys. Rev. Lett. 61, 1297 (1988).
[27] B. Huckestein, Rev. Mod. Phys. 67, 357 (1995).
[28] A. J. M. Giesbers, U. Zeitler, L. A. Ponomarenko, R. Yang, K. S. Novoselov, A. K. Geim, and J. C. Maan, Phys. Rev. B 80, 241411 (2009).
[29] B. L. Altshuler, D. Khmel'nitzkii, A. I. Larkin, and P. A. Lee, Phys. Rev. B 22, 5142 (1980).
[30] P. M. Mensz and R. G. Wheeler, Phys. Rev. B 35, 2844 (1987).
[31] C. W. J. Beenakker and H. van Houten, in Solid State Physics, edited by E. Henry, and T. David (Academic Press, 1991), pp. 1.
[32] S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980).
[33] E. McCann, K. Kechedzhi, V. I. Fal’ko, H. Suzuura, T. Ando, and B. L. Altshuler, Phys. Rev. Lett. 97, 146805 (2006).
[34] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
[35] Ting Cao, Gang Wang, Wenpeng Han, Huiqi Ye, Chuanrui Zhu, Junren Shi, Qian Niu, Pingheng Tan, Enge Wang, Baoli Liu, and Ji Feng, Nat. Commun. 3, 887 (2012).
[36] R. J. Nelson, Appl. Phys. Lett. 31, 351 (1977).
[37] D. V. Lang and R. A. Logan, Phys. Rev. Lett. 39, 635 (1977).
[38] Y. C. Lee, J. L. Shen, K. W. Chen, W. Z. Lee, S. Y. Hu, K. K. Tiong, and Y. S. Huang, J. Appl. Phys. 99 (2006).
[39] J. Z. Li, J. Y. Lin, H. X. Jiang, M. Asif Khan, and Q. Chen, J. Appl. Phys. 82, 1227 (1997).
[40] H. J. Queisser and D. E. Theodorou, Phys. Rev. B 33, 4027 (1986).
[41] T. N. Theis and S. L. Wright, Appl. Phys. Lett. 48, 1374 (1986).
[42] K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, Nat. Nanotechnol. 8, 826 (2013).
[43] G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, Nat. Nanotechnol. 7, 363 (2012).
[44] S.-Y. Chen, Y.-Y. Lu, F.-Y. Shih, P.-H. Ho, Y.-F. Chen, C.-W. Chen, Y.-T. Chen, and W.-H. Wang, Carbon 63, 23 (2013).
[45] H. X. Jiang and J. Y. Lin, Phys. Rev. B 40, 10025 (1989).
[46] H. X. Jiang and J. Y. Lin, Phys. Rev. Lett. 64, 2547 (1990).
[47] H. X. Jiang, G. Brown, and J. Y. Lin, J. Appl. Phys. 69, 6701 (1991).
[48] A. S. Dissanayake, S. X. Huang, H. X. Jiang, and J. Y. Lin, Phys. Rev. B 44, 13343 (1991).
chapter 3
References 54
[1] A. M. M. Pruisken, Phys. Rev. Lett. 61, 1297 (1988).
[2] W. Bao, G. Liu, Z. Zhao, H. Zhang, D. Yan, A. Deshpande, B. LeRoy, and C. Lau, Nano Res. 3, 98 (2010).
[3] S.-Y. Chen, P.-H. Ho, R.-J. Shiue, C.-W. Chen, and W.-H. Wang, Nano Lett. 12, 964 (2012).
[4] F.-Y. Shih, S.-Y. Chen, C.-H. Liu, P.-H. Ho, T.-S. Wu, C.-W. Chen, Y.-F. Chen, and W.-H. Wang, AIP Adv. 4, 067129 (2014).
[5] O. Vazquez-Mena, L. Gross, S. Xie, L. G. Villanueva, and J. Brugger, Microelectron. Eng. 132, 236 (2015).
[6] M. Jang, T. Q. Trung, J.-H. Jung, B.-Y. Kim, and N.-E. Lee, Phys. Chem. Chem. Phys. 16, 4098 (2014).
[7] K. Yoon, G. Hwang, J. Chung, H. G. Kim, O. Kwon, K. D. Kihm, and J. S. Lee, Carbon 76, 77 (2014).
[8] S. Kim, M. Russell, M. Henry, S. S. Kim, R. R. Naik, A. A. Voevodin, S. S. Jang, V. V. Tsukruk, and A. G. Fedorov, Nanoscale 7, 14946 (2015).
[9] D. J. Gardiner and P.R. Graves, Practical Raman Spectroscopy, Springer-Verlag (1989).
[10] A. T. Young, Appl. Opt. 20, 533 (1981).
[11] P. A. Bertrand, Phys. Rev. B 44, 5745 (1991).
[12] H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, Adv. Funct. Mater. 22, 1385 (2012).
[13] M. Baclayon, G. J. L. Wuite, and W. H. Roos, Soft Matter. 6, 5273 (2010).
chapter 4
References 70
[1] A. F. Young and P. Kim, Annu. Rev. Conden. Ma. P. 2, 101 (2011).
[2] A. F. Young and P. Kim, Nat. Phys. 5, 222 (2009).
[3] M. Satoru, M. Sei, O. Masahiro, I. Kazuyuki, W. Kenji, T. Takashi, and M. Tomoki, Jpn. J. Appl. Phys. 52, 110105 (2013).
[4] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nat. Phys. 2, 620 (2006).
[5] A. V. Shytov, M. S. Rudner, and L. S. Levitov, Phys. Rev. Lett. 101, 156804 (2008).
[6] B. Ozyilmaz, P. Jarillo-Herrero, D. Efetov, D. A. Abanin, L. S. Levitov, and P. Kim, Phys. Rev. Lett. 99, 166804 (2007).
[7] J. R. Williams, L. DiCarlo, and C. M. Marcus, Science 317, 638 (2007).
[8] G. Liu, J. Velasco, W. Z. Bao, and C. N. Lau, Appl. Phys. Lett. 92, 203103 (2008).
[9] H. C. Cheng, R. J. Shiue, C. C. Tsai, W. H. Wang, and Y. T. Chen, ACS Nano 5, 2051 (2011).
[10] D. B. Farmer, Y. M. Lin, A. Afzali-Ardakani, and P. Avouris, Appl. Phys. Lett. 94, 213106 (2009).
[11] K. Brenner and R. Murali, Appl. Phys. Lett. 96, 063104 (2010).
[12] F. M. Koehler, N. A. Luechinger, D. Ziegler, E. K. Athanassiou, R. N. Grass, A. Rossi, C. Hierold, A. Stemmer, and W. J. Stark, Angewandte Chemie-International Edition 48, 224 (2009).
[13] H.-Y. Chiu, V. Perebeinos, Y.-M. Lin, and P. Avouris, Nano Lett. 10, 4634 (2010).
[14] C.-H. Liu, P.-H. Wang, T.-P. Woo, F.-Y. Shih, S.-C. Liou, P.-H. Ho, C.-W. Chen, C.-T. Liang, and W.-H. Wang, Phys. Rev. B 93, 041421(R) (2016).
[15] D. A. Abanin and L. S. Levitov, Science 317, 641 (2007).
[16] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, L. A. Ponomarenko, D. Jiang, and A. K. Geim, Phys. Rev. Lett. 97, 016801 (2006).
[17] E. McCann, K. Kechedzhi, V. I. Fal’ko, H. Suzuura, T. Ando, and B. L. Altshuler, Phys. Rev. Lett. 97, 146805 (2006).
[18] X. Wu, X. Li, Z. Song, C. Berger, and W. A. de Heer, Phys. Rev. Lett. 98, 136801 (2007).
[19] F. V. Tikhonenko, D. W. Horsell, R. V. Gorbachev, and A. K. Savchenko, Phys. Rev. Lett. 100, 056802 (2008).
[20] Y. W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, Phys. Rev. Lett. 99, 246803 (2007).
[21] Y. Oh, J. Eom, H. C. Koo, and S. H. Han, Solid State Commun. 150, 1987 (2010).
[22] M. Z. Iqbal, K. Özgür, M. W. Iqbal, J. Xiaozhan, H. Chanyong, and E. Jonghwa, New J. Phys. 16, 083020 (2014).
[23] J. Heo, H. J. Chung, Sung-Hoon Lee, H. Yang, D. H. Seo, J. K. Shin, U-In Chung, S. Seo, E. H. Hwang, and S. Das Sarma, Phys. Rev. B 84, 035421 (2011).
[24] E. H. Hwang and S. Das Sarma, Phys. Rev. B 82, 081409 (R) (2010).
[25] F. V. Tikhonenko, D. W. Horsell, R. V. Gorbachev, and A. K. Savchenko, Phys. Rev. Lett. 100, 056802 (2008).
[26] B. L. Altshuler, D. Khmel'nitzkii, A. I. Larkin, and P. A. Lee, Phys. Rev. B 22, 5142 (1980).
[27] H.-C. Cheng, R.-J. Shiue, C.-C. Tsai, W.-H. Wang, and Y.-T. Chen, ACS Nano 5, 2051 (2011).
[28] T. Lohmann, K. von Klitzing, and J. H. Smet, Nano Lett. 9, 1973 (2009).

chapter 5
References 98
[1] A. F. Young and P. Kim, Annu. Rev. Conden. Ma. P. 2, 101 (2011).
[2] B. Ozyilmaz, P. Jarillo-Herrero, D. Efetov, D. A. Abanin, L. S. Levitov, and P. Kim, Phys. Rev. Lett. 99, 166804 (2007).
[3] A. F. Young and P. Kim, Nat. Phys. 5, 222 (2009).
[4] M. Satoru, M. Sei, O. Masahiro, I. Kazuyuki, W. Kenji, T. Takashi, and M. Tomoki, Jpn. J. Appl. Phys. 52, 110105 (2013).
[5] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nat. Phys. 2, 620 (2006).
[6] A. V. Shytov, M. S. Rudner, and L. S. Levitov, Phys. Rev. Lett. 101, 156804 (2008).
[7] Zheng Liu, Lulu Ma, Gang Shi, Wu Zhou, Yongji Gong, Sidong Lei, Xuebei Yang, Jiangnan Zhang, Jingjiang Yu, Ken P. Hackenberg, Aydin Babakhani, Juan-Carlos Idrobo, Robert Vajtai, Jun Lou, and Pulickel M. Ajayan, Nat. Nanotechnol. 8, 119 (2013).
[8] A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
[9] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
[10] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
[11] K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal'ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, Nat. Phys. 2, 177 (2006).
[12] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
[13] A. J. M. Giesbers, U. Zeitler, L. A. Ponomarenko, R. Yang, K. S. Novoselov, A. K. Geim, and J. C. Maan, Phys. Rev. B 80, 241411 (R) (2009).
[14] E. C. Peters, A. J. M. Giesbers, M. Burghard, and K. Kern, Appl. Phys. Lett. 104, 203109 (2014).
[15] S.-Y. Chen, P.-H. Ho, R.-J. Shiue, C.-W. Chen, and W.-H. Wang, Nano Lett. 12, 964 (2012).
[16] J. R. Williams, L. DiCarlo, and C. M. Marcus, Science 317, 638 (2007).
[17] H. C. Cheng, R. J. Shiue, C. C. Tsai, W. H. Wang, and Y. T. Chen, ACS Nano 5, 2051 (2011).
[18] B. Huard, N. Stander, J. A. Sulpizio, and D. Goldhaber-Gordon, Phys. Rev. B 78, 121402 (2008).
[19] T. Mueller, F. Xia, M. Freitag, J. Tsang, and P. Avouris, Phys. Rev. B 79, 245430 (2009).
[20] R. Nouchi and K. Tanigaki, Appl. Phys. Lett. 105, 033112 (2014).
[21] R. Nouchi and K. Tanigaki, Appl. Phys. Lett. 96, 253503(2010).
[22] F. N. Xia, V. Perebeinos, Y. M. Lin, Y. Q. Wu, and P. Avouris, Nat. Nano. 6, 179 (2011).
[23] S. Cho and M. S. Fuhrer, Phys. Rev. B 77, 081402 (2008).
[24] F.-Y. Shih, S.-Y. Chen, C.-H. Liu, P.-H. Ho, T.-S. Wu, C.-W. Chen, Y.-F. Chen, and W.-H. Wang, AIP Advances 4, 067129 (2014).
[25] F. Ortmann and S. Roche, Phys. Rev. Lett. 110, 086602 (2013).
[26] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, A. K. Geim, Science 315, 1379 (2007).
[27] B. Huckestein, Rev. Mod. Phys. 67, 357 (1995).
[28] S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar, Rev. Mod. Phys. 69, 315 (1997).
[29] H. P. Wei, D. C. Tsui, M. A. Paalanen, and A. M. M. Pruisken, Phys. Rev. Lett. 61, 1294 (1988).
[30] A. M. M. Pruisken, Phys. Rev. Lett. 61, 1297 (1988).
[31] S. Koch, R. J. Haug, K. v. Klitzing, and K. Ploog, Phys. Rev. Lett. 67, 883 (1991).
[32] T. Brandes, Phys. Rev. B 52, 8391 (1995).
[33] K. M. McCreary, K. Pi, and R. K. Kawakami, Appl. Phys. Lett. 98, 192101 (2011).
[34] J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. Von Klitzing, and A. Yacoby, Nat. Phys. 4, 144 (2008).
[35] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, L. A. Ponomarenko, D. Jiang, and A. K. Geim, Phys. Rev. Lett. 97 (2006).
[36] Po-Hsiang Wang, Fu-Yu Shih, Shao-Yu Chen, Alvin B. Hernandez, Po-Hsun Ho, Lo-Yueh Chang, Chia-Hao Chen, Hsiang-Chih Chiu, Chun-Wei Chen, Wei-Hua Wang, Carbon 93, 353 (2015).
[37] I. A. Luk’yanchuk and Y. Kopelevich, Phys. Rev. Lett. 93, 166402 (2004).
[38] D. E. Soule, J. W. McClure, and L. B. Smith, Phys. Rev. 134, A453 (1964).
[39] Claire Berger, Zhimin Song, Xuebin Li, Xiaosong Wu, Nate Brown, Cécile Naud, Didier Mayou, Tianbo Li, Joanna Hass, Alexei N. Marchenkov, Edward H. Conrad, Phillip N. First, Walt A. de Heer, Science 312, 1191 (2006).
[40] P. R. Wallace, Phys. Rev. 71, 622 (1947).
[41] G. P. Mikitik and Y. V. Sharlai, Phys. Rev. Lett. 82, 2147 (1999).
chapter 6
References 112
[1] N. M. R. Peres, A. H. Castro Neto, and F. Guinea, Phys. Rev. B 73, 195411 (2006).
[2] K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 54, 17954 (1996).
[3] B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988).
[4] D A Wharam, T J Thornton, R Newbury, M Pepper, H Ahmed, J E F Frost, D G Hasko, D C Peacock, D A Ritchie and G A C Jones, J. Phys. C: solid state phys. 21, L209 (1988).
[5] T. J. Thornton, M. Pepper, H. Ahmed, D. Andrews, and G. J. Davies, Phys. Rev. Lett. 56, 1198 (1986).
[6] H. Z. Zheng, H. P. Wei, D. C. Tsui, and G. Weimann, Phys. Rev. B 34, 5635 (1986).
[7] N. Tombros, A. Veligura, J. Junesch, M. H. D. Guimaraes, I. J. Vera-Marun, H. T. Jonkman, and B. J. van Wees, Nat. Phys. 7, 697 (2011).
[8] C. W. J. Beenakker and H. van Houten, in Solid State Physics, edited by E. Henry, and T. David (Academic Press, 1991), pp. 1.
[9] X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319, 1229 (2008).

chapter 7
References 145
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
[3] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
[4] K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, Nature 490, 192 (2012).
[5] S. Z. Butler et al., ACS Nano 7, 2898 (2013).
[6] X. Huang, X. Y. Qi, F. Boey, and H. Zhang, Chem. Soc. Rev. 41, 666 (2012).
[7] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. U. S. A. 102, 10451 (2005).
[8] Jonathan N. Coleman, Mustafa Lotya, Arlene O'Neill, Shane D. Bergin, Paul J.King, Umar Khan, Karen Young, Alexandre Gaucher, Sukanta De, Ronan J. Smith, Igor V. Shvets, Sunil K. Arora, George Stanton, Hye-Young Kim, Kangho Lee, Gyu Tae Kim, Georg S. Duesberg, Toby Hallam, John J. Boland, Jing Jing Wang, John F. Donegan, Jaime C. Grunlan, Gregory Moriarty, Aleksey Shmeliov, Rebecca J. Nicholls, James M. Perkins, Eleanor M. Grieveson, Koenraad Theuwissen, David W. McComb, Peter D. Nellist, Valeria Nicolosi, Science 331, 568 (2011).
[9] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
[10] V. Podzorov, M. E. Gershenson, C. Kloc, R. Zeis, and E. Bucher, Appl. Phys. Lett. 84, 3301 (2004).
[11] A. K. Geim and I. V. Grigorieva, Nature 499, 419 (2013).
[12] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanotechnol. 7, 699 (2012).
[13] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).
[14] A. Splendiani, L. Sun, Y. B. Zhang, T. S. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010).
[15] B. W. H. Baugher, H. O. H. Churchill, Y. F. Yang, and P. Jarillo-Herrero, Nano Lett. 13, 4212 (2013).
[16] B. Radisavljevic and A. Kis, Nat. Mater. 12, 815 (2013).
[17] A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agraït, and G. Rubio-Bollinger, Adv. Mater. 24, 772 (2012).
[18] K. F. Mak, K. He, J. Shan, and T. F. Heinz, Nat. Nanotechnol. 7, 494 (2012).
[19] D. Xiao, G. B. Liu, W. X. Feng, X. D. Xu, and W. Yao, Phys. Rev. Lett. 108, 196802 (2012).
[20] H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Nat. Nanotechnol. 7, 490 (2012).
[21] Q. He, Z. Zeng, Z. Yin, H. Li, S. Wu, X. Huang, and H. Zhang, Small 8, 2994 (2012).
[22] Hai Li, Zongyou Yin, Qiyuan He, Hong Li, Xiao Huang, Gang Lu, Derrick Wen Hui Fam, Alfred ling Yoong Tok, Qing Zhang, Hua Zhang, Small 8, 63 (2012).
[23] C. F. Zhu, Z. Y. Zeng, H. Li, F. Li, C. H. Fan, and H. Zhang, J. Am. Chem. Soc. 135, 5998 (2013).
[24] B. Radisavljevic, M. B. Whitwick, and A. Kis, ACS Nano 5, 9934 (2011).
[25] H. Wang, Lili Yu, Yi-Hsien Lee, Yumeng Shi, Allen Hsu, Matthew L. Chin, Lain-Jong Li, Madan Dubey, Jing Kong, and Tomas Palacios, Nano Lett. 12, 4674 (2012).
[26] Z. Y. Yin, Hai Li, Hong Li, Lin Jiang, Yumeng Shi, Yinghui Sun, Gang Lu, Qing Zhang, Xiaodong Chen, and Hua Zhang, ACS Nano 6, 74 (2012).
[27] H. S. Lee, S. W. Min, Y. G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, and S. Im, Nano Lett. 12, 3695 (2012).
[28] M. Buscema, M. Barkelid, V. Zwiller, H. S. J. van der Zant, G. A. Steele, and A. Castellanos-Gomez, Nano Lett. 13, 358 (2013).
[29] M. Fontana, T. Deppe, A. K. Boyd, M. Rinzan, A. Y. Liu, M. Paranjape, and P. Barbara, Sci. Rep. 3 (2013).
[30] K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, Nat. Nanotechnol. 8, 826 (2013).
[31] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Nat. Nanotechnol. 8, 497 (2013).
[32] W. Zhang, J.-K. Huang, C.-H. Chen, Y.-H. Chang, Y.-J. Cheng, and L.-J. Li, Adv. Mater. 25, 3456 (2013).
[33] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Nat. Nanotechnol. 8, 497 (2013).
[34] G. Cunningham, U. Khan, C. Backes, D. Hanlon, D. McCloskey, J. F. Donegan, and J. N. Coleman, J Mater Chem C 1, 6899 (2013).
[35] K. Cho, T. Y. Kim, W. Park, J. Park, D. Kim, J. Jang, H. Jeong, S. Hong, and T. Lee, Nanotechnol. 25, 155201(2014).
[36] S. Ghatak, A. N. Pal, and A. Ghosh, ACS Nano 5, 7707 (2011).
[37] H. Qiu, Tao Xu, Zilu Wang, Wei Ren, Haiyan Nan, Zhenhua Ni, Qian Chen, Shijun Yuan, Feng Miao, Fengqi Song, Gen Long, Yi Shi, Litao Sun, Jinlan Wang, and Xinran Wang, Nat. Commun. 4, 2642 (2013).
[38] W. Zhu, T. Low, Y.-H. Lee, H. Wang, D. B. Farmer, J. Kong, F. Xia, and P. Avouris, Nat. Commun. 5, 4458 (2014).
[39] S. Ghatak and A. Ghosh, Appl. Phys. Lett. 103, 122103 (2013).
[40] S. L. Li, K. Wakabayashi, Y. Xu, S. Nakaharai, K. Komatsu, W. W. Li, Y. F. Lin, A. Aparecido-Ferreira, and K. Tsukagoshi, Nano Lett. 13, 3546 (2013).
[41] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, ACS Nano 4, 2695 (2010).
[42] H.-C. Cheng, R.-J. Shiue, C.-C. Tsai, W.-H. Wang, and Y.-T. Chen, ACS Nano 5, 2051 (2011).
[43] F. Y. Shih, S. Y. Chen, C. H. Liu, P. H. Ho, T. S. Wu, C. W. Chen, Y. F. Chen, and W. H. Wang, AIP Advances 4, 067129 (2014).
[44] C. Kyungjune, K. Tae-Young, P. Woanseo, P. Juhun, K. Dongku, J. Jingon, J. Hyunhak, H. Seunghun, and L. Takhee, Nanotechnol. 25, 155201 (2014).
[45] T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schuller, Appl. Phys. Lett. 99, 102109 (2011).
[46] Daichi Kozawa, Rajeev Kumar, Alexandra Carvalho, Kiran Kumar Amara, Weijie Zhao, Shunfeng Wang, Minglin Toh, Ricardo M. Ribeiro, A. H. Castro Neto, Kazunari Matsuda, and Goki Eda, Nat. Commun. 5, 4543 (2014).
[47] H. X. Jiang and J. Y. Lin, Phys. Rev. Lett. 64, 2547 (1990).
[48] H. X. Jiang and J. Y. Lin, Phys. Rev. B 40, 10025 (1989).
[49] R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. Anderson, Phys. Rev. Lett. 53, 958 (1984).
[50] A. S. Dissanayake, S. X. Huang, H. X. Jiang, and J. Y. Lin, Phys. Rev. B 44, 13343 (1991).
[51] H. X. Jiang and J. Y. Lin, Phys. Rev. Lett. 64, 2547 (1990).
[52] D. C. Johnston, Phys. Rev. B 74, 184430 (2006).
[53] C. P. Lu, G. H. Li, J. H. Mao, L. M. Wang, and E. Y. Andrei, Nano Lett. 14, 4628 (2014).
[54] S. McDonnell, R. Addou, C. Buie, R. M. Wallace, and C. L. Hinkle, ACS Nano 8, 2880 (2014).
[55] S. Ghatak, S. Mukherjee, M. Jain, D. Sarma, and A. Ghosh, arXiv preprint arXiv:1403.3333 (2014).
[56] N. Scheuschner, O. Ochedowski, A. M. Kaulitz, R. Gillen, M. Schleberger, and J. Maultzsch, Phys. Rev. B 89, 125406 (2014).
[57] S.-Y. Chen, P.-H. Ho, R.-J. Shiue, C.-W. Chen, and W.-H. Wang, Nano Lett. 12, 964 (2012).
[58] C.-C. Wu, D. Jariwala, V. K. Sangwan, T. J. Marks, M. C. Hersam, and L. J. Lauhon, J. Phys. Chem. Lett. 4, 2508 (2013).
[59] D. V. Lang and R. A. Logan, Phys. Rev. Lett. 39, 635 (1977).
[60] D. V. Lang, R. A. Logan, and M. Jaros, Phys. Rev. B 19, 1015 (1979).
[61] H. J. Queisser and D. E. Theodorou, Phys. Rev. B 33, 4027 (1986).
[62] T. N. Theis and S. L. Wright, Appl. Phys. Lett. 48, 1374 (1986).
[63] R. J. Nelson, Appl. Phys. Lett. 31, 351 (1977).
[64] Y. C. Lee, J. L. Shen, K. W. Chen, W. Z. Lee, S. Y. Hu, K. K. Tiong, and Y. S. Huang, J. Appl. Phys. 99, 063706 (2006).
[65] G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, Nat. Nanotechnol. 7, 363 (2012).
[66] S.-Y. Chen, Y.-Y. Lu, F.-Y. Shih, P.-H. Ho, Y.-F. Chen, C.-W. Chen, Y.-T. Chen, and W.-H. Wang, Carbon 63, 23 (2013).
[67] S. T. Lo, O. Klochan, C. H. Liu, W. H. Wang, A. R. Hamilton, and C. T. Liang, Nanotechnol. 25, 375201 (2014).
[68] M. M. Furchi, D. K. Polyushkin, A. Pospischil, and T. Mueller, Nano Lett. 14, 6165 (2014).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51112-
dc.description.abstract二維材料奈米元件之量子傳輸與光電特性是本篇論文的研究主軸。為了延伸現今莫爾定律(10奈米以下元件製程),以及面對未來半導體產業走向,去尋找合宜的新穎材料,並且研究這些材料在光、電甚至磁場下的量子物理傳輸特性,成為在應用面上刻不如緩的課題。
本篇論文著重的二維材料及其物理特性有:具有高的載子遷移率、透明度和可撓性的單層石墨烯(Graphene),特別針對石墨烯奈米線(nanoribbon)和異質接面(p-n-p、p-n)元件的物理傳輸特性加以探討,以及近年熱門材料,同為二維結構當中的過渡性金屬化合物二硫化鉬(MoS2)作光電物理特性之研究。
我們採用新穎的製程方式來呈現良好石墨烯異質接面元件 (p-n-p,p-n) 的磁性傳輸特性,為了更加的了解接面傳輸特性,改良樣品品質的製程方式是十分受到注目的。此新穎製程為第一次嘗試無光阻劑並且僅需一道成長金屬步驟的乾淨製程,有別於其它雙閘極或是化學佈植的繁複步驟。製程關鍵在於調變光罩和樣品的距離,以致於在成長金屬時有效的控制在光罩下金屬擴散長度,進而達成佈植的效果。一般而言,金屬擴散都會使載子在傳輸時產生散射,依本實驗的結果發現少部分的金屬佈植並和空氣中的氧結合,可以達成佈植效果並將散射影響的情形降低而不影響所要觀察的量子傳輸特性。在磁場下觀測到2/3 〖 e〗^2/h 量子霍爾平台表示著p-n-p元件在接面上有好的能態密度疊加,提供載子好的傳輸通道,同時,在低磁場的弱局限效應所分析出的相位同調長度隨著閘極電壓變化呈獻出和電性量測相同的趨勢,同調長度隨著溫度變化也能分析出載子傳輸主要機制為電子-電子(electron-electron scattering)散射所造成,呈現出對於磁性量測的全面性。
我們進一步的研究石墨烯的迪拉克點在磁場下產生特殊的零階朗道能階做物理上的討論,此實驗為第一次利用p-n-p異質接面元件於低階簡併量子平台和接面產生的分數量子平台之間的相變變化來研究零階朗道能階。實驗中觀察到平台和平台之間隨著溫度變化有相位轉換交點,代表著載子在能量為零的零階朗道能階中不會有被局限的傳輸行為,藉由縮放行為(Scaling behavior)得到的縮放指數 ? 為0.21,此值為理論中絕對值 ?= 0.42的一半,展示出零階朗道能階的特別行為。另外,我們在一維奈米線的電性傳輸觀測到電導量子化也被獨立出新的章節作探討。
此外,我們研究單層二硫化鉬場效電晶體之光電量測特性。二硫化鉬是二維材料在光電應用中最有潛力的材料之一,但在照光之後,樣品會產生持久性光電流(Persistent photocurrent),然而電流值的大小程級也不逕相同。儘管持久性光電流會對於光電元件應用上產生重要影響,但卻沒有一個明確的研究去顯示它的成因和特性,在本實驗中,將詳細的討論持久性光電流歸因於散佈在樣品中的位能分佈不均所產生的載子局限行為,更一步的利用懸浮二硫化鉬來證實這些分佈不均的位能來自為基板的效應。此外了解成因之後,持久性光電流將被深入的究發現可被溫度、光強度、電子躍遷能階和基板效應所調控,這個電流變化行為也合理的被物理RLPF模型解釋,提供未來以二硫化鉬為材料的應用元件很好的參考價值。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-15T13:25:24Z (GMT). No. of bitstreams: 1
ntu-105-F98222065-1.pdf: 4246496 bytes, checksum: 3a437b396c8a956b5377585ab04aeae5 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsContents
1. Introduction 1
References 4
2. Theoretical background 5
2.1 Physical properties of graphene 5
2.1.1 Electrical structure and zero band gap 6
2.1.2 Pseudospin 11
2.1.3 Klein Tunneling 12
2.1.4 Quantum Hall effect 15
2.1.5 Shubnikov-de Haas oscillation and massless effective mass 21
2.1.6 Quantum Hall Plateau-plateau transition 23
2.1.7 Weak localization 25
2.2 Molybdenum disulfide (MoS2) 28
2.2.1 Photoconductivity effect 30
2.2.2 Persistent photoconductivity 31
References 36
3. Experimental methods 39
3.1 Resist-free fabrication 39
3.2 Physical Property Measurement System 42
3.3 Optical measurement systems 43
3.4 Atomic force microscopy 47
3.5 OTS-functionalized substrates and electrical measurement method 48
References 54

4. Distinctive magnetotransport of graphene p-n-p junctions via resist-free fabrication and controlled diffusion of metallic contact 55
4.1 Introduction 55
4.2 Fabrication 56
4.3 Experimental results 57
4.4 Demonstration of p-n junction devices 66
4.5 Conclusion 68
References 70
5. Observation of quantum Hall plateau-plateau transition and scaling behavior of the zeroth Landau level in graphene p-n-p junction 73
5.1 Introduction 73
5.2 Fabrication 75
5.3 Experimental results 77
5.3.1 The doping effect from titanium diffusion 77
5.3.2 The doping effect simulated by theoretical dipining model 79
5.3.3 Characteristics of graphene p-n-p junction devices 82
5.3.4 Quantum Hall effect in p-n-p junction 84
5.3.5 Scaling behavior 89
5.3.6 The MR and the distribution of the energy levels of the LLs 93
5.4 Conclusion 96
References 98
6. Quantum conductance in graphene nanoribbons 102
6.1 Theoretical background 102
6.2 Fabrication method 106
6.3 Experimental results 109
6.4 Conclusion 111
References 112
7. Extrinsic Origin of Persistent Photoconductivity in Monolayer MoS2 Field Effect 113
7.1 Introduction 113
7.2 Fabrication 115
7.3 Measurement method 118
7.4 Experimental results and discussion 119
7.4.1 The PPC effect in a monolayer MoS2 transistor 119
7.4.2 Temperature dependence of PPC relaxation 125
7.4.3 The subtract effect of PPC 126
7.4.4 Discussion of PPC mechanism 130
7.4.5 The relationship between the PPC effect and transport behavior 134
7.4.6 Fitting of the PPC relaxation curves 137
7.4.7 Gate voltage dependence of the PPC 138
7.4.8 Transport characteristics of the MoS2 FET 141
7.4.9 Carrier mobility dependence of the PPC 142
7.4 conclusion 144
References 145
8. Conclusion 151
dc.language.isoen
dc.subject量子平台相位轉換zh_TW
dc.subject石墨烯zh_TW
dc.subject二硫化鉬zh_TW
dc.subject持續性光電流zh_TW
dc.subjectgrapheneen
dc.subjectmolybdenum disulfideen
dc.subjectquantum Hall plateau-plateau transitionen
dc.subjectpersistent photoconductivityen
dc.title二維材料奈米元件之量子傳輸與光電特性zh_TW
dc.titleQuantum transport and optoelectronic properties of the nano devices composed of two-dimensional materialsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.coadvisor王偉華(Wei-Hua Wang)
dc.contributor.oralexamcommittee陳俊維(Chun-Wei Chen),陳則銘(Tse-Ming Chen),陸紀亙(Chi-Ken Lu)
dc.subject.keyword石墨烯,二硫化鉬,量子平台相位轉換,持續性光電流,zh_TW
dc.subject.keywordgraphene,molybdenum disulfide,quantum Hall plateau-plateau transition,persistent photoconductivity,en
dc.relation.page154
dc.identifier.doi10.6342/NTU201600251
dc.rights.note有償授權
dc.date.accepted2016-05-13
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
4.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved